弧型罩盖减少药液雾滴飘失的理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械式罩盖喷雾是一种结构简单、价格便宜和减少雾滴飘失效果好的喷雾方法,其中罩盖结构起着关键的作用。目前国外试验研究的罩盖结构中,双圆弧罩盖效果最好。但由于该罩盖的结构特点,其下方产生较大速度的运动气流和罩盖后部产生的涡流以及上旋气流,将直接影响雾滴的飘失。因此,作者提出双圆弧罩盖结构的改进方法,并进行减少雾滴飘失的对比试验研究。
     本文采用导流法在双圆弧罩盖上开口,利用Fluent模拟分析和比较罩盖喷雾流场,并模拟该流场下的雾滴运动轨迹来分析雾滴的飘失性,模拟结果表明:结构改进后的罩盖喷雾流场得到改善,其减少雾滴飘失的效果好于原罩盖,更优于常规无罩盖喷雾。
     风洞测量流速来比较模拟流场和试验流场的吻合程度。开口罩盖流场由于相对稳定,模拟和试验的测点流速平均相对误差为15%,未开口罩盖流场中由于涡流影响较大,平均相对误差为22.45%;同时验证了结构改进前后罩盖流场的模拟比较结果和试验比较结果的趋势是一致的。
     风洞和室内试验比较了结构改进前后的罩盖喷雾减少雾滴飘失的效果,并和常规无罩盖喷雾对比。风洞试验参数:喷雾药液为含1‰BSF的水溶液,风速1.4m/s,风向垂直于喷雾扇面,温度281k~288k,相对湿度RH9%~20%;室内试验参数:喷雾药液为含2‰BSF的水溶液,喷头处风速为3.2m/s,风向平行于喷雾扇面,温度291k~301k,相对湿度RH15%~21.2%%;分别在喷头下风向喷幅外的空中和地面布点收集飘失和飘移沉积的雾滴量,作为评价减少雾滴飘失效果的指标:
     试验结果表明:改进后的罩盖喷雾减少雾滴飘失的效果好于双圆弧未开口罩盖喷雾,常规无罩盖喷雾的雾滴飘失量大于开口罩盖喷雾。
Mechanical shield spray has good effect in reducing spray drift with low cost, simple structure. The structure is the key point. At present, among the researched structures, the double-foil shield is the best one during experiments. Because of its special structure, the high velocity flow under the shield, big vortex and upcast flow behind the shield will affect the spray drift. If these situations could be changed, the drift can be reduced further. So the shield structure was improved to change the flow field, and experiments will be conducted to validate the effect in reducing spray drift.
    A slot was cut in the back plate of the double-foil shield to improve the flow field with air diversion method. The flow field and droplets trajectory near the shield are simulated in wind tunnel by Fluent software to analyze the wake flow affecting the spray drift. From simulation, the improved shield spray in reducing drift is better than double-foil shield spray and conventional spray in six types of wind velocity.
    In order to validate the correctness of the simulation, the flow velocity of X vector is measured to compare the flow field between the simulation and the experiment in wind tunnel. The results indicate that the flow field is improved and more stable than the original shield flow field. The tendency between the improved shield and the original shield from simulation is consistent with the tendency from experiments.
    The experiment in wind tunnel is to collect the drifted droplets with ball collectors in the air and the deposited droplets with filter paper on the ground after the nozzle down the wind. The spray solution is water with 1%0BSF. The captured droplets weight is regarded as evaluating indicator. Experimental constants include: ambient temperature 281-288k, RH 9%~20%, wind velocity 1.4m/s and vertical to the spray fan. Working pressure 4bar, discharge height 0.4m. Nozzle used in all experiments is LU120-015.
    Also experiment is conducted to evaluate the spray drift affected by the crosswind in the door of our institute. The spray solution is water with 2%oBSF. The evaluating indicator is also the captured droplets weight. The collectors are placed in the air and on the ground out the spray amplitude down the wind. Experimental constants include: ambient temperature 291k~301k, RH 15%~21.2%, wind velocity 3.2m/s at the nozzle position and horizontal to the spray fan, others are same as the fore experiment.
    The tendency of the two experiments results is consistent with the tendency from simulation. That indicate the improved shield spray is better than the original shield spray in reducing spray drift, and also more better than conventional spray without shield.
