贵州石生藓类对石漠化干旱环境的生态适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵州地处东亚喀斯特发育区中心,喀斯特地区占全省总面积的73.8%,喀斯特地貌分布之广,碳酸盐岩发育厚度之大,在全国独一无二,在世界上也极为罕见。喀斯特石漠化是十地荒漠化的主要类型之一,是人类不合理的经济活动叠加于脆弱生态地质环境所导致的结果。石漠化已严重危及长江、珠江流域的生态安全,所引发的环境问题,如治理和恢复的难度也是世界之最,这对中国西南地区经济社会的可持续发展造成了严重影响。由于我国石漠化的理论研究明显滞后于治理实践,最直接的后果是导致石漠化治理的盲日性和给当地生态环境带来的不确定影响。目前国内外对喀斯特石漠化地区苔藓植物的群落演替规律和生态适应度性研究非常缺乏,这对揭示石漠化地区苔藓植物群落演替机理和制定具体的生态治理措施极为不利。本文采用野外调查和室内模拟实验方法,以贵州强度石漠化区域石头上生长的反叶扭口藓(Barbula fallax Hedw.)和穗枝赤齿藓(Erythrodontium julaceum (Schwaegr.) Par.)为材料,并以广泛分布的土生真藓(Bryum argenteum Hedw.)为参比,探讨贵州石漠化地区石生藓类对干旱环境的生态适应机制,研究结果表明:
     (1)采用样方法对强度石漠化区域石生环境30个样点150个样方进行了调查,共记录石生藓类9科25属55种。优势科为丛藓科(Pottiaceae)和真藓科(Bryaceae),共17属,41种;优势属为曲柄藓属(Campyulopus)、净口藓属(Gymnostomum)、扭口藓属(Barbula)、真藓属(Bryum)、小石藓属(Weisia)、绢藓属(Entodon)6个属,共30种。区系分布由10个成分组成,其中以温带成分为主,兼以热带亚洲、中国特有和东亚成分。生活型以丛集型和交织型为主,共占总种数的96.4%,平铺型较少。由于喀斯特强度石漠化区域岩石大多为碳酸盐岩,干旱和土壤营养贫瘠导致群落类型以干燥石生苔藓群落占绝对的优势。因此.区域内耐旱的石生藓类得以较好的生长和繁殖,逐渐在岩石表面积累了薄土层,进而改善了岩面局部的温湿环境,在一定程度上为其它植物的殖居创造了条件
     (2)利用石蜡切片法和显微观察技术,对喀斯特强度石漠化岩面不同小环境的12种石生藓类茎和叶进行形态观察和比较解剖学研究。结果表明:1)不同种类的石生藓类在中肋的有无、导水主细胞的有无、中肋细胞层数及细胞密度、叶片细胞层数和细胞密度、叶表附属物等方面存在显著的差异。12种石生藓类叶片细胞胞壁具不同程度的增厚;穗枝赤齿藓(E.julaceum)叶片无中肋结构,而其余11种皆有明显的中肋结构,真藓科的所有种类中肋突出叶尖形成长短不同的毛尖结构,中肋的有无,反映了对水分吸收和运输方式的不同;除沼生真藓(Bryum knowltonii Barnes.)和真藓(B.argenteum)未见明显的导水主细胞外,其余具中肋结构的石生藓类导水主细胞均较为发达;不同石生藓类中肋厚度和细胞密度、叶片厚度和细胞密度间存在显著的相关性,但中肋厚度与层数相关不显著;叶表面附属物丛藓科所有种类有不同形状和数量的疣,小胞仙鹤藓(Atrichum undulatum (Hedw.) P. Beauv.)有栉片结构,这些叶片附属物的存在是对旱生环境的积极适应。2)12种石生藓类茎的形状、细胞形状、表皮层数及厚度、皮部是否分化及细胞层数、中轴有无和形状以及所占比例等特征因种类不同而存在差异。干旱环境中的藓类茎的解剖结构表现出表皮细胞排列紧密、细胞壁强烈增厚或增厚明显,1-2层不等,以1层居多,较多种类具有向外突起伸长形成多细胞腺体;仅有卷叶丛本藓(Anoectangium thomsonii Mitt.)和反叶扭口藓具内外皮部的分化,外皮部细胞胞壁增厚明显,其余10种藓类无内外皮层的分化或分化极不明显;除小胞仙鹤藓、真藓和反叶扭口藓有明显的中轴分化外,其余8种石生藓类分化极不明显,而短叶小石藓(Weisin semipallida C. Muell.)无中轴的分化。结果说明喀斯特石漠化地区石生藓类对水分吸收和传导以外导水型为主,混合导水型为辅。因此,石生藓类叶片和茎的解剖结构特征能反应所处的旱生环境,具有重要的生态适应意义。
     (3)比较研究了石漠化地区常见的穗枝赤齿藓、反叶扭口藓和真藓吸水特征和结构对石漠化干旱环境的适应性。结果表明,穗枝赤齿藓和反叶扭口藓的最大持水能力和保水率均大于真藓。3种藓的吸水过程包括外吸水和内吸水,吸水动力学曲线均表现为S型饱和曲线,但吸水特征存在较大差异;穗枝赤齿藓和反叶扭口藓的饱和吸水量相差甚微,但远大于真藓,前两者约为后者的2.5倍;最大总、内、外吸水速度穗枝赤齿藓分别为真藓的3.41倍、2.52倍和3.02倍,反叶扭口藓分别是真藓的2.79倍、2.52倍和3.55倍。茎的解剖学结构显示真藓和反叶扭口藓有明显的中轴,属内导水型藓类,而穗枝赤齿藓无中轴,属外导水型;但严格的内导水型植物不存在,不少植物属于混合导水型,这与环境水分高低有关。因此,中轴的有无并不是导致吸水能力强弱的决定性因素,还与苔藓所处的环境状况、生长型、毛细管系统类型和茎叶结构密切相关。
     (4)采用-2Mpa PEG-6000模拟干旱胁迫处理石漠化典型的石生藓类穗枝赤齿藓、反叶扭口藓和土生真藓,研究了同一干旱强度下不同时间处理的可溶性糖等4种渗透物质的变化。可溶性糖、还原糖和游离脯氨酸含量随着胁迫强度的增加而不断上升,但游离脯氨酸的积累较微弱;复水后3种物质的含量均比胁迫处理前有不同程度的下降,但都高于对照。可溶性蛋白呈现出先下降,后上升,再下降的趋势,除穗枝赤齿藓略高于对照外,反叶扭口藓和真藓含量均低于对照;复水后,3种藓类的含量均比对照有不同程度的下降。综合4个指标对3种藓类耐旱能力进行评价,种类上渗透调节能力穗枝赤齿藓>反叶扭口藓>真藓,不同渗透调节物质的贡献率是可溶性糖>可溶性蛋白>还原糖>脯氨酸。
     (5)研究了模拟干旱胁迫和复水条件下3种藓类的抗氧化保护机制。早期3种藓类超氧化酶歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性和类胡萝卜素(Car)含量升高,后期含量下降,表明藓类存在一个对逆境伤害的适应过程,胁迫初期含量增加是抵御干旱的一种适应性反应,后期保护酶和渗调物质含量的降低则是由于持续干旱对藓类造成了伤害。随渗透胁迫的加剧,真藓和反叶扭口藓超氧阴离子(O:)、丙二醉(MDA)旱现出增加-降低-略增加的趋势,而穗枝赤齿藓表现为增加-降低趋势。3种藓类的膜相对透性均呈现出S曲线的变化趋势,均有不同程度的升高,24h后略有下降。因此,水分胁迫早期O2-等活性氧的增加,诱导酶促和非酶促清除系统的启动清除产生的活性氧,随胁迫的加重,活性氧产生超过了抗氧化酶系统的清除能力而造成植物的部分伤害。3种藓类复水均能恢复生理活力,说明后期可通过生理休眠达到逃避极强度的干旱逆境,具有适应干旱胁迫的阶段性反应现象。
     (6)研究了模拟干旱胁迫和复水对反叶扭口藓、穗枝赤齿藓和真藓叶绿素含量和荧光特性的影响。结果表明,随水分胁迫的增加,叶绿素含量总体呈出先升、后降、再升高的趋势;3种藓类F0、qN上升,Fm、Fv/Fm、Yield、ETR、qP都随干旱胁迫的加剧而下降。复水后各荧光参数在轻中度胁迫下能恢复到正常水平,而重度胁迫较难恢复到对照水平。分析O2-和膜透性与荧光焠灭系数的关系,O2和膜透性随胁迫的增加而伴随qP系数的降低、qN系数的增加,证实胁迫过程中抗氧化防御系统的酶类活性和抗氧化物质含量的变化有关,活性氧的产生超出了植物自身的清除能力而致使体内代谢发生紊乱。水分利用效率(WUE)随胁迫程度的增加而不断下降,3种藓类水分利用效率的大小为:反叶扭口藓>穗枝赤齿藓>真藓,说明反叶扭口藓的耐旱性最强。
