云南哀牢山徐家坝地区附生(植)物的组成、生物量及其与生态因子的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生长借助有机生物体提供物理支撑,缺不从其宿主获取养分和水分的附生植物是热带、亚热带森林生态系统中重要的组成成分,对促进森林水分、养分循环、维系物种多样性等方面发挥着重要的生态功能。本论文对哀牢山徐家坝地区原生木果柯林、山顶苔藓矮林及因人为干扰形成的早冬瓜林、滇山杨林和栎类萌生林三类次生群落的附生植物进行了物种组成和多样性、生物量的空间分布特征调查;在林缘-林内梯度上调查了边缘效应对附生植物物种组成和生物量的影响;对附生植物组成分布与生态因子的关系进行了测定和分析;并定量探讨了不同生长基质对维系林冠附生苔藓植物多样性的贡献,研究结果显示:
     1、本区具有丰富的附生植物多样性。其中附生苔藓植物176种,隶属于38科83属,依分布频率的大小,优势种分别为:树平藓(Homaliodendron flabellatum)、树形羽苔(Plagiochila arbuscula)、刀叶树平藓(H. scalpellifolium)、疏叶丝带藓(Floribundaria walkeri)和齿叶平藓(Neckera crenulata);附生维管束植物共记录67种,分属26科41属,其中蕨类植物占据着整个附生维管束植物群落的绝对优势,如假友水龙骨(Polypodiodes subamoena)、棕鳞瓦韦(Lepisorus scolopendrium)、鳞轴小膜盖蕨(Araiostegia perdurans)和尖齿拟水龙骨(Polypodiastrum argutum)分别是出现频率居前的物种。
     2、原生林及不同次生林附生苔藓植物在组成与分布上存在明显的差异。次生林中扇型藓类和粗平铺型苔类的分布频度显著地减少,但丛集型藓类的频度相应地增加。次生林(尤其是演替初期的旱冬瓜林)中附生苔藓植物的β多样性指数显著低于原生林。尽管次生群落在具体的生态功能上不及原生植被,不同演替序列的各森林群落之间所组成的多样化生境组合,为维系附生苔藓植物在该地区的多样性稳定起到了重要的作用。树平藓(Homaliodendron flabellatum)和粗仰叶垂藓(Sinskea phaea)分别是原生木果柯林和苔藓矮林的指示种;齿叶平藓(Neckera crenulata)是滇山杨林的指示种;野口青藓(Brachythecium noguchii)、尖叶拟蕨藓(Pterobryopsis acuminata)、多褶苔(Spruceanthus semirepandus)、平滑小壶藓(Tayloria subglabra)和细茎耳叶苔(Frullania bolanderi)是指示早冬瓜林的物种。
     3、在林缘-林内梯度上,边缘效应对树干0-2m范围内单位面积附生植物生物量、附生苔藓植物盖度和附生蕨类植物密度均存在显著的影响。林内外相对一致的大气相对湿度是该梯度上各样带间物种丰富度无显著差异的主要原因,但边缘效应改变了附生植物的物种组成,10m样带(代表边缘生境)同80m样带(代表森林内部)之间的物种相似性系数仅为0.506。丛集型(P<0.001)和交织型(P<0.001)的附生苔藓植物在林缘各样带间存在着显著的频度差异,其中前者多分布于森林边缘生境,而后者多分布于森林内部。
     4、苔藓、维管束植物和林冠有机残留物是本区山地森林中附生物质的主要组分,其中附生维管束植物和苔藓植物对总生物量的贡献率最大,分别达47.0%和43.4%。林冠附生植物及其枯死残留物的生物量与宿主径级之间存在呈幂函数关系,通过拟合回归方程并结合样地宿主的实测信息,推算得到本区附生物质的生物量为10.33t·ha-1。林冠层距地面10-22m的区间上集中着附生物80.6%的生物量。宿主调查单元的水平上,附生维管束植物和苔藓植物的生物量呈现出与林冠有机残留物显著相关的格局。
     5、宿主树皮持水力、树皮粗糙程度、林地内木质残体的储量和林冠遮蔽度是解释附生苔藓植物分布格局的关键因子。树皮持水力影响生活型为悬垂型的苔藓植物分布;树皮的粗糙程度影响丛集型苔藓植物的分布;林地内木质残体的储量影响该区交织型苔藓植物的分布;林冠遮蔽度影响树型苔藓植物的分布。在针对附生维管束植物群落的CCA排序分析发现:大部分附生植物在林冠生境的分布并未受养分条件的限制:假友水龙骨、鳞轴小膜盖蕨、曲鳞书带蕨(Vittaria plurisulcata)和节肢蕨(Arthromeris lehmanni)在林冠不同位置的分布表现出与林冠有机残留物互惠互利的关系。
     6、本区林内木质残体的存在对维系附生苔藓植物的物种多样性具有重要的意义,其储量不仅与交织型附生苔藓植物的分布相关,且96.4%的腐木生苔藓植物都能以兼性(Facultative)附生的形式出现在林冠生境上。分析表明:腐木生苔藓群落与附生苔藓群落之间互为传播源。
Epiphytes are organism that grows non-parasitically on its hosts, which constituent important component in tropical and subtropical forest ecosystems, and they perform many irreplaceable ecological functions such as facilitating water and nutrient cycling and sustaining biodiversity. The present study examined:1) epiphytic bryophytes' species composition and biodiversity among forests under different successional stages;2) the edge effect on epiphytes;3) the distribution of vascular epiphytes and their biomass along the canopy gradient; 4) the influence of ecological factors, including atmospheric relative humidity, host bark traits and etc, on the species composition and distribution pattern of epiphytes;5) how bryophytes from other substrate contribute to the biodiversity of epiphytic bryophyte community. The major results are as follows:
     1. This region habored rich flora of epiphytes. There were altogether 176 epiphytic bryophytes recored from 38 families and 83 genera, in which Homaliodendron flabellatum (Sm.) Fleisch, Plagiochila arbuscula (Brid. ex Lehm.) Lindenb., H. scalpellifolium (Mitt.) Fleisch., Floribundaria walkeri (Ren. et Card.) Broth, and Neckera crenulata Hedw. appeared to be dominante species in terms of number of quadrats occuppied. Totally 67 species of vascular epiphytes coming from 26 families and 41 genera were listed from the whole canopy, among which Polypodiodes subamoena (Clarke) Ching, Lepisorus scolopendrium (Ham. ex D. Don) Menhra et Bir, Araiostegia perdurans (Christ) Cop. and Polypodiastrum argutum (Wall. ex Hook.) Ching were dominant species by frequencies.
