三维CT在口腔正畸中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分螺旋CT体绘制颅面部图像线距测量的准确性评价
     目的人体测量学中颅颌面关系为三维空间结构关系,颅颌面的畸形常表现为三维空间结构的异常,现代口腔正畸临床诊断及治疗技术的发展,需要人们对颅颌面的三维空间结构关系做出准确的评价,而目前最常用的评价方法头颅侧位片和正位片,只能反映二维结构的情况,不能反映实际的位置关系,而且存在着影像学方面的放大及失真的问题,螺旋CT的体绘制图像为评估颅颌面关系的测量提供了一种三维方法,本研究的目的是评价颅面部螺旋CT体绘制图像线距测量与实测距离的一致性,并计算其精密度和准确度。
     材料与方法选择12个干燥头颅,采用GE公司16层螺旋CT常规扫描后将头颅数据转至工作站进行颅颌面三维重建,确定正畸常用的18个颅面骨性解剖标志点,测量者为临床经验丰富的同一位正畸医生,分别使用Display Tools测量工具和游标卡尺测量21个测量项目。间隔二周进行下一次测量,共测量四次。采用SAS9.0统计软件包进行配对t检验,比较螺旋CT体绘制线距测量与实测距离的一致性。计算三维体绘制图像线性距离的精密度和准确度。
     结果1.螺旋CT体绘制颅面部图像线距测量与游标卡尺实际测量结果相比,所有测量项目均无统计学差异;2.体绘制颅面部图像测量平均精密度和准确度分别是0.94%(0.25~2.76%)和0.24%(-0.76~1.73%),而实际测量方法的精密度为0.81%(0.20~2.02%);体绘制图像与实测法测量值的差值平均为0.20mm(-0.44~1.00mm)。
     结论螺旋CT体绘制图像颅面解剖标志点间线性距离与实际测量距离具有一致性,并且具有较高的精密度和准确度。螺旋CT三维测量可作为一种非介入方法,替代实际测量应用于口腔医学临床及研究。
     第二部分成人种植体支抗不同植入高度及方向时上下颌皮质骨厚度的束状CT研究
     目的第一磨牙与第二双尖牙颊侧牙槽骨为切牙后退和压低磨牙的最佳微型支抗种植体置入部位,本研究目的是评价该部位不同植入高度、不同植入方向时上下颌皮质骨厚度,为临床上选择适宜的植入高度提供依据。
     材料与方法成人患者22例,男女各11例,年龄20—43岁。日本森田束状CT机拍摄上下颌牙弓后段位置,采用i view软件测量第一磨牙与第二双尖牙之间牙槽嵴顶下1mm-8mm植入点与矢状面呈90度、30度、45度的颊侧皮质骨厚度及皮质骨厚度最小值与植入角度关系。与矢状面呈90度、30度、45度三组间比较,8个植入位置组间比较采用SAS9.0软件中配伍组设计的两因素方差分析以及最小显著差异法(least significant difference LSD法)作各组间两两比较。
     结果种植体呈90度植入,上颌第一磨牙与第二双尖牙间颊侧皮质骨厚度的均值在最靠近和最远离CEJ的地方最厚,中间最薄。下颌第一磨牙与第二双尖牙间颊侧皮质骨厚度从牙槽顶下至根尖水平逐渐增厚;如果种植体与矢状面呈30度或45度植入,除上颌牙槽顶1mm植入皮质骨厚度变小外,上下颌其它部位颊侧皮质骨厚度牙槽顶下至根尖水平逐渐增厚,上下颌第一磨牙及第二双尖牙间植入时与矢状面呈30度及45度斜行植入的颊侧皮质骨厚度较90度平均值分别增加2倍和1.4倍;从厚度最小值与植入角度测量数据看,上颌牙槽顶下1mm处与矢状面呈39度植入时皮质骨厚度最小,从2-6mm处与矢状面呈71.23度(2mm)至108度(6mm)逐渐增加角度植入时皮质骨厚度最小,从7-8mm处与矢状面约呈100度植入时皮质骨厚度最小。下颌牙槽顶下1mm处与矢状面呈74度植入时皮质骨厚度最小,其它部位约90度左右植入时皮质骨厚度最小。
     结论微型支抗种植体植入高度及方向与骨皮质接触厚度与有关,适宜的植入高度应具有一定皮质骨厚度且在附着龈处。除上颌牙槽顶1mm处与矢状面呈90度植入种植体可增加皮质骨厚度外,与矢状面呈30度斜行植入是临床适宜的角度。
     第三部分正常(牙合)不同生长型下颌后牙区牙倾斜度、牙槽骨形态学的CT研究
     目的生长型是正畸治疗中一个重要的考虑因素,这主要因为它影响支抗系统的选择、颌面结构的生长预测、矫治的目标的确定以及咬合力和咀嚼肌功能。本研究的目的是评价正常(牙合)生长型与下颌后牙区牙倾斜度、牙槽骨倾斜度、下颌骨高度、宽度及皮质骨的关系。
     材料与方法个别正常(牙合)成人16例,男女各8例,年龄23—41岁。采用美国GE公司16层螺旋CT(General Electric,GE,Light Speed plus,2004)进行扫描,建立头颅以及上下颌骨及牙弓的三维CT数字图像,采用软件Volume viewer software(Voxtool3.0.64q)测量上下面高比例,FMA(下颌平面和眶耳平面所成的夹角),并根据测量结果将研究对象分为两组。测量下颌后牙区牙倾斜度、牙槽骨倾斜度、下颌骨高度、宽度及皮质骨厚度,采用SAS9.0统计软件包将两组数值进行t检验,评价正常(牙合)生长型与下颌后牙区牙倾斜度、牙槽骨倾斜度、下颌骨高度、宽度及皮质骨的关系。
     结果垂直生长型人群下颌第二磨牙和第一磨牙倾斜度的平均值分别是77.86±3.48度和80.23±2.10度,水平生长型的分别为82.85±4.30度和82.69±1.92度,按a=0.05,差别有统计学意义。两组人群下颌后牙区牙槽骨倾斜度、颊舌侧皮质骨厚度均值、最小均值及骨宽度接近;垂直生长型较水平生长型人群有较大的下颌骨高度。其他统计值显示差别无统计学意义。
     结论对于正常(牙合)人群,水平生长型的下颌磨牙较垂直生长型在颊舌向方向上更加直立;水平生长型与垂直生长型相比牙槽骨倾斜度相近,无明显更厚的下颌皮质骨及骨宽度;水平生长型比垂直生长型有明显小的下颌骨高度。
Part I
    ACCURACY ANALYSIS OF 3D-CT VOLUME
    RENDERING FOR CRANIOFACIL LINEAR
    MEASUREMENTS
    Objective This study was designed to determine consistency of craniofacial measurements using Spiral computed tomography volume rendering by computer systems and sliding caliper, and evaluated the precision and accuracy of 3D rendered images craniofacial measurements by sixteen-slice helical CT, Methods The study population consisted of 12 cadaver heads that were examined with spiral CT. The archived CT data were transferred to a workstation, and 3D-CT volume rendered images were generated using computer graphics tools. Linear measurements (n=21), based upon conventional craniometric anatomical landmarks (n=18) were made, respectively by display tools and sliding caliper. The consistency between the two measurements was analyzed by paired t test. The precision and accuracy of 3D rendered images craniofacial measurements was calculated. Results The results demonstrated no statistically significant difference between imaging measurement and physical measurement; Precision and accuracy of 3D rendered images was 0.94% (range from 0.25-2.76%) and 0.24% (range from -0.76-1.73%) , respectively. Precision of direct measurements was 0.81% ( range from 0.20-2.02%). The difference of mean values between 3D rendered images and dry skull measurements was 0.20mm (range from-0.44-1.00 mm). Conclusions There is significant consistency between spiral CT measurement and physical measurement for craniofacial linear distance. 3D-CT volume rendering images using craniometric measurements can be used for clinic and studies in
    stomatology.
    