     综上所述,生长在石漠化干旱环境中的石生藓类植物不仅在物种分布、形态结构上具有适应性特征,而且还能通过渗透调节,提高抗氧化酶系统的能力,维持光合机构的稳定等生理生态机制来适应干旱的岩溶环境。本研究结果揭示了喀斯特石漠化地区石生藓类的生态适应机制,可为其他岩溶植物适生机理制研究和石漠化环境治理和生态修复提供理论依据。
Guizhou Province is located in the center of the karst area in East Asia. The total karst area accounts for73.8%of the province, hence there are large areas of karst in China. Karst rocky desertification is one major type in desertification, which is under irrational human impact on the vulnerable eco-geo-environment. In this process, the vulnerable eco-geo-environment serves as its base, violent human impaction as its driving force, devolution of bearing capability of the land is the essence, and the appearing of landscape similar to desert is the sign. Rocky desertification has threatened seriously the ecological safety of the Yangtze River, Pearl River Basin. However, it is very difficult to handle the environmental problems in karst regions and hard to recover and governance if once deteriorated. Therefore, rock desertification has been severely restricted the sustained development in southwest China. Meanwhile, theoretical researches of Rocky Desertification has lagged far behind comprehensive improvement of karst areas in China. This leads to the blindness of controlling rocky desertification and the uncertainty to local ecological environment. It is very important for the recovery of the degradation of the karst ecosystem and reconstruction for the in-depth study about moss community succession law and adaptability. Lack of such researches is extremely detrimental to reveal mechanism of community succession and development of specific ecological management measures. In this study, Barbula fallax Hedw. and Erythrodontium julaceum (Schwaegr.) Par. the saxicolous mosses grow in the regions of rock desertification in Guizhou were determined via a combination of field investigation and laboratory experiments. Furthermore, of Bryum argenteum Hedw., a widely distributed to soil mosses, as the reference was also investigated, especially in the physiological ecology of rocky desertification in drought environments adaptive mechanisms. These results provide the theoretical proofs for the study of karst plant on adapt mechanisms and rocky desertification environment governance. These results in detail were shown as follows:
     (1) Sampling methods are adopted to investigate30sample plot150small quadrat in the aquatic environment of intense rocky desertification area and record saxicolous mosses9families and25genera and55species. Dominant families are Pottiaceae and Bryaceae, a total of17genera,41species. Dominant generas are Campyulopus, Gymnostomum, Barbula, Weisia, Entodon, a total of6families and30kinds. The flora of saxicolous mosses have10ingredients are mainly distributed in tropical Asia, and unique to China and East Asian. Life forms are chiefly Turfs and Wefts, the total number of species in96.4%, less Mats. Because Karst rocky desertification area rocks are mostly carbonate rocks, barren environment of the drought and soil nutrition results in an absolute advantage of Bryo-xero-petrophytia. The saxicolous mosses drought tolerance in the region, therefore, is of good growth and reproduction, and there gradually accumulates in the rock surface with a thin layer. Thus, it improves the local rock surface temperature and humidity environment, and ranks to create, a certain extent, the conditions for the colonization of other plants.