     2. The epiphytic bryophyte species composition between old-growth and secondary forests were rather different. Several life forms showed pronounced habitat preferences:the frequencies of fan [moss] and rough mat [liverwort] had decreased significantly in secondary forests, while the frequencies of turf [moss] had increased accordingly. Theβdiversity indices were dramatically reduced in secondary forests, especially in Secondary Alnus Forest, which is during the early stage of succession. Althought secondary forests were less capable of performing certain ecological functions as compared to old-growth ones, forests consisted from patches under different successional stages had created a combination of diversified habitats, which turned out to be rather crucial in sustaining epiphyte biodiversity. Sinskea phaea (Mitt.) Buck and Homaliodendron flabellatum were identified as indicator species for Old-growth dwarf mossy forest (ODMF) and Old-growth Lithocarpus forest (OLF) respectively. In addition, Neckera crenulata were indicative of Secondary Populus forest (SPF), while Brachythecium noguchii Tak., Pterobryopsis acuminate (Hook.) Fleisch., Spruceanthus semirepandus (Nees) Verd., Tayloria subglabra (Griff.) Mitt. and Frullania bolanderi Aust. were detected as indicator species for SAF.
     3. Edge effects had significantly influenced the biomass of epiphytes, coverage of epiphytic bryophytes, and density of epiphytic ferns along the edge-interior gradient. But edge effect had not affected the species richness of epiphytes across edge transects mainly due to uniformed atmospheric humidity in this region. However, edge effect had shaped the species compositon of epiphytes in transects near forest edge. The overall similarity coefficient between 10m and 80m transects were merely 0.506. Turf-life-formed (P<0.001) and weft-life-formed epiphyic bryophytes exhibited significant differences, where weft preferred habitats in forest interior and turf appeared more in transects near forest edge..
     4. Bryophytes, dead organic matter (DOM) and vascular plants were the major component of epiphytic material in the present study area, in which vascular plants (ca.47.0%) and bryophytes (ca.43.4%) contributed the largest proportion of the epiphytic biomass composition. There were "power function" relationships between epiphytes and their associated DOM with host DBH. It is then deduced the total biomass of epiphyte in OLF were 10.33 t·ha-1 from empirical regression functions. 80.6% of the total biomass was spatially aggregated in the section between 10m and 22m above ground. There were significant correlations between the biomass of DOM and the biomass of vascular plant and bryophytes, which well illustrated the significance of DOM in maintaining epiphyte biodiversity.
     5. The water-holding capacity influenced pendant in epiphytic bryophytes;the roughness of host barks affected the distribution pattern of turf; the the mass of woody debris (WD) positively correlated with the distribution of weft; and "canopy illumination index" regulated the distribution of dendroid. CCA ordination on the distribution of vascular epiphytes suggested that the majority epiphytes were not "nutrient-limited", and there were mutual benefical relationships between DOM and Polypodiodes subamoena, Araiostegia perdurans (Christ) Cop., Vitlaria plurisulcata Ching and Arthromeris lehmanni (Mett.) Ching.
     6) WD was especially important in sustaining the biodiversity of epiphytic bryophytes. The mass of WD clearly affected the distribution pattern of weft-life-fromed species in epiphytic bryophytes as whole, and nearly all epixylic species (ca.96.4%) were capable of transforming into facultative epiphytes, by dwelling on nearby host trees. Further quantitative analysis implied that the direction of bryophyte dispersal between these two substrate (WD and host trunk) was mutual.
