用户名: 密码: 验证码:
中国水稻微核心种质遗传多样性分析与新基因发掘
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界重要粮食作物之一,人类为了自身的生存和发展,对亚洲栽培稻的“驯化”自远古以来一直未曾停过。突破性品种的培育成功往往与种质资源中有利基因的发现和利用相关。在种质资源中发掘新的重要性状基因,对水稻的分子育种具有重要意义。本研究主要利用一套来自中国水稻种质资源的微核心种质、非洲栽培稻和AA组野生稻,通过田间农艺性状的考察和功能基因标记的基因型鉴定,初步建立微核心种质数据库;分析重要农艺性状在微核心种质中、水稻亚种间以及它们与野生近缘种间的变异;通过基因多样性分析和关联分析,发掘重要基因及其单倍型的变异和分布。主要结果如下:
     1.参照《水稻种质资源描述规范和数据标准》考察213份微核心种质的田间农艺性状,将农艺性状数据标准化,初步建立微核心种质数据库,该数据库收录了包括213份微核心种质在内的441份种质资源从2005年至2008年4个年度的155项描述性和特性数据共7,029条记录。
     2.对微核心种质的15项重要农艺性状的统计分析结果显示,该套微核心种质的农艺性状具有丰富的多样性,平均变异系数在0.14-0.48之间;4个与产量相关的性状的变异较大:单株实粒重平均变异系数0.45,二次枝梗数平均变异系数0.44,每穗颖花数平均变异系数0.43,有效穗数平均变异系数0.36。微核心种质多个年度试验中各农艺性状间普遍存在着紧密的相关性。决定水稻植株形态构成的几个性状,如株高、剑叶长以及产量相关性状如有效穗数、每穗颖花数与单株实粒重等表现出显著或极显著相关。剑叶SPAD值(叶绿素荧光吸收率)与10个农艺性状呈显著相关。
     3.利用24个分布于12条染色体的SSR标记对微核心种质的群体结构进行分析,显示k=2时该群体结构稳定,即微核心种质分成两个亚群对应籼粳亚群。
     4.利用生物信息学方法鉴定7个淀粉合成代谢途径的重要基因(RSs3、Waxy、SSS1、ALK、SBEI、SDE-Iso和SDE-pu)的多态性位点并开发RSs3、SDE-Iso和SDE-pu的基因标记。结合已报道的Waxy、SSSI、ALK和SBEI基因标记,对213份微核心种质、6份非洲栽培稻、29份野生稻进行多样性分析。7个淀粉合成代谢途径重要基因中除了ALK和SDE-pu其它5个基因的多态性位点在籼粳亚群间表现明显的分化,而野生稻的所有7个位点都没有明显的分化。野生稻在7个淀粉合成代谢途径重要基因中存在亚洲栽培稻以前未报道的等位基因,特别是发现RSs3、SSSI、ALK、SBEI、SDE-Iso和SDE-pu等在野生稻中存在亚洲栽培稻中没有的等位变异。非洲栽培稻在这7个淀粉合成代谢途径重要基因中也存在与亚洲栽培稻完全不同的等位基因组合。
     5.品质基因GS3在最后一个内含子和最后一个外显子存在变异位点,该位点可能对GS3基因TM和TNFR功能结构域有影响。针对这些位点开发了标记RGS1和RGS2;结合另两个基因标记SF28和SF17对213份微核心种质、49份非洲栽培稻和28份野生稻进行多样性分析,结果显示SF28、RGS1和RGS2位点和粒长高度关联,能够解释微核心种质中粒型的较大遗传变异。非洲栽培稻在RGS1位点具有特异的等位变异,利用非洲栽培稻ACC9/ZS97B回交重组自交系和近等基因系验证了ACC9在RGS1位点的等位变异能够导致谷粒的长度由短粒变为中长粒。
As a major food of the world, rice has been domesticated more than 10000 years by human being. Germplasm resources play an important role in crop breeding as innovative cultivars were always bred successfully by using favorable alleles that discovered in the germplasm. Several cloned genes have revealed important roles in building rice plant structure and/or increasing yield productivity. Genetic diversity and new allele mining of favorable genes in rice germplasm are of very significance for rice molecular breeding. Two hundred eighty-seven accessions, including the mini-core collection of 213 landraces, varieties and elite parents of hybrid rice,46 African cultivated rice (O. glaberrima), and 28 AA-genome wild rice accessions(O. rufipogon, O. nivara, O. barthii and O. meridionalis), were used for allelic diversity analysis and allele mining. The objectives of this study are:to investigate the agronomic characters, of the collection and construct a database of the germplasm collection; analyze gene diversity in the rice mini core collection, subspecies, and wild ancestor; discovery favorable alleles by association mapping. The main results are as follows:
     1. Fifteen important agronomic characters of the collection were investigated in 4 environments according to the "rice germplasm describe criterion and data standard". A database was constructed base on the phenotypic dataand can be searched in intra-network.