     (2)Through paraffin wax section and microscopic observation, the study of comparative anatomy and morphology are as for12saxicolous mosses stems and leaves in different environments of karst rock desertification. The results showed that:1) There is a significant difference among different types of saxicolous mosses such as the absence or presence of hydrome cells, the numbers of cell layer and the density of the costae, leaf cell layers and cell density, the numbers of laminal cell layer, and some of them have attachment on surface, etc. The saxicolous mosses under dry conditions often have thickened laminal cell-walls on the surfaces, Erythrodontium julaceum (Schwaegr) Par has no costa structure, while the remaining11kinds have obvious costa structure. As for all types of Bryaceae have different hair points of prominent forms. The absence of costa reflects on the different water absorption and modes of transport; except the Bryum knowltonii Barnes and Bryum argenteum Hedw, there is no apparent Hydrome chief cell. The Hydrome chief cell with saxicolous mosses of the costa structure is more developed; different saxicolous mosses class in the costa thickness and cell density between leaf thickness and cell density exists a significant correlation, but the costa is not significantly related to the thickness of layers; attachment on surface have varied kinds of different shape and number of papillae. Atrichum undulatum (Hedw.) P. Beauv. has lamellae structure and the existence of these attachment on surface has positive adaptation to the dry conditions.2) The stems of12saxicolous mosses species were of different types among stem shape, cell shape, the layers numbers of epidermisand the thickness, the differentiation and layers of cortex, the existence or inexistence and the scale of the mainaxis of stems varied highly. The tightly arrayed epidermis in their stem, the distinctly thickened cellwalls in epidermis were found in xeric saxicolous mosses, the majority of one cell-layer. More types are outward protruding extension and form cells glands; only Anoectangium thomsonii Mitt. and Barbula fallax has inner cortex or external cortex as well as the thickened cell walls of external cortex. The remaining10species of mosses have no differentiation of the inner and external cortex. The Bryum argenteum, Atrichum undulatum and Barbula fallax with the mainaxis of differentiation, the differentiation of the remaining8species saxicolous mosses is not very obvious. However, the mainaxis of Weisin semipallida C. Muell. has not differentiation, which indicates that the Karst Areas of saxicolous mosses on water uptake and conduction are the ectohydric based and mixohydric supplemented. Therefore, the anatomical structure of the saxicolous mosses leaves and stems in the xerophytic environment has important ecological significance of adaptation.
     (3) In this study, a theoretical foundation for the interest of recovering and administering the environments of rock-desertification ecology was provided by compared with the adaptability to habitat heterogeneity in rocky desertification environments among Eiythrodontium julaceum, Barbula fallax and Bryum argenteum. The results show that, firstly, E. julaceum and B. fallax are more than B. argenteum in the capacity of holding maximal water and also in the rate of preserving natural water. Secondly, the water-uptaking processes of the three mosses are outer water uptake and inner water uptake. Although the three species had the same dynamic curve of the S type saturated water content, they had considerably different dynamic properties. Little difference was found in the amount of water saturated by E. julaceum and B. fallax. However, the amount of saturated water in E. julaceum and B. fallax were about2.5times of that in the silver B. Argenteum. The amount of saturated water and the maximal rates of water uptake, inner as well as outer water uptake in E. julaceum were3.41,2.52and3.02times than those of B. argenteum, respectively. Similar results were also found in B. fallax. Furthermore, the stem cross-section structure of three mosses showed that B. argenteum and B. fallax had the obvious conducting strand and belonged to endohydric mosses. In contrast, E. julaceum owned no conducting strand and belonged to the part of the ectohydric. Strictly, the structure of endohydric and ectohydric in mosses is not the decisive factor of water absorption capability, which has close relationship with many aspects including growth form, type of capillary system and microstructure of stem and leaf positive correlations.
     (4)-2Mpa PEG-6000is adopted to simulate drought treatment on typical karst rocky desertification Erythrodontium julaceum and Barbula fallax of saxicolous mosses, and native Bryum argenteum, and the study touches on changes of four kinds of osmolytes in different time to deal with the same intensity material. With the increase of the stress time, the soluble sugar, reducing sugar and free proline is rising, but the accumulation of free proline is weaker; after rewatering three kinds of substances decreased in varying degrees, but it is higher than the control. Soluble protein shows a first decreased and then increased, and then a downward trend. In addition to the Erythrodontium julaceum is slightly higher than the control Barbula fallax, Bryum argenteum content is lower than the control; after rewatering, the content of the three kinds of mosses in the control decreased in varying degrees. Based on the four indicators to evaluate the drought tolerance of the three kinds of mosses, osmotic adjustment ability on the type of ear branches is like: Erythrodontium julaceum> Barbula fallax> Bryum argenteum, while the contribution rate of different osmolytes is soluble sugar> soluble protein> reducing sugar> proline.
     (5) The research focuses on the antioxidant protection mechanism of three species of saxicolous mosses by PEG-6000simulated drought stress and rewatering conditions. In the early period, the contents of three kinds of mosses superoxide dismutase dismutase (SOD), catalase (CAT), peroxidase (POD) activity and carotenoids (Car) content increased, and at late declined. This shows that the mosses have an adaptation-injury process. The increasing stress in the initial period reacts to resist drought, but later to reduce self-inflicted injury. When osmotic stress intensifies, Biyum argenteum and Barbula fallax superoxide anion (O2-), malondialdehyde (MDA) show the increase-lower-slightly increasing trend. However, the Erythrodontium julaceum performs increase-reduce trend. As for the relative permeability of membrane, three kinds of mosses were shown a trend of the S-curve and increased in varying degrees. There is a slight decline after24hours. Therefore, the increases in drought stress early O2-and other reactive oxygen species (ROS) induce enzymatic and non-enzymatic scavenging system to start to clear ROS. With the aggravation of stress, ROS exceeds the scavenging capacity of the antioxidant enzyme system so as to injury plant. The rewatering of three kinds of moss can restore physical vitality, and it instructs that physiological dormancy in later period can help to escape the very intensity of the response from drought stress because of the reaction phenomenon adapted to drought stress phase.
     (6) The study of drought and rewatering on the Barbula fallax, Erythrodontium julaceum, Bryum argenteum chlorophyll content and fluorescence characteristics. The results showed that under the increase of drought stress, total chlorophyll content was the first rose and then dropped, and then the tendency to increase. F0and qN of three kinds of mosses was increased while the Fm, Fv/Fm, Yield, ETR and qP are decline with drought stress. Fluorescence parameters after rewatering can be restored to normal levels in mild to moderate stress, and severe stress is more difficult to return to the control level. Analysis of the relationship among O2-and membrane permeability fluorescence quenching shows that O2-and membrane permeability with stress increased accompany by qP coefficient lower and qN increased in the coefficient. It confirms that the activity of enzymes of antioxidant defense system in the stress process relates to the changes of anti-oxidation material content. The production of ROS is beyond the plant clearance resulting in the vivo metabolic disorder. Water use efficiency (WUE) decreased continuously with the increased stress in WUE. The most drought tolerance is the Barbula fallax>Erythrodontium julaceum>Bryum argenteum.