引文
[1]戴奋奋 袁会珠等 编著,植保机械与施药技术规范化,中国农业科学技术出版社,2002
    [2]何雄奎,“机械施药技术规范”对果园风送式喷雾机的使用效果探讨,植保机械与清洗机械动态,2001(4):7~10
    [3]何雄奎,植保机械与施药技术,植保机械与清洗机械动态,2002(4):5~8,11
    [4]何雄奎,改变我国植保机械和施药技术严重落后的现状,农业工程学报,2004.1,20(1):13~15
    [5]何雄奎,严苛荣等,果园自动对靶静电喷雾机设计与试验研究,农业工程学报,2003,19(6):78~80
    [6]何雄奎,曾爱军等,果园喷雾机风速对雾滴的沉积分布影响研究,农业工程学报,2002.7,18(4):75~77
    [7]傅泽田,祁力钧,国内外农药使用状况及解决农药超量使用问题的途径,农业工程学报,1998.6,14(2):7~12
    [8]梁建,雾滴尺寸对雾滴沉积率的影响,译自:M.Salyani,ASAE Paper N087—1536,Droplet Size Effect On Spray Deposition Efficiency
    [9]潘文全编著,工程流体力学,清华大学出版社出版,1993
    [10]彭三河,植保机械几种施药方式及防效的研究,湖北农学院学报,2002.2,20(1):23~24
    [11]戚积琏,农药的喷施方法和附着性,译自:平松礼治植物防疫(日刊)1980,40(3):农药散布方法付着性
    [12]祁力钧,傅泽田,影响农药施药效果的因素分析,中国农业大学学报,1998,3(2):80~84
    [13]祁力钧,傅泽田,风助式喷雾器雾滴在果树上的分布,农业工程学报,1998.9,14(3):135~139
    [14]全国植保专业统计资料,2001
    [15]阮文菊 译,喷雾混合液对雾滴尺寸的影响,153~157
    [16]屠予钦 主编,农药使用技术原理,上海科学技术出版社,1986
    [17]屠予钦 主编,化学防治技术研究进展,新疆科技卫生出版社,1992
    [18]王欣;导流板减少农药飘失效果的研究,[硕士学位论文].北京:中国农业大学,1996.6
    [19]吴罗罗,李秉礼等,雾滴飘移试验与几种喷头抗飘失能力的比较,农业机械学报,1996.10,增刊:120~124
    [20]杨学昌等,高效带电农药喷雾技术的研究,高电压技术,1995,21(1):19~22
    [21]余泳昌,史国栋等,风送弥雾机施加静电场喷雾技术的研究,河南农业大学学报,1995,29(2):152~155
    [22]袁会珠,液力式喷头类型及靶标适应性,植保技术与推广,1998,18(2):34~36
    [23]袁会珠,农药使用技术的发展趋势,植保技术与推广,1998,21(2):37~38
    [24]周浩生,冼福生等,风送静电喷雾水平射程测定试验研究,农机与食品机械,1995
    
    No. 2:11
    [25] Bouse L. F., Kirk I. W. et al, Effect of mixture on droplet size. ASAE, 1990,33(3):783~788
    [26] Brown R. B., M. Darvishvand Taher. Modeling pesticide spray deposition in a plant canopy using a virtual nozzle. ASAE Paper, No.99103
    [27] Bui Q.D, Womac A.R et al, Evaluation of samplers for spray drift, ASAE, 1998, 41(1):37~41
    [28] Combellack J.H. Loss of herbicides from ground sprayers. Weed Research. 1982,22:193~204
    [29] Fehringer R. J et al. Spray drift reduction with shrouded boom sprayers. ASAE Paper No.90-1008.