引文
1. Acebey A., Graddtein S.R.& Kromer T.2003. Species richness and habitat diversification of bryophytes in submontane rain forest and fallows of Bolivia. Journal of Tropical Ecology, 19:9-18.
    2. Affeld K., Sullivan J., Worner S. P.& Didham R. K.2008. Can spatial variation in epiphyte diversity and community structure be predicted from sampling vascular epiphytes alone? Journal of Biogeography,35:2274-2288.
    3. Annasel V. J.& Parthasarathy N.2001 Diversity and distribution of herbaceous vascular epiphytes in a tropical evergreen forest at Varagalaiar, Western Ghats, India. Biodiversity and Conservation,10:317-329.
    4. Arseneau M. J., Sirois L.& Quellet J. P.1997. Effects of altitude and tree height on the distribution and biomass of fruticose arboreal lichens in an old growth balsam fir forest. Ecoscience,4:206-213.
    5. Baldwin L. K.& Bradfield G. E.2005. Bryophyte community differences between edge and interior environments in temperate rain-forest fragments of coastal British Columbia. Canadian Journal Forest Research,35:580-592.
    6. Barker M. G.& Pinard M. A.2001. Forest canopy research:sampling problems, and some solutions. Plant Ecology.153:23-38.
    7. Barkman J.J.1958. Phytosociology and ecology of aryptogamic epiphytes, van Gorcum & Comp. NV, Assen, The Netherlands.
    8. Barthlott W., Schmit-Neuerburg V., Nieder J.& Engwald S.2001. Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology,152:145-156.
    9. Bates J. W.1998. Is "life-form" a useful concept in bryophyte ecology? Oikos,82:223-237.
    10. Benavides A. M., Duque A. J., Duivenvoorden J. F., Vasco G. A.& Callejas R.2005. A first quantitative census of vascular epiphytes in rain forests of Colombian Amazonia. Biodiversity Conservation,14:739-758.
    11. Benzing D. H.1990. Vascular epiphytes. General biology and related biota. Cambridge University Press. Cambridge.
    12. Benzing D. H.1998. Vulnerabilities of tropical forest to climate change: the significance of resident epiphytes. Climate Change,39:519-540.
    13. Berg T.& Steinnes E.1997. Recent trends in atmospheric deposition of trace elements in Norway as evident from the 1995 moss survey. Science of the Total Environment,208: 197-206.
    14. Burns K. C.2007. Network properties of an epiphyte metacommunity. Journal of Ecology,95: 1142-1151.
    15. Cadenasso M. L.& Pickett T. A.2000. Linking forest edge structure to edge function: mediation of herbivore damage. Journal of Ecology,88:31-44.
    16. Chazdon R. L.2008. Beyond deforestation:Restoring forests and ecosystem services on degraded lands. Science,320:1458-1460.
    17. Chen J. Q., Franklin J. F., Spies T. A.1995. Growing-season microclimatic gradients from clearcut edges to old-growth Douglas-fir forests. Ecological Applications,5:74-86.
    18. Clement J. P.& Shaw D. C.1999. Crown structure and the distribution of epiphyte functional group biomass in old growth Pseudotsuga menziesii trees. EcoScience,6:243-254.
    19. Cooper-Ellis S.1998. Bryophytes in old-growth forests of western Massachusetts. Journal of the Torrey Botanical Society,125:117-132.
    20. Costa D. P.1999. Epiphytic bryophyte diversity in primary and secondary lowland rainforests in Southeastern Brazil. The Bryologist,102:320-326.
    21. Coxson D. S.& Nadkarni N. M.1995. Ecological roles of epiphytes in nutrient cycles of forest ecosystems. In "Forest Canopies" (Lowman M. D.& Nadkarni N. M. eds.), pp:495-535. Academic Press, California, USA.
    22. Coxson D. S.1991. Nutrient release from epiphytic bryophyte in tropical montane rain forest (Guadeloupe). Canadian Journal of Botany,69:2122-2129.
    23. Dufrene M.& Legendre P.,1997. Species assemblages and indicator species:the need for a flexible asymmetrical approach. Ecological Monographs,67:345-366.
    24. Edwards P. J.1982. Studies of mineral cycling in a montane rain forest in New Guinea. V. Rates of cycling in throughfall and litter fall. Journal of Ecology,70:807-827.
    25. Esseen P.& Renhorn K.1996. Epiphytic lichen biomass in managed and old growth boreal forests:effect of branch quality. Ecological Applications,6:228-238.
    26. Esseen P. A.& Renhorn K. E.1998. Edge effects on an epiphytic lichen in fragmented forests. Conservation Biology,12:1307-1317.
    27. Field T. S.& Dawson T. E.1998. Water sources used by Didymopanax pittieri at different life stages in a tropical cloud forest. Ecology,79:1448-1452.
    28. Flores-Palacios A.& Garcia-Franco J. G.2008. Habitat isolation changes the beta diversity of the vascular epiphyte community in lower montane forest, Veracruz, Mexico. Plant Ecology, 17:191-207.