     In summary, the saxicolous mosses grown in the karst dry enviroment have not only certain features and morphology of adaptations from the distribution of moss species, but also adapt to changes of the physiological and ecological mechanisms in karst environments by adjusting osmotic and improving the ability of the antioxidant enzyme system to maintain the stability of photosynthetic apparatus.
引文
Alpert P. Distribution quantified by microtopography in an assemblage of saxicolous mosses [J]. Plant Ecology,1986, (64):131-139.
    Alexander V, Billington M, Schell D M. Nitrogen fixation in arctic and alpine tundra[J].Ecol Stud, 1978,29:539-558.
    Bayfield, N G. Notes on water relations of Polytrichum commune Hedw[J].J Bryol. 1973(7): 607-617
    Bates J W. The influence of metal availability on the bryophyte and macrolichen vegetation of four rock types on Skye and Rhum [J].Journal of Ecology,1978,(66):457-482
    Bates J W. Mineral nutrition, substratum ecology, and pollution [A].//In:Shaw A J, Goffinet B, eds. Bryophyte Biology [M]Cambridge:Cambridge University Press,2000:248-311; 403-448
    Beckett R P, Tuba Z. ABA treatment increases both the desiccation tolerance of photosynthesis, and nonphotochemical quenching in the moss Atrichum undulatum[J]. Plant Ecology,2000, 151(1):65-71.
    Bewley J D. Desiccation and protein synthesis in the moss Tartula rutalis[J]. Can J Bot, 1973,51:203-206.
    Bewley J D. Physiological aspects of desiccation tolerance. Ann. Rev. Plant Physiol.,1979,30: 195-238
    Chopra R N, Kumra P K. Biology of bryophytes[M]. New York:John Wiley&Sons.2005.
    Craw R C. Streamside bryophyte zonations. New Zealand [J]. Journal of Botany,1976,(74):19-28.
    Cox J E, Larson D W. Environmental relations of the bryophytic and vascular components of talus slope plant community [J].J Vegetation Science,1993,4:553-560.
    Csintalan Z, Proctor M C F, Tuba Z. Chlorophyll Fluorescence during Drying and Rehydration in the Mosses Rhytidiadelphus loreus(Hedw.) Warnst., Anomodon viticulosus(Hedw.) Hook.& Tayl. and Grimmia pulvinata(Hedw.). Sm. Ann. Bot.,1999,84:235-244
    Csintalan Z, Takacs Z. Proctor M C F, et al. Early morning photosynthesis of the moss Tortula ruralis following summer dew fall in a Hungarian temperate dry sandy grassland [J]. Plant Ecology,2000,151(1):51-54
    Dhindsa R. Drought stress, enzymes of glutathione metabolism, oxidation injury, and protein synthesis in Tortula ruralis[J].Plant Physiol.,1991,95:648-651.
    Demmig B, Winter K, Kr.ger A, et al. Photoinhibition and zeaxanthin formation in intact leaves-a possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiology,1987,84:218-224
    Deltoro V I, Angeles C, Gimenol C, et al. Changes in chlorophyll a fluorescence, photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts. Planta,1998,207:224-228.
    Enserink M. Predicting invasions:Biological invaders sweep in.Science,1999,285:1834-1836
    Eldridge D J, Tozer M E. Environmental factors relating to the distribution of terricolous bryophytes and lichens semi-arid eastern Australia[J].The Bryologist,1997,100(l):28-39.
    Ehdaie B, Hall A E, Farquhar G D, Nguyen H T, Waines J G. Water-use efficiency and carbon isotope discrimination in wheat. Crop Science,1991,31:1282-1288.
    Foyer C H, Noctor C Z. Oxygen processing in photosynthesis:regulation and signaling[J]. New phytol,2000,146(3):359-388
    Frahm J P. Biologie der Moose [M]. Berlin, Heidelberg:Spektrum Akademischer Verlag,2001.
    Genty B, Briantais J M, Baker N R. Relationship between the quantum yield of photosynthetic electron transport and the quenchening of chlorophyll fluorescence [J]. Acta Biochem. Biophys,1989,990:87-92
    Greenfield L G. Retention of precipitation nitrogen by antarctic mosses, lichen and fellield soils[J]. Antar Sci,1992,4:205-206
    Guo S L, Cao T. Distribution patterns of ground moss species and its relationships with environmental factors in Changbai Mountain,Northeast China[J]. Acta Botanica Sinica,2001,43(6):631-643.
    Gray G R, Chauvin L P, Sarhan F, et al. Cold acclimation and freezing tolerance:A complex interaction of light and temperature. Plant Physiology,1997.114:464-474
    Grythes J A, Heegaard E G. Ihlen P. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway [J]. Acta Oecologica,2006,29(3):241-246.
    Hedderson T A, Brassard G R. Microhabitat relationship of five co-occurring saxicolous mosses on cliffs and scree slopes in eastern New found land [J]. Holarctic Ecology,1990, (13):134-142.
    Isawo K W, Kiku I D. On the affinity regarding the conducting tissue of the stem in some species of Polytrichaceae[J].Science Reports of the Kanazawa University,1970,15(2):71-98
    Isawo K W. On the affinity regarding the inner structure of the stem in some species of Dicranaceae, Bartamiaceae, Emodontaceae and Fissidentaceae[J]. Science Reports of the Kanazawa University,1971,4(18):18-40
    Isawo K W. On the affinity regarding the inner structure of the stem in some species of Thuidiaceae[J]. Science Reports of the Kanazawa University,1971a,XVI(1):21-60
    Isawo K W. On the affinity regarding the inner structure of the stem in some species of Mniaceae[J]. Science Reports of the Kanazawa University,1971b, XVI(2):82-111
    John E, Dale M R T. Environmental correlates of species distributions in a saxicolous lichen community [J]. Journal of Vegetation Science,1990,(1):385-392.
    Johns M.M, Osmond C.B, Turner N.C. Accumulation of solutes in leaves of sorghum and sunflower in response to water deficits[J].Plant Physiol,1980,7:193-205.
    Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings [J]. Plant and Cell Phvsiology, 2001,42:1265-1273.
    Keever C H. Establishment of Grimmia laevigate on bare granite[J]. New Phytol,1957,38:422-429.
