外源ABA提高甘蔗抗寒性的生理及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蔗是中国乃至世界第一大糖料作物,起源于热带及亚热带地区,属喜温作物。近年来,世界范围内极端天气频发,寒害、冻害增多,这给甘蔗生产造成了巨大的损失。在生产上,甘蔗防寒抗冻的措施主要有推广应用抗寒性好的品种、改善栽培管理措施及化学调控等。脱落酸(ABA)在植物的生长发育和抗逆胁迫生长中具有重要的作用。本研究采用土培和水培两种方式种植不同抗寒性的甘蔗品种GT28和YL6,在低温胁迫前12h用ABA进行处理,研究低温胁迫下ABA提高甘蔗抗寒性的生理生化机制,并利用荧光定量PCR技术、双向电泳和质谱分析技术,探讨ABA提高甘蔗抗寒性的分子机制。主要研究结果如下:
     1.低温胁迫下外源ABA对甘蔗幼苗生理生化特性的影响
     低温胁迫改变甘蔗幼苗叶片的生理生化特性。低温胁迫后,两个甘蔗品种幼苗叶片细胞膜透性增大;丙二醛(MDA)和脯氨酸含量增加;光合相关指标净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)降低,而胞间CO2(Gi)则表现相反,浓度升高;叶绿素荧光指标最大光能转化效率(Fv/Fm)、光化学猝灭系数(qP)和PSⅡ实际量子效率(ΦPSⅡ)均降低,而初始荧光(Fo)和非光化学猝灭系数(NPQ)则升高;内源激素赤霉素(GA)和玉米素(ZR)含量下降,ABA含量升高,导致ABA/GA、ABA/IAA和ABA/ZR比值增大。低温胁迫下甘蔗幼苗脯氨酸、ABA和GA含量及ABA/GA比值存在基因型差异,抗寒性强品种脯氨酸、ABA含量和ABA/GA比值较高,GA含量较低,这是引起两个甘蔗品种不同抗寒性的重要生理基础。ABA处理后,有效缓解了低温胁迫对甘蔗的不利效应,使两个甘蔗品种幼苗叶片细胞膜、Rn、光系统Ⅱ、叶绿素含量相对稳定,降低了膜脂过氧化产物MDA和GA的含量,提高了脯氨酸、ABA含量和ABA/GA比值,从而提高两个甘蔗品种幼苗的抗寒性。
     2.低温胁迫下ABA及其合成抑制剂对甘蔗幼苗抗氧化酶活性的影响
     低温胁迫下,甘蔗幼苗抗氧化酶的活性提高。ABA处理的甘蔗幼苗ABA含量提高,抗氧化保护酶超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)、过氧化物酶(POD)、谷胱甘肽还原酶(GR)的活性提高,活性氧自由基超氧阴离子(02-)、过氧化氢(H202)及膜脂过氧化产物MDA含量下降,而ABA合成抑制剂钨酸钠处理的结果则与之相反。这说明ABA及其合成抑制剂钨酸钠处理对低温胁迫下甘蔗幼苗抗氧化保护系统具有重要的调节作用。ABA对低温胁迫下甘蔗抗寒性的增强,可能与它对抗氧化保护系统的诱导密切相关。
     3.低温胁迫下ABA处理对甘蔗幼苗叶片蛋白质表达的影响
     低温胁迫影响甘蔗幼苗叶片蛋白质表达。利用蛋白质双向电泳分析,找出两个甘蔗品种低温胁迫和ABA处理下差异蛋白点48个,质谱成功鉴定其中29个。将它们按不同功能分为7类:①参与光合作用7个,占24.1%,包括光系统Ⅱ稳定因子、叶绿体a-b结合蛋白、铁氧还蛋白-NADP-氧化还原酶、核酮糖-1,5-二磷酸羧化/加氧酶小亚基、光系统Ⅰ反应中心亚基、23kD多肽光合系统Ⅱ、叶绿体Ptr-ToxA结合蛋白;②参与抵御胁迫保护酶7个,占24.1%,包括乙二醛酶、抗坏血酸过氧化物酶、硫氧还蛋白过氧化物酶、M型硫氧还蛋白、醌还原酶、超氧化物歧化酶、谷胱甘肽硫转移酶;③参与蛋白加工6个,占20.7%,包括20S蛋白酶体、30S核糖体蛋白、60S酸性核糖体蛋白、FKBP型肽基脯氨酰顺反异构酶.BRII-KD互作蛋白、肽基脯氨酰顺反异构酶;④参与基础代谢6个,占20.7%,包括谷草转氨酶、叶绿体醛缩酶、硫胺合成酶、磷酸丙糖异构酶、果糖-1,6-二磷酸醛缩酶前体、ATP合酶δ亚基;⑤参与转录调控1个,占3.4%,为真核翻译起始因子5A;⑥参与细胞生长和分裂1个,占3.4%,为生长素结合蛋白;⑦未知功能蛋白1个,占3.4%,为假定蛋白。对其中10个编码差异蛋白质的基因mRNA的表达进行了分析,发现它们在转录水平与蛋白水平上的变化不一,相关性不高。进一步分析已鉴定蛋白的功能发现,低温胁迫通过蛋白质表达主要影响甘蔗了的光合作用和抗氧化保护系统,这也与生理参数的变化相符。ABA处理后,经过一系列蛋白的加工和折叠作用,稳定了光合系统,加强了抗氧化保护作用,从而提高植物抗寒性。
     4.抗寒相关基因的克隆与表达分析
     利用RT-PCR和RACE技术克隆了5个抗寒相关基因,获得了甘蔗抗坏血酸过氧化物酶基因cDNA全长1045bp、甘蔗谷胱甘肽-S-转移酶基因cDNA全长912bp、甘蔗ABA胁迫蛋白基因cDNA全长753bp、甘蔗铁氧还蛋白-NADP还原酶基因cDNA全长为1335bp及甘蔗脱水素基因cDNA全长578bp。成功构建了这5个基因的原核表达载体,获得了它们在大肠杆菌中的融合表达蛋白。通过荧光定量PCR分析了SoAPX、 SoGST、SoASR、SoFNR和SoDHN的mRNA在转录水平的表达,结果表明两个甘蔗品种在对抗寒基因的表达调控上存在明显差异。SoAPX基因在抗寒性强的GT28中高表达时间长于抗寒性弱的YL6;SoGSr基因在抗寒性强的GT28中启动要快于抗寒性弱的YL6;SoASR基因在抗寒性强的GT28中表达上调,并在胁迫1d时表达量最高,而在抗寒性弱的YL6中表达则下调;SoDHN基因在抗寒性强的GT28中增幅明显,最大增幅达到1200.6%,而在抗寒性弱的YL6中最大增幅仅为38.9%。可见低温胁迫下甘蔗抗寒相关基因表达的差异直接影响了基因型间的抗寒性。ABA处理后,这5个基因在两个甘蔗品种中都不同程度地被诱导,使得ABA信号的转导作用增强,甘蔗自身的抗氧化防护能力提高,膜的结构相对稳定,从而提高甘蔗抗寒性。可见,ABA对抗寒基因的诱导和调控,是其提高甘蔗抗寒性的重要分子基础。