    29. Freiberg M.& Freiberg E.2000. Epiphyte diversity and biomass in the canopy of lowland and montane forests in Ecuador. Journal of Tropical Ecology,16:673-688.
    30. Gehlhausen S.M., Schwartz M.W.& Augspurger C.K.2000. Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecology,147:21-35.
    31. Gentry A.H.& Dodson C.H.1987. Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden,74:205-233.
    32. Gimingham C. H.& Birse E. M.1957. Ecological studies on growth-form in bryophytes. Ⅰ. Correlations between growth-form and habitat. Journal of Ecology,45:533-545.
    33. Glime J. M.& Hong W. S. Bole Epiphytes on Three Conifer Species from Queen Charlotte Islands, Canada. The Bryologist,105:451-464.
    34. Goia I.& Schumacher R.2000. Researches on the bryophytes from rotten wood in the Ariesului mic basin. Contributii Botanice,1:91-99.
    35. Gombert S., Asta J.& Seaward M R. D.2004. Assessment of lichen diversity by index of atmospheric purity (IAP), index of human impact (IHI) and other environmental factors in an urban area (Grenoble, southeast France) Science of the Total Environment,324:183-199.
    36. Gonzalez-Mancebo J., Romaguera F., Losada-Lina A.& Suarez A.2004. Epiphytic bryophytes growing on Laurus azorica in three laurel forest areas in Tenerife (Canary Islands). Acta Oecologica,25:159-167.
    37. Gonzalez-Mancebo J., Losada-Lima A.& McAlister S.2003. Host specificity of epiphytic bryophyte communities of a Laurel forest on Tenerife (Canary Islands, SPFin). The Bryologist,106:383-394.
    38. Halle F.1990. A raft atop the rain forest. National Geographic,178:128-138.
    39. Heitz-Seifert U., Heitz P.& Guevara S.1996. Epiphyte vegetation and diversity on remnant trees after forest clearance in southern Veracruz, Mexico. Biological Conservation,75: 103-111.
    40. Hietz P., Wanek W.& Popp M.1999. Stable isotopic composition of carbon and nitrogen, and nitrogen content in vascular epiphytes along an altitudinal transect. Plant Cell Environment, 22:1435-1443.
    41. Hietz-Seifert U.,Hietz P.& Guevara S.1995. Epiphyte vegetation and diversity on remnant trees after forest clearance in southern Veracruz, Mexico. Biological Conservation,75: 103-111.
    42. Hilmo O.& Holien H.2002. Epiphytic lichen response to the edge environment in a boreal Picea abies forest in central Norway. The Bryologist,105:48-56.
    43. Hofstede R. G. M., Dickinson K. J. M.& Mark A. F.2001. Distribution, abundance and biomass of epiphyte-lianoid communities in a New Zealand lowland Nothofagus-podocarp temperate rain forest: tropical comparisons. Journal of Biogeography,28:1033-1049.
    44. H6fstede R. G.M., Wolf, J.& Benzing, D. H.1993. Epiphytic biomass and nutrient status of a Colombian upper Montane rain forest. Selbvana,14:37-45.
    45. Holschera D., Kohlera L., van Dijk A. I. J. M.& Bruijnzeel L. A.2004. The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. Journal of Hydrology,292:308-322.
    46. Holz 1.& Gradstein S. R.2005. Cryptogamic epiphytes in primary and recovering upper montane oak forests of Costa Rica - species richness, community composition and ecology. Plant Ecology,178:89-109.
    47. Humphrey J. W., Davey S., Peace A. J., Ferris R.& Harding K.2002. Lichens and bryophyte communities of planted and semi-natural forests in Britain: the influence of site type, stand structure and deadwood. Biological Conservation,170:165-180.
    48. Hylander K.2005. Aspect modifies the magnitude of edge effects on bryophyte growth in boreal forests. Journal of Applied Ecology,42,518-525.
    49. Ibisch P. L.1996. Neotropical epiphyte diversity-the Bolivian example, Ph.D Thesis 1-470. University of Bonn, Bonn, Alemania, Martina Galunder-Verlag.
    50. Ingram S. W.& Nadkarni N. M.1993. Compositional and distribution of epiphytic organic matter in a neotropical Cloud Forest, Costa Rica. Biotropica,25:370-383.
    51. Jarvis A.2000. Measuring and modeling the impact of land-use change in tropical hillsides: the role of cloud interception to epiphytes. Advances in Environmental Monitoring and Modeling,1:118-148.
    52. Jenik J.1973. Stilt-root and allied adaptation. Preslia,45:250-264.
    53. Johansson D.1974. Ecology of vascular epiphytes in West African rain forest. Acta Phytogeographica Suecica,59:1-136.
    54. Jonsson B.G.& Esseen P.1990. Treefall disturbance maintains high bryophyte diversity in a boreal spruce forest. Journal of Ecology,78:924-936.
    55. Kohler D. L.2003. Epiphyte biomass and its hydrological properties in old-growth and secondary montane cloud forest, Monteverde, Costa Rica. FIESTA Project Working Paper No.1.