    
    
    PART II
    CORTICAL BONE THICKNESS AND ANGULATIONS
    USING LIMITED CONE BEAM COMPUTED TOMOGRAPHY FOR ADULT ORTHODONTIC
    IMPLANTS
    Objective The buccal alveolar bone between the first molar and second premolar usually is the best microimplant area for retraction of the anterior teeth and for intrusion of the molars. The purpose of this study was to quantitatively evaluate the cortical bone thickness (CBT) and implant augulation in various locations in the maxilla and the mandible for adult orthodontics.
    Methods The sample consisted of 11 men and 11 women between 20 to 43 years of age. Limited cone beam computed tomographic images were reconstructed. Cortical bone thicknesses were measured at 3 angles (30°, 45°, and 90°) in the buccal regions from alveolar tip to the bottom of maxilla and mandible at the interval 1 mm. The minimum CBT and insertion angulations at the above areas were also assessed.
    Results At 90° insertion, upper cortical bone were thickest closest to and farthest from the cementoenamel junction (CEJ) and thinnest in the middle, lower CBT were increased from occlusion level to apical level except 1 mm site; At 30° and 45° insertion, CBT were increased gradually from alveolar tip except upper 1 mm site, and resulted in approximately 2, 1.4 times as much at
    30°, 45°compared with 90°. The minimum CBT and insertion angulations at
    various locations were different.
    Conclusions Surgical placement of microscrew for orthodontic anchorage in
    the molar region requires consideration of the placement site and angle based
    on anatomical characteristics. The safest location for placing miniscrew might
    be attached gingival. Oblique 30° insertion microimplant can increased CBT
    except upper 1mm site.
    
    
    
    Part III
    THE STUDY OF THE MANDIBULAR POSTERIOR
    TEETH INCLINATIONS AND ALVEOLAR
    MORPHOLOGY BETWEEN DIFFERENT GROWTH
    PATTERN OF NORMAL OCCLUSION BY CT SCANNING
    Objective The purpose of the study is to evaluate relationship between the growth pattern of normal occlusion and posterior teeth inclinations, cortical bone thicknesses, mandibular heights and widths.
    Methods The subjects consist of 16 adults(8 male, 8 female)with individual normal occlusion, aged 23 to 41.For each subject, the three-dimensional digital radiograph of skull ,maxilla, mandible and dental arch will be available by 16-slice spiral computer tomography(CT, General Electric, GE, Light Speed plus, 2004)scanning. Then, the upper anterior face height (UAFH) and lower anterior face height (LAFH), FMA (inclination of the mandibular plane relative to Frankfort horizontal plane), and the inclinations of posterior teeth, cortical bone thicknesses and alveolar heights of the mandible are measured using Volume viewer software (Voxtool3.0.64q).The relationship among these structures could be available after the T-test of the results which obtained by the software.
    Results The average values of the inclination of the mandibular first molars and second molars for the vertical growth pattern subjects (the second group)are 77.86±3.48° and 80.23±2.10° respectively,the ones for the horizontal growth pattern subjects (the second group)are 82.85±4.30° and 82.69±1.92°.There is significant difference between the two groups(P<0.05). But no other significant difference is observed regarding buccal and lingual cortical bone thickness of the mandible between the two groups. The alveolar heights of the mandible for the vertical growth patterns are obviously greater than the horizontal ones.
    Conclusions The mandiblular molars in subjects with vertical growth patterns have a statistically significantly greater buccal inclination as compared with those with horizontal growth patterns. No statistically significant differences in the buccal and lingual cortical bone thickness of the mandible between the vertical growth patterns and the horizontal ones. The mandibular heights of the mandible for the vertical growth patterns are obviously greater than the horizontal ones.
引文
1. Adams GL, Gansky SA, Miller AJ, etal. Comparision between traditional 2-dimensional cephalometry and a 3-dimensional approach on human dry skulls. Am J Orthod Dentofacial Orthop. 2004 ;126( 5 ):397-409.
    