    [30] Fox R. D., Brazee R. D. et al. A model study of the effect of wind on air spayer jets, Transactions of the ASAE 1985,83~88
    [31] Franz E., L. F. Bouse, J. B. Carlton et al. Aerial spray deposit relations with plant canopy and weather parameters. Transactions of the ASAE 1998, 41(4): 959-966
    [32] Furness G.O. A Comparison of a Simple Bluff Plate and Axial Fans for Air-Assisted, High-Speed, Low-Volume Spray Application to Wheat and Sunflower Plants. J.agric. engng Res. (1991)48,57~75
    [33] Giles D. K., Law S. E., Space charge deposition of pesticide sprays onto cylindrical target arrays. ASAE, 1985,28(3):658~664
    [34] Haisheng S. XIE.et al. Spray deposition of fenoxaprop and imazamethabenz on wild oat as influenced by environmental factors. Weed Science, 1995,43:179~183
    [35] Hess F. D, Richard H. f, Herbicide deposition on leaf surfaces. Weed Science,1990, 38:280~288
    [36] Hewitt A. J. Spray drift: impact of requirements to protect the environment, Crop Protection 2000, 19:623~627
    [37] Hislop E.C., N.M. Western et al. Experimental air-assisted spraying of young cereal plants under controlled conditions. Crop protection 1993, 12:193-200
    [38] Hoffmann W. C., M. Salyani. Spray deposition on citrus canopies under different meteorological conditions. Transactions of the ASAE 1996, 39(1): 17-22
    [39] Hobson P.A.,Miller P.C.H., Waiklate P.J. et ai; Spray Drift form Hydraulic Spray Nozzles: the Use of a Computer Simulation Modle to Examine Factors Influencing Drift. J. agric. Engng Res. (1993) 54,293~305
    [40] Horst Gohlich, Assessment of spray drift in sloping vineyards. Crop Protection (1983) 2(1),37~49
    [41] Miller D. R., Stoughton T. E et al. Atmospheric stability effects on pesticide drift from an irrigated orchard, Transactions of the ASAE 2000, 43(5): 1057~1066
    [42] Miller P.C.H., Hadfield D.J. A Simulation Model of the Spray Drift from Hydraulic Nozzles. J. agric. Engng Res. (1989)42, 135~147
    
    
    [43] Murphy S. D et al. The effect of boom section and nozzle configuration on the risk of spray drift, J. agric. Engng Res. (2000)75, 127~137
    [44] Ozkan H.E.; Miralles A.; C.Sinfort; H.Zhu;R.D.Fox, Shields to Reduce Spray Drift, J. agric. Engng Res, (1997)67,311~322
    [45] Ozkan H.E.; reducing spray drift, 网上资源, 2000
    [46] Picot J. J. C., D.D. Kristmanaon et al. Canop deposit and off-target drift in forestry aerial spraying: the effects of operational parameters. Transactions of the ASAE 1986, 29(1): 90-96
    [47] Reichard D.L., Zhu H., Fox R.D., Brazee R.D. Computer Simulation of Variables That Influence Spray Drift. Transactions of the ASAE 1992,35(5): 1401—1407
    [48] Reichard D.L., Zhu H., Fox R.D., Brazee R.D. Wind Tunnel Evaluation of A Computer Program To Model Spray Drift. Transactions of the ASAE 1992,35(3): 755—758
    [49] Richard Ammons et al. Optimized pesticide application, J.agric. Engng Res. (2000)75, 155~166
    [50] Robert E. Wolf. Equipments to reduce spray drift. Engineering and Technology, 1997 (7):1~4
    [51] Robert Wolf. Strategies to reduce spray drift. Engineering and Technology, 1997 (6): 1~4
    [52] Salyani M., Cromwell R.P. Spray Drift from Ground and Aerial Applications. Transactions of the ASAE 1992,35(4): 1113—1120
    [53] Smith D. B., Askew S. D., Morris W. H., Shaw D. R., Boyette M. Droplet size and leaf morphology effects on pesticide spray deposition, ASAE, 2000,43(2): 255~259
    [54] Smith R.W., Miller P.C.H. Drift Predictions in the Near Region of a Flat Fan Spray. J. agric. engng Res. (1994)59,111—120
    [55] Tian L., Zheng J. Dynamic Deposition Pattern Simulation of Modulated Spraying, ASAE, 2002, 43(1), 5~11
    [56] Tsay J.,Fox R. D. et al. Evaluation of a pneumatic-shielded spraying system by CFD sumulation, Transactions of the ASAE 2002, 45(1): 47~54
    [57] Tsay J., Ozkan H. E. et al. CFD simulation of moving spray shields, Transactions of the ASAE 2002, 45(1): 21~26
    [58] Tsay J., Ozkan H. E. et al. CFD simulation of mechanical spray shields, Transactions of the ASAE 2002, 45(5): 1271~1280
    [59] Vern Hofman and Elton Solseng, Reducing spraying drift,2001, 网上资源
    [60] Vern Hofman and Elton Solseng, Equipment and application methods to reduce spray drift,2001, 网上资源
    [61] Zhu H., Reichard D.L., Fox R.D. et al; Simulation of Drift of Discrete Sizes of Water Droplets from Field Sprayers. Transactions of the ASAE 1994,37(5): 1401—1407

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700