    56. Krebs C. J.1999. Ecological Methodology. Menlo Park: Addison-Welsey Educational Publishers, pp:456-495.
    57. Kreft H., Koster N.& Kuper W.2004. Diversity and biogeography of vascular epiphytes in Western Amazonia, Yasum, Ecuador. Journal of Biogeography,31:1463-1476.
    58. Kress W. J.1986. The systematic distribution of vascular epiphytes:an update. Selbvana,9: 2-22.
    59. Kromer T.& Gradstein S. R.2003. Species richness of vascular epiphytes in two primary forests and fallows in the Bolivian Andes. Selbyana,24:190-195.
    60. Kromer T., Kessler M.& Gradstein S. R.2007. Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes:the importance of the understorey. Plant Ecology,189:261-278.
    61. Kruys N.& Jonsson B. G.1999. Fine woody debris is important for species richness on logs in managed boreal spruce forests for northern Sweden. Canadian Journal of Forest Research, 29:1295-1299.
    62. Laube S.& Zotz G.2003. Which abiotic factors limit vegetative growth in a vascular epiphyte? Functional Ecology,17:598-604.
    63. Laurance W. F., Laurance S. G., Ferreira L. V., Merona J. M. R., Gascon C.& Lovejoy T. E. 1997. Biomass collapse in Amazonian forest fragments. Science,278:1117-1118.
    64. Leimbeck R. M.& Balslev H.2001. Species richness and abundance of epiphytic Araceae on adjacent floodplain and upland forest in Amazonian Ecuador. Biodiversity and Conservation, 10:1579-1593.
    65. Liu W., Fox J. E. D.& Xu Z.2000. Leaf litter decomposition of canopy trees, bamboo and moss in a montane moist evergreen broad-leaved forest on Ailao Mountain, Yunnan, south-west China. Ecological Research,15:432-447.
    66. Liu W. Y., Fox J. E. D.& Xu Z. F.2002. Nutrient fluxes in bulk precipitation throughfall and stemflow in montane subtropical moist forest on Ailao Mountains in Yunnan, Southwest China. Journal of Tropical Ecology,18:1-23.
    67. Loppi S., Putorti E., Signorini C., Fommei S., Pirintsos S. A.& de Dominicis V.1998. A retrospective study using epiphytic lichens as biomonitors of air quality: 1980 and 1996 (Tuscany, central Italy). Acta Oecologica,19:405-408.
    68. Lowman M. D.2001. Plant in the forest canopy: some reflections on current research and future direction. Plant Ecology.153:39-50.
    69. Lugo A. E.& Scatena F. N.1992. Epiphytes and climate change research in the Caribbean: A proposal. Selbyana,13:123-130.
    70. Lyons B., Nadkarni N. M.& North M. P.2000. Spatial distribution and succession of epiphytes on Tsuga heterophylla (western hemlock) in an old-growth Douglas-fir forest. Canadian Journal of Botany,78:957-968.
    71. McAlister S.1995. Species interactions and substrate specificity among log-inhabiting bryophyte species. Ecology,76:2184-2195.
    72. Mitchell R. J.. Truscot A. M., Leith I. D.. Cape J. N., van Dijk N., Tang Y. S.. Fowler D.& Sutton M. A.2005. A study of the epiphytic communities of Atlantic oak woods along an atmospheric nitrogen deposition gradient. Journal of Ecology,10:1-10.
    73. Moffett M. W.2000. What's "up"? A critical look at the basic terms of canopy biology. Biotropica,32:569-596.
    74. Moore P. D.2003. Shady deal with lichens. Nature.421:591-592.
    75. Mucunguzi P.2008. Diversity and distribution of vascular epiphytes in the forest lower canopy in Kibale National Park, western Uganda. African Journal of of Ecology,45:120-125.
    76. Mull I.& Liat L. B.1970. Vertical zonation in a tropical rainforest in Malaysia. Science,196: 788-789.
    77. Murcia C.1995. Edge effects in fragmented forests: implications for conservation. Trends in Ecology and Evolution,10:58-62.
    78. Nadkarni N. M.1981. Canopy roots:Convergent evolution in rainforest nutrient cycles. Science,214:1023-1024.
    79. Nadkami N. M.1984. Epiphyte biomass and nutrient capital of a neotropical Elfin forest. Biotropica,16:249-256.
    80. Nadkarni N. M.1985. Biomass and nutrient capital of epiphyte in an Acer macrophyllum community of a temperate moist coniferous forest, Olympic Peninsula, Washington State. Canadian Journal of Botany,62:2223-2228.
    81. Nadkarni N. M.2000. Colonization of stripped branch surfaces by epiphytes in a lower montane cloud forest, monteverde, Costa Rica. Biotropica,32:358-363.
    82. Nadkarni N. M.2001.Forest canopies plant diversity. Encyclopedia of Biodiversity 3:27-40.
    83. Nadkarni N. M.& Matelson T. J.1989. Bird use of epiphyte resources in Neotropical trees. The Condor,91:891-907.
    84. Nadkarni N. M.& Matelson T. J.1992. Biomass and nutrient dynamics of epiphyte litterfall in a neotropical cloud forest, Costa Rica. Biotropica,24:24-30.