    2. Bookstein FL. The geometry of craniofacial growth invariants. Am J Orthod.1983;83(3):221-234.
    
    3. Harrel WE, Hatcher DC, Bolt RL. In search of anatomic truth: 3-dimensional modeling and the future of orthodontics. Am J Orthod Dentofacial Orthop.2003;122(3):325-330.
    
    4. Hixon EH. The norm concept in cephalometrics. Am J Orthod. 1956;42(12):898-906.
    
    5. Scarfe WC, Farman AG, Sukovic Predag. Clinical application of cone-beam computed, tomography in dental practice. J Dent Assoc 2006;72(1):75-80. Orthod Craniofac Res. 2003:6 (suppl) ;95-101.
    
    6. Garib DG, Henriques JF, Janson G, etal: Periodontal effects of rapid maxillary expansion with tooth-tissue-borne and tooth-borne expanders: a computed tomography evaluation. Am J Orthod Dentofacial Orthop. 2006 ; 129 (6):749-758.
    
    7. Poggio PM, Incorvati C, Velo S. etal: "Safe zones": a guide for miniscrew positioning in the maxillary and mandibular arch.. Angle Orthod; 2006; 76(2):191-197.
    
    8. Fairburn SC, Waite PD, Vilos G, etal. Three-dimensional changes in upper airways of patients with obstructive sleep apnea following maxillomandibular advancement. J Oral Maxillofac Surg. 2007;65(1):6-12.
    
    9. Aboudara CA, Hatcher D, Nielsen IL, Miller A. A three-dimension evaluation of the upper air in adolescents. Orthod Craniofac Res. 2003;6(suppl):173-175.
    
    10. Hilgers ML, Scarfe WC, Scheetz JP, etal. Accuracy of linear temporomandibular joint measurements with cone beam computed tomography and digital cephalometric radiography. AmJ Orthod Dentofacial Orthop. 2005;128(6):803-11.
    
    11. Cavalcanti MC, Vannier MW. Quantitative analysis of spiral computed tomography for craniofacial clinical applications. Dentomaxillofac Radiol 1998;27(6):344-350.
    12. Kawamata A, Ariji Y, Langlais RE Three-dimensional computed tomography imaging in dentistry. Dent Clin North Am. 2000;44(2):395-410.
    13. Halazonetis D J. From 2-dimensional cephalograms to3-dimensional computed tomography scans. Am J Orthod Dentofacial Orthop. 2005;127 (5):627-637.
    14. Miller AJ, Maki K, Hatcher DC. New diagnostic tools in orthodontics. Am J Orthod Dentofac Orthop. 2004;126(4):395-396.
    15. Sumika H, Johkoh T, Koyama M, etal: Image quality of high-resolution CT with 16-channel multidetector-row CT: comparison between helical scan and conventional step-shoot scan. Radiat Med. 2005;23(8):539-544.
    16. Togashi K, Kitaura H, Yonetsu K, et al. Three-Dimensional Cephalometry Using Helical Computer Tomography: Measurement Error Caused by Head Inclination. Angle Orthod. 2002;72(6):513-520.
    17. Matteson SR, Beehtold W, Phillips C, et al. A method for three-dimensional image reformation for quantitative cephalometric analysis. J Oral Maxillofae Surg. 1989; 47(10):1053-1061.
    18. Hildebolt CF, Vannier MW, Knapp RH. Validation study of skull three-dimensional computerized tomography measurements. Am J Phys Anthropol. 1990;82(3):283-294.
    19. KragskovJ, Gyldensten G, Sindet-Pedersen S. Comparison of the reliability of craniofacial anatomic landmarks based on cephalometric radiographs and the three-dimensional CT scan. Cleft Palate-Craniofacial Journal 1997;34(2):111-116.
    20. Richtsmeier J, Elfert CP, Cole T, et al. Precision, repeatability of the localization of cranial landmarks using computed tomography scans. Cleft Palate-Craniofacial Journal 1995;320) :217-227.
    21. Cavalcanti MGP, Rocha SS, Vannier MW. Craniofacial measurements based on 3D-CT Volume rendering implications for clinical applications. Dentomaxillofacial Radiology. 2004; 33(3):170-176.
    22.赵保东,李宁毅,周仰光.下颌骨的三维重建及实体解剖研究.华西口腔医学杂志 2002;20(1):21-23.
    23. Science122 Laboratory Lab 5: The Science of Measurement. Accuracy vs. Precision. Internet.
    1. Kanomi, R. Mini-implant for orthodontic anchorage. Journal of Clinical Orthodontics. 1997;31(11): 763-767.
    
    2. Sawa, Y, Goto, K, Suzuki, N, Kamo, N. and Kamo, K. The new method for the maxillary retraction of the anterior teeth using a titanium microscrew as anchorage. Orthodontic Waves 2001;60(5): 328-331
    
    3. Park, HS, Kyung, HM.and Sung, JH. A simple method of molar uprighting with microimplant anchorage. Journal of Clinical Orthodontics. 2002; 36(10): 592-596.
    
    4. Tseng, YC, Hsieh, CH, Chen CH, etal: The application of mini-implants for orthodontic anchorage. International Journal of Oral and Maxillofacial Surgery.2006;38 (8):704-707.
    
    5. Park Y.C, Lee S.Y, Kim D.H. and Jee S.H, Intrusion of posterior teeth using mini-screw implants. Am J Orthod Dentofacial Orthop.2003; 123(6): 690-694.
    
    6. Motoyoshi M, Yoshida T, Ono A, Shimizu N. Relationship between the stability of orthodontic mini-implant and the bone geometry. Int J Oral Maxillofac Implant. 2007. on press.
    
    7. Deguchi T, Nasu M, Murakamietal K, etal: Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am J Orthod Dentofacial Orthop.2006;129 (6):721.e7-721.el2.
    
    8. Kim HJ, Yun HS, Park HD, etal: Soft-tissue and cortical-bone thickness at orthodontic implant sites. Am J Orthod Dentofacial Orthop.2006;130(2):177-182.
    
    9. Tseng YC, Hsieh CH, Chen CH, etal: Factors affecting the clinical success of screw implants used as orthodontic anchorage Am J Orthod Dentofacial Orthop.2006;130(1):18-25.
    