    Kimmerer R W, Driscoll M J L. Bryophyte species richness on insular boulder habitats:the effect of area, isolation, and microsite diversity [J]. The Bryologist,2000,103(4):748-756.
    Krall J P, Edward G E. Relationship between photosystem II activity and CO2 fixation in leaves. Physiologia Plantarum,1992,86:180-187
    Kubesova S. Bryophytes in a block field microrelief:case studies from SW Moravia [J]. Acta Universitatis Purkynianae, Studia Biologica,2000, (4):113-125.
    Kubesova S, Chytry M. Diversity of bryophytes on treeless cliffs and talus slopes in a forested central European landscape[J]. Journal of Bryology,2005,(27):35-46.
    Laz.r D. Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem Ⅱ and considering photosystem Ⅱ heterogeneity. J. Theor. Biol.,2003,220:469-503
    Lee T D, La Roi G H. Bryophyte and understory vascular plant beta diversity in relation to moisture and elevation gradients [J]. Plant Ecology,1979,40(1):29-38.
    Lian B, Chen Y, Tang Y. Microbes on Carbonate Rock and Pedogenesis in Karst Region[J].Journal of Earth Science,2010,21 (Special issue):293-296.
    Li Y, Glime J M, Liao C. Responses of two interacting Sphagnum unbricatum spesies to water level[J]. J Bryol,1992,17:59-70.
    Marschall M, Proctor M C F. Desiccation tolerance and recovery of the leaf liverwort Porella platyphylla(L.) Pfeiff:chlorophyll fluorescence measurements. J. Bryol.,1999,21(4):257-262
    Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany,2000,51:659-668
    Mayaba N, Minibayeva F, Beekett R P. An oxidative burst of hydrogen Peroxide during rehydration following desiccation in the moss Atrichum androynum[J].New Phytologist, 2002,155(2):275-283.
    M agdefrau K. Life-forms of bryophytes[C] in Smith A J. Bryophytes ecology[M]. London:Chapman & Hall,1982:45-59.
    Montagnes R J S, Bayer R J, Vitt D H. Isozyme variation in the moss Meesia triquetra (Meesiaceae)[J]. Journal of the Hattori Botanical Laboratory,1993,74:155-170
    Mogren J.W. Differences in osmotic regulation between wheat genotypes[J].Natuer,1977,270: 234-235.
    Miehel B E, Kaufmann M R. The osmotic potential of polyethylene glycol 6000[J].Plant Physiology, 1973,51(5):914-916.
    Michal K. On the relation between the non-photochemical quenching of chlorophyll fluorescence and photosystem I light harvesting efficiency a repetitive flash fluorescence induction study. Photosynthesis Research,2001,68:571-576
    Oliver M J, Tuba Z, Mishler B D. The evolution of vegetative desiccation tolerance in land plants[J]. Plant Ecology,2000,151:85-100.]Oliver M J, Bewley J D. Desiccation and ultrastructure in bryophytes[J]. Advances in Bryology,1984,2:91-131.
    Oliver M J, Bewley J D. Desiccation-tolerance of plant tissues:a mechanistic overview[J]. Horticultural Reviews,1997,18:171-214
    Oliver M J, Velten J, Wood A J. Bryophytes as experimental models for the study of environmental stress tolerance:Tortula ruralis and desiccation tolerance in mosses. Plant Ecology,2000,151 (1):73-84
    Oliver, M J, Velten J, Mishler B. Desiccation tolerance in bryophytes:a reflection of the primitive strategy for plant survival in dehydrating habitats? [J] Integr. Comp. Biol.2005.45:788-799.
    Osmond C B, Somero G. Water and life:A comparative analysis of water relationship at the organismic, cellular and molecular levels[M].Berlin:Springer-Verlag,1997.141-160
    Pentecost A, Zhang Z H. Response of bryophytes to exposure and water availability on some European travertines[J]. Journal of Bryology,2006,28(1):21-26.
    Pharo E J, Vitt D H. Local variation in bryophyte and macrolichen cover and diversity in Montane forests of western Canada[J]. The Bryologist,2000,103(3):455-466.
    Platt K A, Oliver M J, Thomson W W. Membranes and organelles of dehydrated Selaginella and Tortula retain their normal configuration and structural integrity:Freeze fracture evidence[J]. Protoplasma,1994,178:57-65.
    Proctor M C P. Diffusion resistances in bryophytes[M].In:Grace J, Ford E D, Jarvis P C. eds. Plants and their Atmospheric Environment(21st Symposium of the British Ecological Society)[C].Oxford:Blackwell,1980:129-229.
    Proctor M C F, Smirnoff N. Rapid recovery of photosystems on rewetting desiccation-tolerant mosses:chlorophyll fluorescence and inhibitor experiments[J]. J Exp. Bot.2000, 51:1695-1704.
    Proctor M C F. Physiological ecology of bryophytes[M].//Schultze-Motel W, ed. Advances in Bryology. Vol.1. Vaduz:Gantner Verlag 1981:79-166
    Proctor M C F. Structure and ecological adaptation[M].//In:Smith, A. J. E. (ed.) Bryophyte ecology. London:Chapman & Hall,1984
    Richards R A, Rebetzke G J, Condon A G, van Herw aarden A F. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Science,2002, 42:111-121
    Rodrlguez D. Santa G E. Effect of phosphorus and drought stress on dry matter and hosphorus allocation In wheat [J]. J plant Nutrition,1995,18:2501
    Redfearn Jr P L, Tan B C, He S. A newly updated and annotated checklist of Chinese mosses[J].Hattori Botanical Laboratory, 1996,79:163-357.
    Robinson S A, Wasley J, Popp M, Lovelock C E. Desiccation tolerance of three moss species from continental Antarctica[J]. Australian Journal of Plant Physiology,2000,27(5):379-388.
    Richardson D A S. The Biology of Mosses[M]. Oxford, London:Blackwell Scientific Publications,1981
    Santarius K A. The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance[J]. Planta,1973, 113:105-114.
    Santarius K A. Apoplasmic water fractions and osmotic water potentials at full turgidity of some Bryidae[J]. Planta,1994,193:32-37.
    Scott G A M. Desert bryophytes[C]//Smith A J E, Bryophyte Ecology. London:Chapman and Hall, 1982:105-122.
    Schofield W B. Introduction to Bryology[M]. NewYork:Macmillan Publishing Company,1985.