Sugarcane is the most important sugar crop in China and the world, which originated in tropical and subtropical areas and is a thermophilic crop. Extreme weather occurred frequently in worldwide that caused serious cold and/or frost damage in recent years, resulting in enormous losses in sugarcane production. The main measures to decrease the losses caused by cold and frost damage in commercial sugarcane production are selecting cold resistant sugarcane varieties, improving cultivation management and chemical regulation etc. ABA plays an important role in plant growth especially in adverse enviroment. In the present study, seedcane setts were grown in soil culture and solution culture to investigate the physiological and molecular mechanism of cold resistance enhanced by ABA application in sugarcane with strong cold resistant variety GT28and weak cold resistant variety YL6using real-time PCR,2-DE and MS. The main results were as follows.
     1. Effects of exogenous ABA on physiological and biochemical of sugacane settlings under cold stress
     Low temperature caused significant changes in the physiological and biochemical characteristics in leaves of sugarcane plants. The results showed that, under the cold stress condition, the plasma membrane permeability and contents of MDA and proline increased; for photosynthesis related parameters, Pn, Gs, Tr decreased while Ci increased; for fluorescent parameters, Fv/Fm, qP and ΦPSII increased, but Fo and NPQ decreased; for endogenous hormones, GA and ZR content decreased while ABA content increased, and the ratios of ABA/GA, ABA/IAA, ABA/ZR increased. Genotypic differences in response to the contents of proline, ABA and GA, and the ratio of ABA/GA exist between strong cold resistant variety GT28and weak cold resistant variety YL6under cold stress. The contents of proline and ABA and the ratio of ABA/GA are higher and the content of GA is lower in the strong clod resistant variety, which is the vital physiological basis that caused two sugarcane varieties with different cold resistance. It is concluded that the ABA application effectively alleviated the adverse effect of low temperature on the plant growth, which kept the relative stability of cell membrane, Pn, PS Ⅱ and chlorophyll, decreased the contents of MDA and GA, and increased the contents of proline and ABA and the ratio of ABA/GA, thereby increased the cold resistance of sugarcane settlings.