    10. Park HS, Kwon DG. and Sung JH. Nonextraction treatment with microscrew implant. Angle Orthod. 2004;74(4): 539-549.
    
    11. Misch KA, Yi ES, Sarment DP, etal: Accuracy of Cone Beam Computed Tomography for Periodontal Defect Measurements. Journal of Periodontology.2006:77(7);1261-1266.
    12. Arai Y, Hashimoto K, Iwai K, and Shinoda K. Fundamental efficiency of limited cone-beam X-ray CT (3DX multi image micro CT) for practical use. Dental Radiology. 2000;40(2):145-154.
    
    13. Hashimoto K, Arai Y, Iwai K, Araki M, Kawashima S, Terakado M. A comparison of a new limited cone beam computed tomography machine for dental use with a multidetector row helical CT machine. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95 (3):371-377.
    
    14. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T and Takano-Yamamoto T, Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage, Am J Orthod Dentofacial Orthop 2003;124(4)373-378.
    
    15. Costa A, Raffainl M and Melsen B. Miniscrews as orthodontic anchorage a preliminary report, Int J Adult Orthod Orthognath Surg .1998; 13(3): 201-209.
    
    16. Schnelle MA, Beck FM, Jaynes RM, etal: A radiographic evaluation of the availability of bone for placement of miniscrews, Angle Orthod 2004;74(6):832-837.
    
    17. Cheng SJ, Tseng IY, Lee JJ. and Kok SH. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants. 2004; 19(1): 100-106.
    
    18. Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop.2006;130 (1):18-25.
    1. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T.Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop.2003;124(4):373-8.
    
    2. Tsunori M, Mashita M, Kasai K. Relationship between facial types and tooth and bone characteristics of the mandible obtained by CT scanning. Angle Orthod 1998;68(6):557-562.
    
    3. Bjork A, Skieller V. Facial development and tooth eruption: an implant study at the age of puberty. Am J Orthod.l972;62(4):339-383.
    
    4. Pepicelli A, Woods M, Briggs C. The mandibular muscles and their importance in orthodontics: a contemporary review. Am J Orthod Dentofacial Orthop.2005;128(6):774-80.
    
    5. Ricketts RM, Roth RH, Chaconas SJ, Schulhof RJ, Engel GA. Orthodontic diagnosis and Planning. Rocky Mountain/Orthodontics, USA, 1982.
    
    6. Motoyoshi M, Shirai S, Yano S, Nakanishi K, Shimizu N. Permissible limit for mandibular expansion. Eur J Orthod. 2005;27(2):115-20.
    
    7. Motoyoshi M, Hirabayshi M, Shimazaki T,Namra S. An experimental study on mandibular expansion: increases in arch width and perimeter. Eur J Orthod. 2002 Apr;24(2):125-30.
    
    8. Yano S, Motoyoshi M, Uemura M, Ono A, Shimizu N. Tapered orthodontic miniscrews induce bone-screw cohesion following immediate loading. Eur J Orthod. 2006;28(6):541-546.
    
    9. Motoyoshi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res.2006;17(l):109-14. Eur J Orthod. 2006;28(6):541-6.
    
    10. Adams GL, Gansky SA, Miller AJ, etal. Comparision between traditional 2-dimensional cephalometry and a 3-dimensional approach on human dry skulls. Am J Orthod Dentofacial Orthop. 2004;126(5):397-409.
    11. Fuhrmam R, Feifel H, Schnappauf A,et al. Integration of three-di-mensional cephalometry and 3D-skull models in combined orthodontic\ surgical treatment planning. J Orofac Orthop, 1996,57 (1):32-45.
    
    12. Halazonetis D J. From 2-dimensional cephalograms to3-dimensional computed tomography scans. Am J Orthod Dentofacial Orthop. 2005;127(5):627-637.
    
    13. Conroy GC, Vannier MW. Noninvasive three-dimensional computer imaging of matrix-filled fossil skulls by high resolution computed tomography. Science 1984;226 (4673 ):456-458.
    
    14. GC, Vannier MW. Dental development of the Taung skull from computerized tomography.Nature.l987;329(6140):625-627.
    
    15. Sumika H, Johkoh T, Koyama M, etal: Image quality of high-resolution CT with 16-channel multidetector-row CT: comparison between helical scan and conventional step-shoot scan. Radiat Med. 2005;23 (8):539-544.
    
    16. Okada N, Kasai K. Relationship between mandibular tooth inclination and maxillofacial morphology using CT scanning. Nihon Univ J Oral Sci 1996;22(4):381-392.(Japanese)
    
    17. Wylie WL, Johnson EL. Rapid evaluation of facial hyperplasia in the vertical plane.Angle Orthod 1952;22 (3) :165-182.
    
    18. Ghafari BJ, Brin I, Kelly MB. Mandibular rotation and lower face height indicator.Angle Orthod 1985;59 (1) :31-36.
    
    19. Kasai K, Enomoto Y, Ogawa T, Kawasaki Y, Kanazawa E, Iwasawa T.Morphological characteristics of vertical sections of the mandible obtained by CT scanning.Anthrop Sci 1996;104(3):187-198.
    
    20. Bishara SE, Jakobsen JR. Longitudinal changes in three normal facial types. Am J Orthod 1985;88(12):466-502.
    
    21. Ross VA, Isaacson RJ, Germane N, Rubenstein LA. Influence of vertical growth pattern on faciolingual inclinations and treatment mechanics. Am J Orthod Dentofac Orthop 1990;98(11):422-9.
    
    22. Janson G, Bombonatti R, Cruz KS, Hassunuma CY, Del Santo M J. Buccolingual inclinations of posterior teeth in subjects with different facial patterns. Am J Orthod Dentofacial Orthop. 2004; 125 (3):316-22
    
    23. Ishida T, Soma K. Stress analysis of the space between the upper and lower first molars and lower first molars during the final stage of occlusion. Journal of Japan Orthodontic Society. 1993;52(2):161-172.(in Japanese).
    