    Seel W E, Baker N R, Lee J A. Analysis of the decrease in photosynthesis on desiccation of mosses from xeric and hydric environments. Physiol. Plant.,1992,86:451-458
    Sobrado M A. Relation of water transport to leaf gas exchange properties in three mangrove species. Trees,2000,14:258-262
    Schlensog M, Schroeter B. A new method for the accurate in site monitoring of chlorophyll a fluorescence in lichens and bryophytea. Lichenologist.2001,33(5):443-452
    Slavik B. Methods of Studying Plant Water Relations[M]. Berlin:Springer-Verlag,1974
    Smirnoff N. The role of active oxygen in the response of plants to water deficits and desiccation[J]. New Phytol.1993,125:27-58
    Stotler R E. Saxicolous bryophyte and macrolichen associations in Southern Illinois I. Little Grand Canyon, Jackson Country [J]. The Bryologist,1976,(79):1-15.
    Stewart G R, Lee J A. The role of proline accumulation in halophytes plants[J].Planta, 1974,120(3):279-289.
    Singh T N, Aspinall D, Paleg L G. Proline accumulation and varical adaptability to drought in barley:a potential metabolic measure of drought resistance[J]. Nature:New Biology. England:Macmillan Journals Ltd,1972,236:188-190.
    Trachtenberg S, Zamski E. The apoplastic conduction of water in Polytrichum juniperinum Willd. Gametophytes[J]. New Phytologist.,1979,83(1):49-52.
    Tuba Z, Proctor M C F, Csintalan Z S. Ecophysiological responses of homoiochlorophyllous and poikilochlorophyllous desiccation tolerant plants:a comparison and an ecological perspective[J]. Plant Growth Regulation,1998,24(3):211-217.
    Tucker E B, Costerton J W, Bewley J D. The ultrastructure of the moss Tortula rurali on recovery from desiccation[J]. Can. J. Bot.1975,53:94-101.
    Tuba Z, Csintalan Z S, Proctor M C F. Photosynthetic responses of a moss(Tortula ruralis spp ruralis)and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance:a baseline study at present-day CO2 concentration [J].New Phytologist,1996,133(2):353-361.
    Velten J, Oliver M J. Tr288, a rehydrin with a dehydrin twist[M]. Plant Molecular Biology,2001,45: 713-722.
    Vitt D H. Patterns of growth of the drought tolerant moss, Racomitrium microcarpon, over a three year period. Lindbergia,1989,15(6):181-187
    Vitt D H, Koponen T, Norris D H. Bryophyte flora of the Huon Peninsula, Papua New Guinea. LV. Desmotheca, Groutiella, Macrocoma and Macromitrium (Orthotrichaceae, Musci)[J]. Acta Botanica Fennica,1995,154:1-94
    Vitt D H. The genus Calomnion (Bryopsida):taxonomy, phylogeny, and biogeography[J].The Bryologist,1995,98(3):338-358
    Wu P C, Shi D J, Wang M Z. SEM studies on leaves and leaf cells of some mosses [J]. Cathaya,1990(2):165-170.
    Walton D W H. The effects of cryptogams on mineral substrates[M]. In:Miles J, eds. Primary Succession on Land. London:Blackwell.1993:33-53.
    West V, Stotler R. Saxicolous bryophyte and macrolichen associations in Southern Illinois II. Panther's Den, Union Country[J]. The Bryologist,1977,(80):612-618.
    Weibull H, Rydin H. Bryophyte species richness on boulders:relationship to area, habitat divessity and canopy tree species[J]. Biological Conservation,2005,(122):71-79.
    Zhang Z H. Contribution to the bryoflora of Guizhou, SW China. New records and habitations on mosses from Huanggueshu Karst Area[J]. Joumal of Bryology,1996,19:149-152
    白学良.内蒙古苔藓植物[M].内蒙古:内蒙古大学出版社,1996:156-346.
    包维楷,冷俐.苔藓植物光合色素含量测定方法——以暖地大叶藓为例[J].应用与环境生物学报.2005,11(2):235-237
    包维楷,王春明,吴宁.青藏高原东部针叶林下8种藓类植物的持水和保水能力比较研究[J].自然资源学报,2004,19(2):190-194.
    曹建华,袁道先.石生藻类、地衣、苔藓与碳酸盐岩持水性及生态意义[J].地球化学,1999.28(3):248-257
    曹仪植,吕忠恕.水分胁迫下植物体内游离脯氨酸的累积及ABA在其中的作用[J].植物生理学报,1985,11(1):9-16.
    曹同.旱藓(Indusiella thianschnica)的形态特征与地理分布[A].中科院林业土壤研究所专刊[C],沈阳,1983(6):155-158.
    陈邦杰,万宗玲,高谦,黎兴江,吴鹏程.中国藓类植物属志(上、下册)[M].北京:科学出版社,1963,1978
    陈子林,陈家伟,俞英,郭水良,周钰鸿.大盘山石生藓类植物及其分布与环境因素的典范对应分析[J].中南林业科技大学学报,2009,29(2):87-92.
    陈肖鹏,张朝晖.贵州老万场金矿喀斯特石漠化区苔藓植物研究[J].贵州师范大学学报(自然科学版),2010,28(4):144-148.
    陈蓉蓉,刘宁,钟本固,等.Ca2-浓度对黔灵山喀斯特生境中几种苔藓植物生长的影响[J].贵州师大学报(自然科学版),1998,16(1):4-7.
    陈志玲,欧阳洁淼,刘祥林,等.微管骨架在苔藓植物适应干旱胁迫应答中的功能研究[J].生物工程学报,2003,19(3):317-321.
    代丽华,何林,张仁波,刘方.大沙河自然保护区岩生植物种类研究[J].贵州农业科学,2010,38(6):21-23.
    高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006.
    韩留福.7种国产提灯藓科(Mniaceae)植物叶片的比较解剖学研究[J].河北师范大学学报,1999,,23(2):255-266
    韩留福,王晓蕊,赵建成,等.6种凤尾藓属植物茎的比较解剖学研究[J].河北师范大学学报(自然科学版),2003,27(6):620-637
    韩留福,刘伟,赵建成.十种藓类植物茎的比较解剖学观察[J].干旱区研究,2003,20(1):20-24
    杜桂森,汪媚芝,张玉龙.23种顶蒴藓类孢子形态的观察[J].云南植物研究,2000,22(3):277-281.