     2. Effect of ABA and its biosynthesis inhibitor on the activities of antioxidant enzymes in sugarcane settling under cold stress
     The activities of antioxidant enzymes were increased under cold stress. After ABA application, the content of ABA and the activities of SOD, APX, CAT, POD and GR increased in sugarcane settlings, while the contents of O2-, H2O2and MDA decreased. After tungstate (biosynthesis inhibitor of ABA) application, the result was contray. It is concluded that ABA and its biosynthesis inhibitor have an important regulatory role to the antioxidant protection system in sugarcane settling under cold stress. The cold resistance in sugarcane enhanced by ABA application under cold stress may be associated with the induction of antioxidant protection system.
     3. Effects of exogenous ABA on protein expression in sugacane settlings under cold stress
     The protein expression was changed in settling leaves under cold stress. The results of2-D gel electrophoresis analysis showed that48differential protein spots were detected under cold stress and cold stress plus ABA application conditions in two sugarcane varieties, and29of them were successfully identified through mass spectrometry. The29proteins were involved into seven categories. Seven proteins participate in photosynthesis, accounted for24.1%, including photosystem Ⅱ stability/assembly factor, chlorophyll a-b binding protein, ferredoxin-NADP-reductase, ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit, photosystem I reaction center subunit Ⅱ,23kD polypeptide of photosystem II and chloroplast-localized Ptr ToxA-binding protein;7proteins participate in defense responses, accounted for24.1%, including glyoxylase, ascorbate peroxidase, thioredoxin peroxidase, thioredoxin M-type, quinone reductase, super-oxide dismutase and glutathione S-transferase;6proteins participate in protein processing, accounted for20.7%, including20S proteasome,3OS ribosomal protein,60S acidic ribosomal protein, FKBP type peptidyl-prolyl cis-trans isomerase, BRII-KD interacting protein and peptidyl-prolyl cis-trans isomerase;6proteins participate in metabolism, accounted for20.7%, including aspartate aminotransferase, chloroplastic aldolase, thiamine biosynthesis, triosephosphate isomerase, fructose1,6-bisphosphate aldolase precursor and ATP synthase delta chain;1protein participates in transcription, accounted for3.4%, which is eukaryotic translation initiation factor5A;1protein participates in cell growth an division, accounted for3.4%, which is an auxin-binding protein; and1protein is unclassified, accounted for3.4%, which is a hypothetical protein. Gene expression analysis of10differential proteins done by quantitative real time PCR showed that the mRNA level was not correlated well with the protein level. It was found that cold stress mainly affected photosynthesis and antioxidant protection system through changes in protein expressions in sugarcane, which is consistent with result of physiological analysis. After ABA treatment, stabilized the photo synthetic system and strengthened the role of antioxidant protection through a series of protein processing and folding, thereby increased the cold resistance of sugarcane settlings.
     4. Cloning and expression analysis of cold resisitance genes
     Five cold resistance genes were cloned by RT-PCR and RACE. A full length of SoAPX gene was obtained and the cDNA was1045bp. A full length of SoGST gene was obtained and the cDNA was912bp. A full length of SoASR gene was obtained and the cDNA was753bp. A full length of SoFNR gene was obtained and the cDNA was1335bp. A full length of SoDHN gene was obtained and the cDNA was578bp. All the genes were expressed in Prokaryon and transformed into E. coli and expressed successfully. The mRNA expressions of SoAPX, SoGST, SoASR, SoFNR and SoDHN were analyzed at the transcriptional level. The results showed that, low temperature caused significant differences in gene expression and regulation of cold resistance in two sugarcane plants. SoAPX gene is highly expressed in strong cold resistant variety GT28longer than weak cold resistant variety YL6, SoGST gene is started in stong cold resistant variety GT28faster than weak cold resistant variety YL6, SoASR gene is up-regulated in stong cold resistant variety GT28and the highest expression level in1day after cold stress, but it is down-regulated in weak resistant variety YL6, SoDHN gene significantly increased in stong cold resistant variety GT28and the highest increase reaches by1200.6%, while the highest increase in weak resistant variety YL6is only38.9%. It indicated that, the differential expression of sugarcane cold-related gene is directly impacted in the cold resistant genotypes. After ABA pretreatment, the expressions of the five genes were induced in different extent, which refleted that the role of ABA signal transdution was enhanced, the capacity of antioxidant defense was increased, the structure of membrane was relatively stable, thereby increasing the cold resistance of sugarcane settlings. The induction and regulation of cold resistance related genes by ABA application is an important molecular basis to improve the cold resistance in sugarcane.