    24. Ingervell B, Thilander B. Relation between facial morphology and activity of masticatory muscles. J Oral Rehabil.l974;l(2):131-147.
    
    25. Tabe T. A study on the activities in the masticatory muscles and the morphology of the orofacial skeleton. II. The correlation between the activities in the masseter muscle and the biting force, and the morphology of the orofacial skeleton. J Jpn Orthod Soc 1976;35(4):255-265.(Japanese)
    
    26. Moller E. the chewing apparatus.Acta Physiol Scand. 1966;69(Suppl.280):1-299.
    
    27. Masumoto T, Hayashi I, Kawamura A, Tanaka K and Kasai K. Relationships among facial type, buccolingual molar inclination, and cortical bone thickness of the mandible. European Journal of Orthodontics 2001;23(1):15-23.
    
    28. Champy M, Pape H, Gerlach KL, Lodde JP. Mandibular fracture. In: Kruger E,Schilli W, editors. Oral and maxillofacial trauma-tology. Vol. 2, Chicago:Quintessence;1986. p.19-43.
    
    29. Park HS. An anatomical study using CT images for the implantation of microimplants. Korean J Orthod.2002;32(6):435-41
    
    30. Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop.2006;130(1):18-25.
    1. Bookstein FL. The geometry of craniofacial invariants. Am J Orthod. 1983;83(3) :221-234.
    
    2. Harrel WE, Hatcher DC, Bolt RL. In search of anatomic truth: 3-dimensional modeling and the future of orthodontics. Am J Orthod Dentofacial Orthop.2003;122(3):325-330.
    
    3. Hixon EH. The norm concept in cephalometrics. Am J Orthod. 1956;42:898-906.
    
    4. Athanasiou AE. Orthodontic cephalometry. London, 1997, Mosby-Wolf.
    
    5. Macri V, Athanasiou AE. Sources of error in lateral cephalometry. In Athanasiou AE: Orthodontic cephalometry. London, 1997, Mosby-Wolf.
    
    6. Vig PS. Orthodontic controversies: their oringins, consequences, and resolution.In Melsen B, edotor: Current controversies in orthodontics, Chicago,1991,Quintessence.
    
    7. Hatcher DC. Maxillofacial imaging. In McNeill C, ed: Science and practice of occlusion, Chicago,1991, Quintessence..
    
    8. Adams GL, Gansky SA, Miller AJ, etal: Comparision between traditional 2-dimensional cephalometry and a 3-dimensional approach on human dry skulls.Am J Orthod Dentofacial Orthop. 2004;126(4 ):397-409.
    
    9. Cutting C, Grayson B, Bookstein FL, etal: Computer aided planning and evaluation of facial orthognathic surgery. Clin Plast Surg 1986;13(3):449-462.
    
    10. Miller AJ, Maki K, Hatcher DC. New diagnostic tools in orthodontics. Am J Orthod Dentofacial Orthop.2004;126(4):395-396.
    
    11. Baumrind S, Moffitt FH, Curry S. The geometry of three-dimensional measurements from paired coplanar x-ray images. Am J Orthod 1983;84(4):313-322.
    
    12. Baumrind S, Moffitt FH, Curry S. Three-dimensional x-ray stereometry from paired coplanar x-ray images. Am J Orthod 1983;84(4):292-312.
    
    13. Moyer RE , Bookstein FL. The inappropriateness of conventional cephalometrics. Am J Orthod 1979;75(6):599-617.1979.
    
    14. Mankovich N, Samson D, Pratt W, etal: Surgical planning using three dimensional imaging and computer modeling ,Otolaryngol Clin North Am 1994;27(5):875-889.
    15. Manasion AE. Orthodontic cephalometry, London,1997,Mosby-wolfe.
    
    16. Hatcher DC. Maxillofacial imaging.In McNeill C, ed: science and practice of occlusion,Chicago,1997,Quintessence.
    
    17. Mckee IW, Williamson PC, Lam EW, et al. The accuracy of 4 panoramic units in the projection of mesiodistal tooth angulations,Am J Orthod Dentofacial Orthop 2002:121(2);166-175,
    
    18. Canson CA. Imaging modalities in x-ray computerized omography and in selected volume tomography, Phy Med Biol.l999:44(3);923-R55.
    
    19. Marcel T, Chew W, Mcneill C, etal. Magnetic resonance spectroscopy of the human masseter muscle in nonbruxing and bruxing subjects, J Orofac Pain 1995:9(2):116-130.
    
    20. Tasaki MM, Westesson P-L. Temporomandibular joint: diagnostic accuracy with sagittal and coronal MR imaging, Radiology1993:186(3);723-729.
    
    21. James K, David Hatcher. Craniofacial imaging in orthodontics. In Graber TM,Vanarsdall RL, Vig KWL. Orthodontics: Current principle and techniques.2005:71-100.
    
    22. Conroy GC, Vannier MW. Noninvasive three-dimensional computer imaging of matrix-filled fossil skulls by high resolution computed tomography. Science.1984;226(4673):456-458.
    
    23. Conroy GC, Vannier MW. Dental development of the taung skull from computerized tomography. Nature.l987;329(6140): 625-627.
    
    24. Mah J, Hater D.Three-dimension craniofacial imaging. Am J Orthod Dent Orthop 2004;126(3):308-309.
    
    25. Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K. Development of ortho cubic super high resolution CT(Ortho-CT).In Proceedings of the 12~(th) International Symposium and Exhibition, Computer Assisted Radiology and Surgery, Lemke HU, Vannier MW, Inamura K, Farman AG eds, Elsevier,Amsterdam, 1998;780-785.
    