    85. Nadkarni N. M.& Solano R.2002. Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia,131:580-586.
    86. Nadkarni N. M., Schaefera D., Matelson J. T. Solano R.2004. Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica. Forest Ecology and Management,198:223-236.
    87. Nadkarni, N. M., Merwin M. C.& Nieder J.2001. Forest canopies:plant diversity. In Encyclopedia of Biodiversity, (Levin S. ed), pp:27-40. Academic Press, San Diego, California, U.S.A.
    88. Nieder J.& Zotz G.1998. Methods of analyzing the structure and dynamics of vascular epiphyte communities. Ecotropica,4:33-39.
    89. Nieder J., Engwald S., Klawun M.& Barthlott W.2000. Spatial distribution of vascular epiphytes (including hemi-epiphytes) in a lowland Amazonian rain forest (Surumoni Crane Plot) of Southern Venezuela. Biotropica,32:385-396.
    90. Nieder J., Prosper J.& Michaloud G.2001. Epiphytes and their contribution to canopy diversity. Plant Ecology,153:51-63.
    91. Norris D. H.1990. Bryophytes in perennially moist forests of Papua New Guinea: Ecological orientation and predictions of disturbance effects. Botanical Journal of the Linnean Society, 104:281-291.
    92. Odor P.& van Hees A. F. M.2004. Preferences of dead wood inhabiting bryophytes for decay stage, log size and habitat types in Hungarian beech forests. Journal of Biyology,26:79-95.
    93. Oksanen J., Kindt R., Legendre P.,O'Hara B., Simpson G. L., Solymos P., Stevens M. H.& Wagner H.2008. vegan: Community Ecology Package. R package version: 1.15-0. http://vegan.r-forge.r-project.org/
    94. Ozanne C. M. P., Anhuf D., Boulter S. L., Keller M., Kitching R. L., Korner C., Meinzer F. C., Mitchell A. W., Nakashizuka T.. SilvaDias P. L., Stork N. E., Wright S. J.& Yoshimura M. 2003. Biodiversity meets the atmosphere:a global view of forest canopies. Science,301: 183-186.
    95. Padmawathe R., Qureshi Q.& Rawat G. S.2004. Effects of selective logging on vascular epiphyte diversity in a moist lowland forest of Eastern Himalaya India. Biological Conservation,119:81-92.
    96. Parker G. G, Smith A. P.& Hogan K. P.1992. Access to the upper forest canopy with a large tower crane. BioScience,42:664-670.
    97. Pentecost A.1998. Some observation on the biomass and distribution of cryptogamic epiphytes in the upper montane forest of the Rwenzori Mountains, Uganda Global Ecology and Biogeography Letters,7:273-284.
    98. Perry D. R.1978. A method of access into the crowns of emergent and canopy trees. Biotropica,10:155-157.
    99. Peterken G.. F.1996. Natural Woodland: Ecology and conservation in northern temperate regions. Cambridge University Press, pp:20.
    100. Pike L.H., Tracy D. M., Sherwood M. A.& Nelson D.1972. Estimation of biomass and fixed nitrogen of epiphytes from old-growth Douglas-fir. In "Research on coniferous forest ecosystems: first year progress in the coniferous forest biome, US/IBP" (Franklin J. F., Dempster L. J.& Waring R. H. eds.), pp: 177-187. Pacific forest and range experiment station, Forest Service, U. S. D. A. Portland. OR.
    101. Pykala J.2003. Effects of new forestry practices on rare epiphytic macrolichens. Conservation Biology,18:831-838.
    102. Pypker T. G., Unsworth M. H.& Bond B. J.2006. The role of epiphytes in rainfall interception by forests in the Pacific Northwest. II. Field measurements at the branch and canopy scale. Canandian Journal of Forest Research.36:819-832.
    103. R Development Core Team.,2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
    104. Reimann C., Koller F., Kashulina G., Niskavaara H.& Englmaier P.2001. Influence of extreme pollution on the inorganic chemical composition of some plants. Environmental Pollution,115:239-52.
    105. Rhoades F. M.1995. Nonvascular epiphytes in forest canopies:worldwide distribution, abundance, and ecological roles. In "Forest Canopies" (Lowman M. D.& Nadkarni N. M. eds.), pp: 353-408. Academic Press, California, USA.
    106. Risser P. G. 1995. The status of science examining ecotones. Bioscience.45:318-326.
    107. Roberts D. W.2007. labdsv:Ordination and Multivariate Analysis for Ecology. R package version 1.3-1. http://ecology.msu.montana.edu/labdsv/R
    108. Romero C.1999. Reduced-impact logging effects on commercial non-vascular pendant epiphyte biomass in a tropical montane forest in Costa Rica, Forest Ecology and Management,118:117-125.
    109. Ruchty A., Rosso A. L.& McCune B.2001. Changes in epiphyte communities as the shrub, Acer circinatum, develops and ages. The Bryologist,104:274-281.
    110. Sala O. E., Chapin F. S.& Armesto J. J.2000. Biodiversity-global biodiversity scenarios for the year 2100. Science.287:1770-1774.