    何炎红,郭连生,田有亮.白刺叶不同水分状况下光合速率及其叶绿素荧光特性的研究.西北植物学报,2005,25(11):2226-2233
    贺韵雅,于海峰,逢圣慧.生物土壤结皮的生物学功能及其修复研究[J].地球与环境,2011,39(1):91-96
    胡春香,张德禄,刘永定.干旱区微小生物结皮中藻类研究的新进展[J].自然科学进展,2003,13(8):791-795.
    胡人亮.苔鲜植物学[M].北京:高等教育山版社,1987:1-436.
    蒋洁云.不同生长类型藓类植物茎的形态解剖研究[J].现代农业科技,2009,11:9-12
    蒋洁云.7种藓类植物茎不同部位的形态研究[J].安徽农业科学,2010,38(20):10564-10566.
    蒋洁云.毕节试验区韭菜坪藓类植物群落类型及地理分布研究[J].毕节学院学报,2010,28(8):26-31
    李博,杨持,林鹏.生态学[M].高等教育出版社,2000
    李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质[J].植物生理学报,1992,8(1):37—-44.
    李晓娜,张朝晖.云南省罗平县三条喀斯特河谷苔藓植物生态特征研究[J].贵州师范大学学报(自然科学版),2010,28(4):134-140.
    李瑞玲,王世杰.喀斯特石漠化评价指标体系探讨——以贵州为例[J].热带地理,2004,24(12):145-149.
    李瑞玲,汪世杰,周德全,等.贵州岩溶地区岩性与土地石漠化的相关分析[J].地理学报,2003,58(2):314-320.
    李燕红.苔藓植物生理生态学[A].吴鹏程主编.苔藓植物生物学[M].北京:科学出版社.1998:131-147
    李高阳,王丽,包维楷.四种藓类植物叶片解剖结构观察.云南植物研究,2004,26(3):305-309
    李朝阳,田向荣,陈军,李菁.脱水与复水过程中湿地匍灯藓的生理生化响应[J].广西植物,2009,29(1):139-142
    李忠光,龚明.植物中超氧阴离子自由基测定方法的改进[J].云南植物研究,2005,27(2):211-216
    李云飞,李彦慧,王中华,关楠,冯晨静,杨建民.土壤干旱胁迫及复水对紫叶矮樱生理特性的影响 [J].河北农业大学学报,2008,31(6):78-82
    李冰,张朝晖.喀斯特石漠结皮藓类物种多样性及在石漠化治理中的作用研究[J].中国岩溶,2009,28(1):55-60.
    李燕红.苔藓植物生理生态学[A].吴鹏程主编.苔藓植物生物学[C].北京:科学出版社,1998.131-147
    李梦先.我国西南岩溶地区石漠化发展趋势[J].中南林业调查规划,2006,25(3):19-22.
    李阳兵,王世杰,容丽.关于喀斯特石漠和石漠化概念的讨论[J].中国沙漠,2004,24(6):689-695.
    刘荣相,王智慧,张朝晖.贵州贞丰喀斯特石漠峰丛苔藓植物群落生态特征[J].植物研究,2009,29(6):734-741.
    刘建新.镉胁迫下玉米幼苗生理生态的变化[J].生态学杂志,2005,24(3):265-268
    刘应迪,朱杰英,陈军,曹同.3种藓类植物水分含量与光合作用、呼吸作用和水势的关系[J].武汉植物学研究,2001,19(2):135-142.
    骆强,江洪.贵州百里杜鹃国家森林公园土生和石生苔藓植物比较研究[J].热带亚热带植物学报,2010,18(3):264-268.
    莫亚鹰,郭水良.浙江金华北山石生藓类分布与环境关系的排序分析[J].武汉植物学研究,2006,24(6):525-530.
    彭晓馨,骆强.贵阳地区石灰岩苔藓的种类及生境[J].贵州科学,2003,21(4):85-88.
    任文伟,钱吉,郑师章.同地理种群羊草在聚乙二醇胁迫下含水量和游离脯氨酸含量的比较[J].生态学报,2000,20(2):349-352.
    宋莉英,孙兰兰,舒展,等.干旱和复水对入侵植物三裂叶蟛蜞菊叶片叶绿素荧光特性的影响.生态学报,2009,29(7):3713-3721
    宋红涛,郭水良,沈蕾,曹同.江苏宝华山自然保护区苔藓植物多样性及其分布与环境关系研究[J].山地农业生物学报,2010,29(6):482-489.
    沙伟,郑云梅,李传香,赵子峰.中国产异蒴藓属(Lyellia)植物形态解剖比较观察[J].植物研究,2008,28(3):269-272.
    沙伟,王欢,师帅.旱后复水对东亚砂藓生理生化指标的影响[J].武汉植物学研究,2010,28(2):246-249
    孙存普,张建中,段绍瑾.自由基生物学导论[M].合肥:中国科学技术大学出版社,1999
    孙守琴,王根绪,罗辑,宋洪涛,杨刚.苔藓植物对环境变化的响应和适应性[J].西北植物学 报,2009,29(11):2360-2365
    仝治国.中国几种旱生藓类的新分布[J].内蒙古大学学报,1963(2):73-85.
    田桂泉,白学良,徐杰.固定沙丘生物结皮层藓类植物形态结构及其适应性研究[J].中国沙漠,2005,25(2):249-255
    屠玉林.岩溶生态环境异质性特征分析[J].贵州科学,1997,15(3):176-18
    王爱国,邵从本,罗广华,等.大豆下胚轴线粒体的衰老与脂肪的过氧化作用[J].植物生理学报,1988,14(3):269-273
    王建锋,谢世友.西南喀斯特地区石漠化问题研究综述[J].环境科学与管理,2008,33(11):147-152.
    王荷生.植物区系地理[M].北京:科学出版社,1992.
    王虹,阿不都拉.阿巴斯,赵建成.新疆三种旱生藓类植物的比较解剖学观察[J].干旱区研究,1999,16(4):28-31
    王虹,阿布都拉.阿巴斯,范兆田,等.四种旱生藓类植物的比较结构学观察[J].云南植物研究,2000,22(1):38-40
    王虹.五种紫萼藓科植物茎及叶的解剖学观察[J].植物研究,2002,22(1):19-22
    王红玲,张元明.古尔班通古特沙漠生物结皮中藓类植物形态解剖特征[J].干旱区研究,2008,25(3):363-370
    王世杰,李阳兵.喀斯特石漠化研究存在的问题与发展趋势[J].地球科学进展,2007.22(6):573-58
    王晓宇,熊源新.中国大帽藓科植物——新记录种[J].广西植物,2002,23(4):309-310
    王中生,方炎明.龙王山常绿阔叶林石生藓分布格局的缀块性分析[J].南京林业大学学报,2002,26(1):32-36.