    26. Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K. Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol 1999;28(4):245-248.
    1. Halazonetis D J. From 2-dimensional cephalograms to3-dimensional computed tomography scans. Am J Orthod Dentofacial Orthop. 2005;127 (5):627-637.
    2. Miller AJ, Maki K, Hatcher DC. New diagnostic tools in orthodontics. Am J Orthod Dentofac Orthop. 2004;126 (4):395-396.
    3. Baumrind S. Integrated three-dimensional craniofacialmapping: Background, Principles, and Perspectives. Semin Orthod. 2001;7(4):223-232.
    4. Grayson B, Cutting C, Bookstein FL, et al. The three-dimensional cephalogram: Theory, technique, and clinical application. Am J Orthod Dentofac Orthop. 1988;94 (4):327-337.
    5. Mori Y, Miyajima T, Minami K, Sakuda M. An Accurate Three-dimensional Cephalometric System; a Solution for the Correction of Cephalic Malpositioning. J Orthod 2001;28 (2):143-149.
    6. Cavalcanti MG, Haller JW, Vannier MW. Three-dimensional computed tomography landmark measurement in craniofacial surgical planning: experimental validation in vitro. J Oral Maxillofac Surg. 1999;57(6):690-694.
    7.杜航,曾祥龙,唐光健。螺旋CT测量颅面三维结构矫治变化的方法学研究。口腔正畸学 2003:10(1):31-34。
    8.杨斌,黄洪章,张涤生。汉族青年正常颅面结构三维测量分析。中山医科大学学报 2002:23(1):15-18。
    9. Katsumata A, Fujishita M, Maeda M, etal. 3D-CT evaluation of facial asymmetry. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99(2):212-220.
    10. Fox NA, Fletcher GA, Homer K. Localising maxillary canines using dental panoramic tomography, Br. Dent. J. 1995;179(12) :416-420.
    11. Chaushu S, Chaushu G, Becker A. The use of panoramic radiographs to localize displaced maxillary canines. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1999;88 (4) :511-516.
    12. Freisfeld M, Dahl IA, Jager A, et al. X-ray diagnosis of impacted upper canines in panoramic radiographs and computed tomographs. J Orofac Orthop. 1999;60 (3):177-184.
    
    13. Ericson S, Kurol J. CT diagnosis of ectopically erupting maxillary canines -a case report. Eur J Orthod,1988;10 (2):115-121.
    
    14. Krennmair G, Lenglinger FX, Traxler M. Imaging of unerupted and displaced teeth by cross-sectional CT scans. Int J Oral Maxillofac urg .1995;24(6):413-416.
    
    15. Bossard D, Dubos N, Trunde F, etal. 3D Computed-assisted surgery in orthodontic treatment of impacted canines in palatal position. Computer Assisted Radiology and Surgery 2004:1203- 1208.
    
    16. Cavalcanti MG, Haller JW, Vannier MW. Three-dimensional computed tomography landmark measurement in craniofacial surgical planning: experimental validation in vitro. J Oral Maxillofac Surg. 1999; 57(6):690-694.
    
    17. Kyung SH, Park YC, Pae EK. Obstructive Sleep Apnea Patients with the Oral Appliance Experience Pharyngeal Size and Shape Changes in Three Dimensions. Angle Orthod 2004;75(1):15-22.
    
    18. Wehrbein H, Merz BR, Diedrich P. Palatal bone support for orthodontic implant anchorage—a clinical and radiological study. Eur J Orthod1999;21(1):65-70.
    
    19. Tosun T, Keles A, Erverdi N. Method for the placement of palatal implants. Int J Oral Maxillofac Implants 2002;17(1):95-100.
    
    20. Gahleitner A, Podesser B, Schick S, etal. Dental CT and orthodontic implants:imaging technique and assessment of available bone volume in the hard palate. European Journal of Radiology 2004; 51(3):257-262.
    
    21. Schnelle MA, Beck FM, Jaynes RM, etal. A Radiographic Evaluation of the Availability of Bone for Placement of Miniscrews. Angle Orthod 2004;74(6):832-837.
    
    22. Ishii T, Nojima K, Nishii Y. Evaluation of the implantation position of mini-screws for orthodontic treatment in the maxillary molar area by a micro CT. Bull Tokyo Dent Coll.2004;45 (3):165-172.
    
    23. Freisfeld M, Dahl LA, Jager A. X-ray diagnosis of impacted upper canines in panoramic radiographs and computed tomographs. J Orofac Orthop. 1999;60(3):177-184.
    24. Xia J, Samman N, Yeung RW, etal. Three-dimensional virtual reality surgical planning and simulation workbench for orthognathic surgery. Int J Adult Orthodon Orthognath Surg. 2000;15(4):265-282..
    25. Xia J, Samman N, Yeung RW, etal. Computer-assisted three-dimensional surgical planing and simulation. 3D soft tissue planning and prediction. Int J Oral Maxillofac Surg. 2000; 29 (4):250-258.
    26.杨斌,黄洪,章李晶。颅颌面整形外科立体可视化和手术仿真模拟系统的建立.现代临床医学生物工程学杂志 2000;6(3):170-174.
    27.张诗雷,张志愿,沈国芳。基于CT的三维正颌手术仿真模拟平台的建立。中国口腔颌面外科杂志。2004;2(2):95-98.
    28. Deguchi T, Nasu M, Murakamietal K, etal: Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am J Orthod Dentofacial Orthop;129 (6):721.e7-721.e12
    29. Kim HJ, Yun HS, Park HD, etal: Soft-tissue and cortical-bone thickness at orthodontic implant sites. Am J Orthod Dentofacial Orthop. 2006; 130(2): 177-182.
    30. Holberg C, Steinhauser S, Geis P, Rudzki JI. Cone-beam computed tomography in orthodontics: benefits and limitation. J Orofac Orthop. 2005;66(6):434-444.
    31. Yamada K, Saito I, Hanada K, Hayashi T. Observation of three cases of temporomandibular joint osteoarthritis and mandibular morphology during adolescence using helical CT. J Oral Rehabil. 2004;31(4):298-305.
    32. Boccaccio A, Lamberti L, Pappalettere, Carano A, Cozzani M. Mechanical behavior of an osteotomized mandible with distraction orthodontic devices. J Biomech. 2006;39(15):2907-2918.
    33. Hirabayashi M, Motoyoshi M, Ishimaru T. Stresses in mandibular cortical bone during mastication: biomechanical considerations using a three-dimensional finite element method. J Oral Sci. 2002; 44(1):1-6.
    1. James K, David Hatcher. Craniofacial imaging in orthodontics. In Graber TM, Vanarsdall RL, Vig KWL. Orthodontics: Current principle and techniques. 2005: 71-100.
    2. Mah J, Hater D. Three-dimension craniofacial imaging. Am J Orthod Dent Orthop 2004;126 (3):308-309.
    3. Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K. Development of ortho cubic super high resolution CT(Ortho-CT). In Proceedings of the 12th International Symposium and Exhibition, Computer Assisted Radiology and Surgery, Lemke HU, Vannier MW, Inamura K, Farman AG eds, Elsevier, Amsterdam, 1998;780-785.
    4. Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K. Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol 1999;28 (4):245-248.
    5. Hashimoto K, Kawashima S, Araki Metal: Comparison of image performance between cone-beam computed tomography for dental use and four-row multitector helical CT. Journal of Oral Science 2006;48(1)27-34.
    6. Hashimoto K, Arai Y, lwai K, Araki M, Kawashima S, Terakado M. A comparison of a new limited cone beam computed tomography machine for dental use with a multidetector row helical CT machine. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95(3):371-377.
    7.篠田宏司主编.齿科用小型X线CT:三维图像诊断与治疗.医齿药出版株式会社 2003;2-6.
    8. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol 1998; 8(9):1558-1564.
    9. Gracco A, lombardol, Cozzani M, Siciliani G. Quantitative evaluation with CBCT of palatal bone thickness in growing patients. Pror orthod. 2006; 7(2): 164-174.
    10. Lucia H. S. Cevidanes, Martin A. Styner and William R. Proffit. Image analysis and superimposition of 3-dimensional cone-beam computed tomography models. Am J Orthod Dent Orthop. 2006;129(5):611-618.
    11. Deng-gao Liu, Wan-lin Zhang, Zu-yan Zhang, Yun-tang Wu and Xu-chen Ma. Three-dimensional evaluations of supernumerary teeth using cone-beam computed tomography for 487 cases.2007;103(3):403-411.
    