    111. Schofield W. B.1985. Introduction to bryology. New York, Macmillan Press.pp:316-319.
    112. Schuster R. M.1966. The Hepaticae and Anthocerotae of North America. New York, Columbia University Press.
    113. Shaw D. C.2004. Vertical organization of canopy biota. In "Forest Canopies" (Lowman M. D.& Rinker H. B. eds.2rd edition), pp: 73-101. Academic Press, California, USA.
    114. Sillet S. C., McCune B., Peck J. E.& Rambo T. R.2000. Four years of epiphyte colonization in Douglas-Fir forest canopies. The Biyologist,103:661-669.
    115. Sillett S. C.& Goslin M. N.1999. Distribution of epiphytic lichens in relation to remnant trees in a multiple-age Douglas-fir forest. Canadian Journal of Forest Research,29: 1204-1215.
    116. Sillett S. C.& Antoine M. E.2004. Lichens and bryophytes in forest canopies. In "Forest Canopies" (Lowman M. D.& Nadkarni N. M. eds.), pp:151-174. Academic Press, California, USA.
    117. Smith A. P.1973. Stratification of temperate and tropical forests. The American Naturalist, 107:671-683.
    118. Soderstrom L.1988. The occurrence of epixylic bryophytes and lichen species in an old natural and managed forest stand in northeast Sweden. Biological Conservation,45: 169-178.
    119. Songwe N. C., Fasehun F. E.& Okali D. U.1998. Litterfall and productivity in a tropical rain forest. Southern Bakundu Forest Reserve, Cameroon. Tropical Ecology,4:25-37.
    120. Still C.J., Foster P. N.& Schneider S. H.1999. Simulating the effects of climate change on tropical montane cloud forests. Nature,398:608-610.
    121. Stuntz S., Simon U.& Zotz G.2002. Rainforest air-conditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns. International Journal of Biometeorology,46:53-59.
    122. Szczepaniak K.& Biziuk M.2003. Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environmental Research,93:221-230.
    123. Tanner E.V.J.1980. Studies on the biomass and productivity in a series of montane rain forests in Jamaica. Journal of Ecology,68:573-588.
    124. Turner I. M., Tan H. T. W., Wee Y. C., Ibrahim A. B.& Corlett R. T.1994. A study of plant species extinction in Singapore:Lessons for the conservation of tropical biodiversity. Conservation Biology,83:705-712.
    125. Turner P. A. M.& Pharo E.2005. Influence of substrate type and forest age on bryophyte species distribution in Tasmanian mixed forest. The Biyologist,108:67-85.
    126. van Leerdam A., Zagt R. J.& Veneklaas E. J.1990. The distribution of epiphyte growth-forms in the canopy of a Colombian cloud-forest. Vegetatio,87:59-71.
    127. Vanderpoorten A., Engels P.& Sotiaux A.2004. Trends in diversity and abundance of obligate epiphytic bryophytes in a highly managed landscape. Ecography.11:567-576.
    128. Venklaas E.1991. Litterfall and nutrient fluxes in two montane tropical rain forests, Colombia Journal of Tropical Ecology,7:319-335.
    129. Wanek W.& Portl K.2005. Phyllosphere nitrogen relations:reciprocal transfer of nitrogen between epiphyllous liverworts and host plants in the understorey of a lowland tropical wet forest in Costa Rica. New Phytologist,166:577-588.
    130. Weathers K. C.1999. The importance of cloud and fog in the maintenance of ecosystems. Trends in Ecology and Evolution,14:214-215.
    131. Weathers K.C., Lovett G. M.& Likens G. E.2000. The effect of landscape features on deposition to Hunter Montain, Catskill Mountains, New York. Ecological Applications,10: 528-540.
    132. Wolf J. H. D.& Flamenco A.2003. Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. Journal ofBiogeography,30:1-9.
    133. Wolf J. H. D.1993a. Ecology of epiphytes and epiphyte communities in montane rain forest, Colombia. Ph.D Thesis Chapter 1 Elinkwijk B.V., Utrecht.
    134. Wolf J. H. D.1993b. Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the Northern Andes. Annual Missouri Botanic Gardens,84: 928-960.
    135. Wolf J. H. D.2003 Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico Journal ofBiogeography,30:1689-1707.
    136. Wolf J. H. D.2005. The response of epiphytes to anthropogenic disturbance of pine-oak forests in the highlands of Chiapas, Mexico. Forest Ecology and Management,212:376-393.
    137. Yang L., Liu W.& Ma W.2007. Woody debris stocks in different secondary and primary forests in the subtropical Ailao Mountains, SW China. Ecological research.23:805-812.
    138. Zartman C. E.& Nascimento H. E. M.2006. Are habitat-tracking metacommunities dispersal limited? Inferences from abundance-occupancy patterns of epiphylls in Amazonian forest fragments. Biological Conservation,127:46-54.
    139. Znotina V.2003. Epiphytic bryophytes and lichens in boreal and northern temperate forests. Proceeding of the Latvian Academy of Science,57:1-10.