     2. The mini-core collection holds abundant diversity of agronomic characters with average CV range from 0.14 to 0.48. There are significant correlation coefficients between different agronomic characters. Notably, the SPAD value has close relationship with 10 agronomic characters.
     3. A set of 24 unlinked SSR markers from 12 chromosomes were used to analysis population structure. Based on model-based estimation of the 24 SSR markers, the germplasm population showed a predominant structure with two subpopulations in correspondence with indica and japonica subspecies.
     4. We discovered three polymorphic loci in starch biosynthesis genes RSs3、SDE-Iso and SDE-pu. The three markers together with 4 markers targeted to the other starch biosynthesis genes were used to assess diversities in a panel of rice germplasm which included the 213 Chinese mini core collections,6 African cultivated rice (O. glaberrima), and 29 AA-genome wild rice accessions (O. rufipogon, O. nivara, O. barthii and O. meridionalis). Genealogy treesshowed that there is a distinct divergence between indica and japonica. Furthermore, wild rice has new alleles in the 6 starch biosynthesis related genes, and the O. glaberrima has a set of unique alleles in the starch biosynthesis pathway distinct from that in O. sativa.
     5. Two novel polymorphic loci, RGS1 and RGS2, were discovered in the last intron and the final exon of GS3, respectively. Together with other two polymorphic loci SF28 and SR17, a number of alleles at these four polymorphic loci were observed in a total of 287 accessions including the mini core collection, African rice and AA-genome wild relatives. Association mapping showed that polymorphic loci SF28, RGS1 and RGS2 were all highly associated with rice grain, and explained a large propotion of the variation. The genic marker RGS1 based on the motifs (AT)n was further validated as a functional marker using two sets of backcross recombinant inbred lines.
引文
1.程侃声,周季维,卢义宣等.云南稻种资源的综合研究与利用:11.亚洲栽培稻分类的再认识.作物学报,1984,10:271-280
    2.程侃声.论栽培植物的生态分类.见:作物育种研究与进展.北京:农业出版社,1993
    3.丁颖.中国稻作之起源.中山大学农学院农艺专刊,1949,7:11-24
    4.丁颖.中国水稻栽培学.北京:农业出版社,1961
    5.韩龙植,魏兴华等.水稻种质资源描述规范和数据标准.北京:中国农业出版社,2006
    6.黄耀祥.水稻丛化育种.广东农业科学,1983,1:1-5
    7.黎志康.我国水稻分子育种计划的策略.分子植物育种,2005,3:603-608
    8.罗利军.稻种资源遗传评价的理论和方法.见:罗利军,应存山,汤圣祥主编,稻种资源学.武汉:湖北科学技术出版社,2002,193-222
    9.森岛启子.野生稻与驯化.水稻生物学,武汉:武汉大学出版社,1988
    10.汤圣祥.稻属核心种质的建拓.见:罗利军,应存山,汤圣祥主编,稻种资源学.武汉:湖北科学技术出版社,2002,258-259
    11.王象坤,陈一午,程侃声等.云南稻种资源的综合研究与利用II.云南的光壳稻.北京农业大学学报,1984,10:333-343
    12.许运天.作物种质资源的研究和利用.见:刘厚利主编,作物育种研究与进展I.农业出版社,1993,60-80
    13.杨守仁.杨守仁水稻文选.沈阳:辽宁科技出版社,1998
    14.杨小红,严建兵,郑艳萍等.植物数量性状关联分析研究进展.作物学报,2007,33:523-530
    15.俞履圻,林权.中国栽培稻种亲缘的研究.作物学报,1962,2:233-258
    16.余四斌,王重荣.绿色超级稻性状的基因资源发掘.见:张启发主编,绿色超级稻的构想与实践,2009,161-183
    17.余四斌.水稻重要性状的等位基因研究进展.分子植物育种,2010,6:1059-1067
    18.袁隆平.杂交水稻超高产育种.杂交水稻,1997,12:1-6
    19. Anderson J M, Hnilo J, Larson R et al. The encoded primary sequence of rice seed ADP-glucose pyrophosphorylase subunit and its homology to the bacterial enzyme. J Biol Chem,1989,264:12238-12242
    20. Andersen J R, Schrag T, Melchinger A E et al. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet,2005,111:206-217
    21. Ashikari M, Sakakibara H, Lin S et al. Cytokinin oxidase regulates rice grain production. Science,2005,309:741-745
    22. Ball S, Guan H P, James M et al. From glycogen to amylopectin:a model for the biogenesis of the plant starch granule. Cell,1996,86:349-352
    23. Bao J S, Corke H, Sun M. Microsatellites, single nucleotide polymorphisms and a sequence tagged site in starch-synthesizing genes in relation to starch. Theor Appl Genet,2006a,113:1185-1196
    24. Bao J S, Corke H, Sun M. Nucleotide diversity in starch synthase Ⅱa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza sativa L.). Theor Appl Genet, 2006b,113:1171-1183