    12. Holberg C, Steinhauser S, Geis P, Rudzki JI. Cone-beam computed tomography in orthodontics: benefits and limitation. J Orofac Orthop. 2005;66(6):434-444.
    
    13. Sukovic P. Cone beam computed tomography in craniofacial imaging. Orthod Craniofac Res. 2003;6(suppl):31-36.
    
    14. Aboudara CA, Hatcher D, Nielsen IL, Miller A. A three-dimension evaluation of the upper air in adolescents. Orthod Craniofac Res. 2003;6 (suppl): 173-175.
    
    15. Baumrind S, Carlson S, Beer A, Curry S, Norris K, Boyd RL. Using three-dimensionaln imaging to assess treatment outcomes in orthodontics:aprogress report from the University of the Pacific. Orthod Craniofac Res. 2003:6(suppl): 132-142.
    
    16. Maki K, Inou N, Takanishi A, Miller AJ. Computed-assisted simulations in orthodontic diagnosis and the apppliacation of a new cone beam X-RAY computed tomography. Orthod Craniofac Res. 2003:6 (suppl): 95-101.
    
    17. Scarfe WC, Farman AG, Sukovic Predag. Clinical application of cone-beam computed. tomography in dental practice. J Dent Assoc 2006;72(1):75-80.
    
    18. Baba R, Ueda K , Okabe M. Using a flat-panel detector in high resolution cone beam CT for dental imaging .Dentomaxillofacial Radiology .2004:33(5);285-290.
    1. Kanomi, R. Mini-implant for orthodontic anchorage. Journal of Clinical Orthodontics. 1997;31(11): 763-767.
    
    2. Sawa, Y, Goto, K, Suzuki, N, Kamo, N. & Kamo, K. The new method for the maxillary retraction of the anterior teeth using a titanium microscrew as anchorage. Orthodontic Waves 2001;60 (5):328-331.
    
    3. Park, HS, Kyung, HM. & Sung, JH. A simple method of molar uprighting with microimplant anchorage. Journal of Clinical Orthodontics. 2002; 36(10):592-596.
    
    4. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T and Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage, Am J Orthod Dentofacial Orthop. 2003;124(4)373-378.
    
    5. Motoyoshi M, Yoshida T, Ono A, Shimizu N. Relationship between the stability of orthodontic mini-implant and the bone geometry. 2007 on press. Int J Oral Maxillofac Implant.
    
    6. Deguchi T, Nasu M, Murakamietal K, etal. Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants.Am J Orthod Dentofacial Orthop.2006; 129(6):721.e7-721.el2.
    
    7. Kim HJ, Yun HS, Park HD, etal. Soft-tissue and cortical-bone thickness at orthodontic implant sites. Am J Orthod Dent Orthop.2006; 130(2):177-182.
    
    8. Misch KA, Yi ES, Sarment DP etal. Accuracy of cone beam computed tomography for periodontal defect measurements. Journal of Periodontology.2006:77(7);1261-1266.
    
    9. Arai Y, Hashimoto K, Iwai K, and Shinoda K. Fundamental efficiency of limited cone-beam x-ray CT (3DX multi image micro CT) for practical use. Dental Radiology. 2000;40(2):145-154.
    
    10. Hashimoto K, Arai Y, Iwai K, Araki M, Kawashima S, Terakado M. A comparison of a new limited cone beam computed tomography machine for dental use with a multidetector row helical CT machine. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95(3):371-377.
    
    11. Roberts WE, Smith RK, Zilberman Y, Mozsary PG and Smith RS. Osseous adaptation to continuous loading of rigid endosseous implants, Am J Orthod 1984;86(2);95-111.
    
    12. Albrektsson T, Branemark PI, Hansson HA and Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52(2):155-170.
    
    13. Adell R, Lekholm U, Rockler B and Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10 (6) :387-416.
    
    14. Romanous GE. Present status of immediate loading of oral implant. Journal of oral implantology 2004;30(3):189-197.
    
    15. Schnelle MA, Beck FM, Jaynes RM. and Huja SS. A radiographic evaluation of the availability of bone for placement of miniscrews. Angle Orthod 2004;74(6):832-837.
    