    140. Zotz G.2005. Vascular epiphytes in the temperate zones - a review. Plant Ecology,176: 173-183.
    141. Zotz G.2007. Johansson revisited: the Spatial structure of epiphyte assemblages. Journal of Vegetation Science,18:123-130.
    142. Zotz G & Bader M. Y.2009. Epiphytic plants in a changing world-global:change effects on vascular and non-vascular epiphytes. In "Progress in Sotany"(Luttge U., Beyschlag W., Budel B.& Francis D. eds) 70:154-170.
    143. Zotz G.& Hietz P.2001. The ecophysiology of vascular epiphytes:current knowledge, open questions. Journal of Experimental Botany,52:2067-2078.
    144. Zotz G.& Schultz S.2008. The vascular epiphytes of a lowland forest in Panama-species composition and Spatial structure. Plant Ecology,195:131-141.
    145.曹同&郭水良.2000.长白山主要生态系统苔藓植物的多样性研究.生物多样性,8: 50-59.
    146.陈邦杰1963.中国藓类植物属志(上、下).科学出版社.北京
    147.高谦&曹同(主编)2000.云南植物志,第十七卷,(苔藓植物苔纲、角苔纲).北京,科学出版社
    148.郭水良&曹同.2000a.长白山地区森林生态系统树附生苔藓植物群落分布格局研究.植物生态学报,24:442-450.
    149.郭水良&曹同.2000b.长白山森林生态系统树附生苔藓植物分布与环境关系研究.生态学报,20:922-931.
    150.郭水良&韩士杰.1999.苔藓植物对森林生态界面指示作用的研究.应用生态学报,10:1-5.
    151.郭水良,韩士杰&曹同.1999.苔藓植物对森林生态界面指示作用的研究.应用生态学报,10:1-5.
    152.胡人亮.1987苔藓植物学[M]北京:高等教育出版社pp:292-302.
    153.贾渝&吴鹏程.1995.中国濒危苔藓植物的类型及其保护对策. 《生物多样性研究进展》(钱迎倩主编).北京:中国科学技术出版社.pp:215-220.
    154.李苏,刘文耀,王立松,杨国平&李达文.2007.云南哀牢山原生林及次生林群落附生地衣物种多样性与分布.生物多样性,15:445-455.
    155.刘冰,姜业芳,李菁,黄璜,陈功锡&陈军.2006.贵州梵净山森林树干附生尖叶拟船叶藓分布格局研究.云南植物研究,28:169-174.
    156.刘冰,李菁,田启建,陈功锡&陈军.2008.树干附生尖叶拟船叶藓性比和有性生殖的比例.广西植物,28:440-442.
    157.刘海岗&黄海良.2008.不同附生植物种类光合生理生态特性的研究.武汉植物研究,47:874-879.
    158.刘念.2003.中国姜科植物的多样性和保育.仲恺农业技术学院学报,16:7-11.
    159.刘蔚秋,戴小华,王永繁&雷纯义.2008.影响广东黑石顶树附生苔藓分布的环境因子.生态学报,28:1080-1088.
    160.刘文杰,唐建维&白坤甲.2001.西双版纳片断化望天树林小气候边缘效应比较研究.植物生态学报,25:616-622.
    161.刘文耀.2000.林冠附生物在森林生态系统中的作用.生杏学杂志,19:30-35.
    162.黎兴江(主编)2002.云南植物志,第十八卷,(苔藓植物:藓纲)[M].北京,科学出版社.
    163.黎兴江(主编)2005.云南植物志,第十九卷,(苔藓植物:藓纲)[M].北京,科学出版社.
    164.邱学忠&谢寿昌(主编).1998.哀牢山森林生态系统研究[M].昆明:云南科技出版社.
    165.孙儒泳,李博,诸葛阳&尚玉昌.1993.普通生态学.北京:高等教育出版社.
    166.汪庆,贺善安&吴鹏程.1999.苔藓植物的多样性研究.生物多样性,7:332-339.
    167.徐海清(指导老师:刘文耀).2005.哀牢山山地湿性常绿阔叶林附生物的组成与分布.中国科学院西双版纳热带植物园硕士论文,昆明.
    168.徐海清&刘文耀.2005.云南哀牢山徐家坝地区中山湿性长绿阔叶林附生植物的多样性和分布.生物多样性,13:137-147.
    169.徐晟翀,曹同,于晶,陈怡&宋国元.2006.上海市树附生苔藓植物生态位.生态学杂志,25:1338-1343.
    170.杨洁(指导老师:税玉民).2008.云南省黄连山云雾林附生维管植物多样性与空间分布格局.中国科学院昆明植物研究所硕士论文,昆明.
    171.游承侠.1983.哀牢山徐家坝地区的植被分类.于:吴征镒主编.云南哀牢山森林生态系统研究[M],pp:74-117.昆明:云南科技出版社.
    172.张晋昆(指导老师:徐文宣).1985.云南哀牢山徐家坝地区湿性常绿阔叶林苔藓植物的初步研究.云南大学硕士论文.昆明.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700