    25. Buleon A, Colonna P, Planchot V et al. Starch granules:structure and biosynthesis. Int J Biol Macromol,1998,23:85-112
    26. Caicedo A L, Williamson S H, Hernandez R D et al. Genome-wide patterns of nucleotide polymorphism in domesticated rice. Plos Genet,2007,3:1745-1756
    27. Cavalli-Sforza L L, Edwards A W F. Phylogenetic analysis:models and estimation procedures. Am J Hum Genet,1967,19:233-257
    28. Devlin B, Risch N. A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics,1995,29:311-322
    29. Diwan N, Mclntosh M S, Bauchan G R. Methods of developing a core collection of annual medicago species. Theor Appl Genet,1995,90:755-761
    30. Doebley J F. A tomato gene weighs in. Science,2000,289:71-72
    31. Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication. Cell,2006,127:1309-1321
    32. Eanes F. Analysis of selection on enzyme polymorphisms. Annu Rev Ecol Syst, 1999,30:301-326
    33. Fan C C, Xing Y Z, Mao H L et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet,2006,112:1164-1171
    34. Fan C C, Yu S B, Wang C R et al. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet,2009,118:465-472
    35. Flint-Garcia S A, Thornsberry T M, Buckler E S. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol,2003,54:357-374
    36. Flint-Garcia S A, Thuillet A C, Yu J et al. Maize association population:a high-resolution platform for quantitative trait locus dissection. Plant J,2005,44: 1054-1064
    37. Frankel O H. Genetic perspectives of germplasm conservation. In:Arber W, Limensee K, ed. Genetic Manipulation:Impact on Man and Society. Cambridge, UK:Cambridge University Press,1984,161-170
    38. Frankel O H, Brown A H D. Plant genetic resources today:A critical appraisal. In: Holden JHW, Williams JT eds. Crop genetic resources:conservation & evaluation. London:George Allen & Urwin Ltd,1984,249-257
    39. Gao L Z, Innan H. Nonindependent domestication of the two rice subspecies, Oryza sativa ssp. Indica and ssp. Japonica, demonstrated by multilocus microsatellites. Genetics,2008,179:965-976
    40. Garris A J, McCouch S R, Kresovich S K. Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics,2003,165:759-769
    41. Garris A J, Tai T H, Coburn J et al. Genetic structure and diversity in Oryza sativa L. Genetics,2005,169:1631-1638
    42. Glaszmann J C. Isozymes and classification of Asian rice. Theor Appl Genet,1987: 21-30
    43. Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants:Present status and future prospects. Plant Mol Biol,2005,57: 461-485
    44. Harjes C E, Rocheford T R, Bai L et al. Natural genetic variation in Lycopene Epsilon Cyclase tapped for maize biofortification. Science,2008,319:330-333
    45. Hedden P. The genes of the green revolution. Trends Genet,2003,19:5-9
    46. Huang N, Parco A, Mew T et al. RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Mol Breed,1997,3:105-113
    47. Huang X H, Wei X H, Sang T et al.Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet.2010,42:961-967
    48. Huang Y T, Chang C J, Chao K M. The Extent of linkage disequilibrium and computational challenges of single nucleotide polymorphisms in genome-wide association studies. Curr Drug Metab,2011,12:498-506
    49. Isshiki M, Morino K, Nakajima M et al. A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5'splice site of the first intron. Plant J.1998,15:133-138
    50. Joshi S P, Gupta V S, Aggarwal R K et al. Genetic diversity and phylogenic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza. Thero Appl Genet,2000,100:1311-1320
    51. Juliano B O. Criteria and tests for rice grain qualities. In:B.O.Juliano (Ed.), Rice Chemistry and Technology, American association of cereal chemists, Saint Paul, Minnesota,1985,443-513
    52. Jung M, Ching A, Bhattramakki D et al. Linkage disequilibrium and sequence diversity in a 500- kb region around the adhl locus in elite maize germplasm. Theor Appl Genet,2004,109:681-689