    王中生,方炎明.常绿阔叶林瞎石生藓类对森林植被发育的影响[J].应用生态学报,2003,14(6):882-886.
    王智慧,张朝晖,钟本固.贵州龙宫石灰岩和砂页岩苔藓植物的比较研究[J].贵州林业科技,1995,23(3):30-33.
    王圳,张金池,于水强,等.退化喀斯特地区植被恢复过程中苔藓的先锋作用[J].南京林业大学学报(自然科学版),2011,35(3):137-140.
    魏先君.皇甫川流域原生植被区生物结皮层直叶灰藓生理特性的研究[D].内蒙古师范大学.2010
    吴海辉,乙引,谢爱林,等.细枝赤齿藓(Grythrodontium leptothallum)水分吸收特征[J].贵州师范大学学报(自然科学版),2003,21(2):46-48.
    吴楠,魏美丽,张元明.生物土壤结皮中刺叶赤藓质膜透性对脱水、复水过程的响应[J].自然科学进展,2009,19(9):942-951.
    吴鹏程.苔藓植物生物学[M].北京:科学出版社,1998
    吴玉环,程佳强,冯虎元,安黎哲,高谦,程国栋.耐旱藓类的抗旱生理及其机理研究.中国沙漠,2004,24(1):23-29
    吴征镒,周浙昆,李德铢,等.世界种子植物科的分布区类型系统[J].云南植物研究,2003,25(3):245-257.
    熊平生,袁道先,谢世友.我国南方岩溶山区石漠化基本问题研究进展[J].中国岩溶,2010,29(4):355-362
    许大全,张玉忠,张荣铣.植物光合作用的光抑制.植物生理学通讯,1992,28(4):237-243
    许凯扬,叶万辉,段学武,等.PEG诱导水分胁迫下喜旱莲子草的生理适应性[J].浙江大学学报(农业与生命科学版),2004,30(3):271-277.
    杨朝东,熊源新.贵州湿地藓属Hyophila(丛藓科Pottiaceae)植物分布及其新记录[J].贵州大学学报(农业与生物利学版),2002,21(2):99-104.
    杨武.藓类植物适应环境的形态结构及生理学机制[D].浙江师范大学,2008.
    杨武,郭水良,方芳.不同生境下十七种藓类植物叶的比较解剖学[J].云南植物研究,2007,29(5):409-417
    杨武,郭水良,方芳.不同生境下30种藓类植物茎的比较解剖学研究[J].浙江师范大学学报(自然科学版),2007,30(4):440-446
    闰苗苗,沙伟,吕凤香.渗透胁迫下塔藓的4种生理指标的变化[J].齐齐哈尔大学学报,2005,21(4):90-93.
    衣艳君,刘家尧.毛尖紫萼藓(Grimmia pilifera P.Beauv) PSII光化学效率对脱水和复水的响应[J].生态学报,2007,27(12):5238-5244.
    游萍,张以忠,蒋洁云,等.不同石漠化程度苔藓植物的分布[J].贵州农业科学,2010,38(7):84-86.
    余叔文,汤章城.植物生理和分子生物学[M].北京:科学出版社,1999,739-745.
    袁道先.岩溶石漠化问题的全球视野和我国的治理对策与经验[J].草业科学,2008,25(9):19-25.
    詹琪芳,王幼芳,李粉霞.两种生境下的8种藓类植物茎结构的比较解剖学研究[J].西北植物学报,2006,26(2):217-225.
    张萍,自学良,钟秀丽.苔藓植物耐旱机制研究进展[J].植物学通报,2005,22(1):107-114
    张素红.粤北岩溶山区土地石漠化研究[D].北京师范大学大学,2007
    张元明,曹同,潘伯荣.干旱与半干旱地区苔藓植物生态学研究综述[J].生态学报,2002,22(7):1129-1134
    张元明,曹同,潘伯荣.新疆古尔班通古特沙漠南缘土壤结皮中苔藓植物的研究[J].西北植物学报,2002,22(1):18-23.
    张远东,刘世荣,罗传文,张国斌,马姜明.川西亚高山林区不同土地利用与土地覆盖的地被物及十壤持水特征[J].生态学报,2009,29(2):627-635
    张显强,罗在柒,唐金刚,等.高温和干旱胁迫对鳞叶藓游离脯氨酸和可溶性糖含量的影响[J].广西植物,2004,24(6):570-573.
    张显强,张来,何跃军,冯晓英,孙敏.喀斯特石漠结皮细尖鳞叶藓的吸水机制及耐旱适应性研究[J].生态学报,2010,30(12):3108-3116.
    张朝晖,刘宁,钟本固,等.Ca2-浓度对3种贵州喀斯特地区苔藓植物孢子萌发及原丝体生长的影响[J].贵州师大学报(自然科学版),1995,13(3):18-21.
    张朝晖,刘宁,钟本固,等.培养基pH值对苔藓孢子萌发及原丝体生长的影响[J].Chenia,1994,(3-4):57-62.
    张朝晖,祝安,干智慧.黄果树喀斯特洞穴群苔藓植物岩溶的初步研究[J].中国岩溶,1996.15(3):224-232.
    张志良.植物生理学实验手册[M].第4版.北京:高等教育出版社,2009:123-126
    郑云普,赵建成,张丙昌,李琳,张元明.荒漠生物结皮中藻类和苔藓植物研究进展[J].植物学报,2009,44(3):371-378.
    中国科学院西南资源开发考察队.西南自然灾害及其防治对策[M].北京:科学出版社,1991:152.
    赵丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的响应机制[J].西北植物学报,2005,25(2):413-418
    赵建成.绿色流梳藓的形态特征与地理分布[J].干旱区研究,1993,10(1):49-52.
    赵遵田,曹同.山东苔藓植物志[M].山东:山东科学技术出版社,1998
    朱守谦,祝小科,喻理飞.贵州喀斯特区植被恢复的理论和实践[J].贵州林业科技,2000,6(1):31-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700