    16. Tseng, YC, Hsieh, CH, Chen CH, etal. Factors affecting the clinical success of screw implants used as orthodontic anchorage Am J Orthod Dent Orthop 2006;130(1):18-25.
    1. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T.Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop.2003;124(4):373-8.
    
    2. Tsunori M, Mashita M, Kasai K. Relationship between facial types and tooth and bone characteristics of the mandible obtained by CT scanning. Angle Orthod 1998;68(6):557-562.
    
    3. Bjork A, Skieller V. Facial development and tooth eruption: an implant study at the age of puberty. Am J Orthod.l972;62(4):339-383.
    
    4. Pepicelli A, Woods M,Briggs c. The mandibular muscles and their importance in orthodontics: a contemporary review. Am J Orthod Dentofacial Orthop. 2005;128(6):774-80.
    
    5. Ricketts RM, Roth RH, Chaconas SJ, Schulhof RJ, Engel GA. Orthodontic diagnosis and Planning. Rocky Mountain/Orthodontics, USA, 1982.
    
    6. Motoyoshi M, Shirai S, Yano S, Nakanishi K, Shimizu N. Permissible limit for mandibular expansion. Eur J Orthod. 2005;27(2):115-20.
    
    7. Motoyoshi M, Hirabayshi M, Shimazaki T, Namra S. An experimental study on mandibular expansion: increases in arch width and perimeter. Eur J Orthod. 2002 Apr;24(2):125-30.
    
    8. Yano S, Motoyoshi M, Uemura M, Ono A, Shimizu N. Tapered orthodontic miniscrews induce bone-screw cohesion following immediate loading. Eur J Orthod. 2006;28(6):541-546.
    
    9. Motoyoshi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res. 2006;17(1):109-14. Eur J Orthod. 2006;28(6):541-6.
    
    10. Adams GL, Gansky SA, Miller AJ, etal. Comparision between traditional 2-dimensional cephalometry and a 3-dimensional approach on human dry skulls. Am J Orthod Dentofacial Orthop. 2004;126(5):397-409.
    11. Fuhrmam R, Feifel H, Schnappauf A, et al. Integration of three-di-mensional cephalometry and 3D-skull models in combined orthodontic\ surgical treatment planning. J Orofac Orthop, 1996,57(1):32-45.
    
    12. Halazonetis D J. From 2-dimensional cephalograms to3-dimensional computed tomography scans. Am J Orthod Dentofacial Orthop. 2005;127(5):627-637.
    
    13. Conroy GC, Vannier MW. Noninvasive three-dimensional computer imaging of matrix-filled fossil skulls by high resolution computed tomography. Science 1984;226(4673 ):456-458.
    
    14. GC, Vannier MW. Dental development of the Taung skull from computerized tomography.Nature.l987;329(6140):625-627.
    
    15. Sumika H, Johkoh T, Koyama M, etal. Image quality of high-resolution CT with 16-channel multidetector-row CT: comparison between helical scan and conventional step-shoot scan. Radiat Med. 2005;23(8):539-544.
    
    16. Okada N, Kasai K. Relationship between mandibular tooth inclination and maxillofacial morphology using CT scanning. Nihon Univ J Oral Sci 1996;22(4):381-392.(Japanese)
    
    17. Wylie WL, Johnson EL. Rapid evaluation of facial hyperplasia in the vertical plane.Angle Orthod 1952; 22 (3) :165-182.
    
    18. Ghafari BJ, Brin I, Kelly MB. Mandibular rotation and lower face height indicator.Angle Orthod 1985;59 (1) :31-36.
    
    19. Kasai K, Enomoto Y, Ogawa T, Kawasaki Y, Kanazawa E, Iwasawa T. Morphological characteristics of vertical sections of the mandible obtained by CT scanning.Anthrop Sci 1996;104(3):187-198.
    
    20. Bishara SE, Jakobsen JR. Longitudinal changes in three normal facial types. Am J Orthod 1985;88(12):466-502.
    
    21. Ross VA, Isaacson RJ, Germane N, Rubenstein LA. Influence of vertical growth pattern on faciolingual inclinations and treatment mechanics. Am J Orthod Dentofac Orthop 1990;98(ll):422-9.
    
    22. Janson G, Bombonatti R,Cruz KS,Hassunuma CY,Del Santo MJ. Buccolingual inclinations of posterior teeth in subjects with different facial patterns. Am J Orthod Dentofacial Orthop. 2004; 125 (3):316-22
    
    23. Ishida T, Soma K. Stress analysis of the space between the upper and lower first molars and lower first molars during the final stage of occlusion. Journal of Japan Orthodontic Society. 1993;52(2):161-172.(in Japanese).
    
    24. Ingervell B, Thilander B. Relation between facial morphology and activity of masticatory muscles. J Oral Rehabil.l974;l(2):131-147.
    
    25. Tabe T. A study on the activities in the masticatory muscles and the morphology of the orofacial skeleton. II. The correlation between the activities in the masseter muscle and the biting force, and the morphology of the orofacial skeleton. J Jpn Orthod Soc 1976;35(4):255-265.(Japanese)
    
    26. Moller E.the chewing apparatus.Acta Physiol Scand. 1966;69(Suppl.280):l-299.
    
    27. Masumoto T, Hayashi I, Kawamura A, Tanaka K and Kasai K. Relationships among facial type, buccolingual molar inclination, and cortical bone thickness of the mandible. European Journal of Orthodontics 2001;23(1):15-23.
    
    28. Champy M, Pape H, Gerlach KL, Lodde JP. Mandibular fracture. In: Kruger E,Schilli W, editors. Oral and maxillofacial trauma-tology. Vol. 2, Chicago:Quintessence;1986. p19-43.
    
    29. Park HS. An anatomical study using CT images for the implantation of microimplants. Korean J Orthod.2002;32(6):435-41
    
    30. Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop.2006;130(1):18-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700