    53. Kato S, Kosaka H, Hara S. On the affinity of rice varieties as shown by fertility of hybrid plants. Bull Sci Fac Agric Kyushu Univ,1928,3:132
    54. Kato S and Ishikawa J. On the inheritance of the pigment of red rice. Jpn. J. Genet. 1921,1:1-7
    55. Khush G S. Prospects of and approaches to increasing the genetic yield potential of rice. Rice Research in Asia, Progress and Priorities. CAB International and IRRI, 1996,59-71
    56. Konishi S, Izawa T, Lin SY et al. An SNP caused loss of seed shattering during rice domestication. Science,2006,312:1392-1396
    57. Kovach M J, Sweeney M T, McCouch S R. New insights into the history of rice domestication. Trends Genet,2007,23:578-587
    58. Kumar S, Tamura K, and Nei M. MEG A3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform,2004,5: 150-163
    59. Li C B, Zhou A L, Sang T. Rice domestication by reducing shattering. Science, 2006a,311:1936-1939
    60. Li C B, Zhou A L, Sang T. Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol,2006b,170:185-193
    61. Li Z M, Zheng X M, Ge S. Genetic diversity and domestication history of African rice (Oryza glaberrima) as inferred from multiple gene sequences. Theor Appl Genet,2011,123:21-31
    62. Lin Z W, Griffith M, Li X R et al. Origin of seed shattering in rice (Oryza sativa L.). Planta,2007,226:11-20
    63. Liu K J and Muse S V. PowerMarker:an integrated analysis environment for genetic marker analysis. Bioinformatics,2005,21:2128-2129
    64. Londo J P, Chiang Y C, Hung K H et al. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci USA,2006,103:9578-9583
    65. Lu B R, Zheng K L, Qian H R et al. Genetic differentiation of wild relatives of rice as referred by the RFLP analysis. Theor Appl Genet,2002,106:101-106.
    66. Mao H L, Sun S Y, Yao J L et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA,2010, 107:19579-19584
    67. Mather K A, Caieedo A L, Polato N R et al. The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics,2007,177:2223-2232
    68. Meuwissen T H, Goddard M E. Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics,2000,155:421-430
    69. Molina J, Sikora M, Garud N et al. Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci USA,2011,108:8351-8356
    70. Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res,1980,8:4321-4325
    71. Nakamura Y, Umemoto T, Takahata Y et al. Characteristics and roles of key enzymes associated with starch biosynthesis in rice endosperm. Gamma Field Symposia,1992,31:25-44
    72. Nakamura Y. Towards a better understanding of the matabolic system for amylopectin biosynthesis in plants:rice endosperm as a model tissue. Plant Cell Physiol,2002,43:18-725
    73. Nordborg M, Borevitz J O, Bergelson J et al. The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet,2002,30:190-193
    74. Olsen K M, Caicedo A L, Polato N et al. Selection under domestication:evidence for a sweep in the rice waxy genomic region. Genetics,2006,173:975-983
    75. Palaisa K A, Morgante M, Williams M et al. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell,2003,15:1795-1806
    76. Paterson A H, Lin Y R, Li Z K et al. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science,1995,269: 1714-1718
    77. Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics,2000,155:945-959
    78. Purugganan M D, Fuller D Q. The nature of selection during plant domestication. Nature,2009,457:843-848
    79. Remington D L, Thornsberry J M, Matsuoka Y et al. Strueture of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA,2001,98:11479-11484
    80. Sand P G. A lesson not learned:allele misassignment. Behav Brain funct,2007,3: 65
    81. Sharbel T F, Haubold B, Mitchell-Olds T. Genetic isolation by distance in Arabidopsis thaliana:biogeography and postglacial colonization of Europe. Mol Ecol,2000,9:2109-2118
    82. Shomura A, Izawa T, Ebana K et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet,2008,169:1023-1028
    83. Song X J, Huang W, Shi M et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet,2007,39:623-630
    84. Sweeney M T, Thomson M J, Pfeil B E et al. Caught red-handed:Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell,2006, 18:283-294
    85. Sweeney M T, Thomson M J, Cho Y G et al. Global dissemination of a single mutation conferring white pericarp in rice. Plos Genet,2007,3:1418-1424
    86. Takano-Kai N, Jiang H, Kubo T, Sweeney M T et al. Evolutionary history of GS3, a gene conferring grain length in rice. Genetics,2009,182:1323-1334
    87. Tan Y F, Zhang Q F. Correlation of simple sequence repeat (SSR) variants in the leader sequence of the waxy gene with amylose aontent of the grain in rice. Acta Bot Sin,2001,43:146-150
    88. Tang T, Lu J, Huang J, He J et al. Genomic variation in rice:genesis of highly polymorphic linkage blocks during domestication. Plos Genet,2006,2:e199
    89. Tanksley S D, Nelson J C. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet,1996,92:191-203
    90. Tenaillon M I, Sawkins M C, Long A D et al. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA,2001,98:9161-9166
    91. Thomson M J, Tai T H, McClung A M et al. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet,2003,107:479-493
    92. Thornsberry J M, Goodman M M, Doebley J F et al. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet,2001,28:286-289
    93. Tian Z X, Qian Q, Liu Q Q et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci USA, 2009,106:21760-21765
    94. Upadhyaya H D, Ortiz R. A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theor Appl Genet, 2001,102:1292-1298
    95. Wang Y S, Barratt B J, Clayton D G et al. Genome-wide association studies, theoretical and practical concerns. Nat Rev Genet,2005,6:109-118
    96. Wang Z Y, Zheng F Q, Shen G Z et al. The amylose content in rice endosperm is related to the post transcriptional regulation of the waxy gene. Plant J.1995,7: 613-622
    97. Weir B S, Cockerham C C. Estimating F-statistics for the analysis of population structure. Evolution,1984,38:1358-1370
    98. Wen W W, Mei H W, Feng F J et al. Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm of rice (Oryza sativa L.). Theor Appl Genet,2009,119:459-470
    99. Weng J F, Gu S H, Wan X Y et al. Isolation and initial characterization of GW5, a major QTL associate with rice grain width and weight. Cell Res,2008,18: 1199-1209
    100.Whitt S R, Buckler E S. Using natural allelic diversity to evaluate gene function. Methods Mol Biol,2003,236:123-139
    101.Xue W Y, Xing Y Z, Weng X Y et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet,2008,40:761-767
    102.Yan J B, Kandianis C B, Harjes C E et al. Rare genetic variation at zea mays crtRB1 increases β-carotene in maize grain. Nat Genet,2010,42:322-327
    103.Yan J B, Shah T, Warburton M L et al. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. Plos One,2009,4:e8451.
    104.Yamanaka S, Nakamura I, Watanabe K N et al. Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theor Appl Genet.2004,108:1200-1204
    105.Yu S B, Li J X, Xu C G, Tan Y F et al. Importance of epistasis as the genetic basis of heterosis in a elite rice hybrid. Proc Nat Acad Sci USA,1997,94:9226-9231
    106.Yu S B, Xu W J, Vijayakumar C H et al. Molecular diversity and multilocus organization of the parental lines used in the International Rice Molecular Breeding Program. Theor Appl Genet,2003,108:131-140
    107.Zhao K, Wright M, Kimball J et al. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. Plos One,2010,5:e10780
    108.Zondervan K T, Cardon R C. The complex interplay among factors that influence allelic association. Nat Rev Genet,2004,5:89-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700