引文
[1]艾琳,张萍,胡成志.低温胁迫对葡萄根系膜系统和可溶性糖及脯氨酸含量的影响.新疆农业大学学报,2004,27(4):47-50
    [2]白洁,蒋卫杰,余宏军,等.外源ABA、Put和BR对亚适温条件下番茄幼苗叶片保护酶活性的影响.中国农学通报,2007,23(6):317-320
    [3]鲍思伟.自然降温过程中云锦杜鹃抗寒适应性研究.福建林业科技,2005,32(2):13
    [4]曾乃燕,何军贤,赵文,等.低温胁迫期间水稻光合膜色素与蛋白水平的变化.西北植物学报,2000,20(1):8-14
    [5]陈建勋,王晓峰.植物生理学实验指导(第二版).广州:华南理工大学出版社,2006.72-73
    [6]陈儒钢,巩振辉,逯明辉,等.植物抗寒基因工程研究进展.西北植物学报,2008,28(6):1274-1280
    [7]陈少裕.甘蔗低温胁迫与膜脂过氧化.福建农学院学报,1992,21(2):22-26
    [8]陈香玲,李杨瑞,杨丽涛,等.低温胁迫下甘蔗抗寒相关基因的cDNA-SCOT差异显示.生物技术通报,2010,(8):120-124
    [9]陈晓,谭玮,冯燕,等.水稻cFBA和菠菜cpTPI串联基因在鱼腥藻7120中的表达及其对光合作用的影响.上海师范大学学报(自然科学版),2006,35(4):75-81
    [10]邓化冰,史建成,肖应辉,等.开花期低温胁迫对水稻剑叶保护酶活性和膜透性的影响.湖南农业大学学报,2011,37(6):581-585
    [11]邓江明,简令成.植物抗冻机理研究新进展:抗冻基因表达及其功能.植物学通报,2001,18(5):521-530
    [12]邓雪柯,乔代蓉,于昕,等.低温胁迫对紫花首蓓生理特性影响的研究.四川大学学报(自然科学版),2005,42(1):190-194
    [13]邓展云,刘海斌,张革民,等.2007/2008年榨季广西甘蔗霜冻发生危害规律的调查.中国糖料,2009,(1):47-50
    [14]丁国华,秦智伟,周秀艳.植物低温诱导蛋白和诱导基因研究新进展.中国农学通报,2003,19(6):33-39
    [15]樊怀福,蒋卫杰,郭世荣.低温对番茄幼苗植株生长和叶片光合作用的影响.江苏农业科学,2005,(3):89-91
    [16]苟萍,索菲娅,马东建.高等植物铁氧还蛋白的结构与功能.生命的化学,2007,27(1):51-55
    [17]顾志敏,王建飞,黄骥,等.水稻胞质糖体蛋白基因OsRPS7的克隆与序列分析.遗传,2004,26(2):181-185
    [18]郭凤领,卢育华,李宝光.外源ABA对番茄苗期和开花期抗冷特性的影响.山东农业大学学报(自然科学版),2000,31(4):357-362
    [19]郭绍霞,张燕,张玉刚,等.赤霉素和青霉素对芍药切花衰老的影响.园艺园林科学,2008.24(2): 314-319
    [20]郭文琦,陈兵林,刘瑞显,等.施氮量对花铃期短期渍水棉花叶片抗氧化酶活性和内源激素含量的影响.应用生态学报,2010,21(1):53-60
    [21]郭延平,张良诚,洪双松,等.温州蜜柑叶片气体交换和叶绿素荧光对低温的响应.植物生理学报,2000,26(2):88-94
    [22]韩瑞宏,张亚光,田华,等.干旱胁迫下紫花苜蓿叶片几种内源激素的变化.华北农学报,2008,23(3):81-84
    [23]郝建军,刘延吉.植物生理学实验技术(第二版).沈阳:辽宁科学技术出版社,2001.187-189
    [24]和红云,薛琳,田丽萍,等.低温胁迫对甜瓜幼苗叶绿素含量及荧光参数的影响.北方园艺,2008,(4):121-127
    [25]胡廷章,周大祥,罗凯.植物谷胱甘肽转移酶的结构与功能及其基因表达.植物生理学通讯,2007,43(1):195-200
    [26]黄涛,陈大洲,夏凯,等.抗冷与不抗冷水稻在低温期间叶片ABA与GA1水平变化的差异.1998,华北农学报,13(4):56-60
    [27]黄有总,徐建云,陈超君,等.几个甘蔗新品种的抗旱性和抗寒性比较研究.广西农业生物科学,2002,21(2):101-104
    [28]黄宇,王倩,毕肠,等.外源ABA对低温下雷公藤幼苗的生理响应.福建林学院学报,2011,31(3):198-202
    [29]简令成,卢存福,李积宏.适宜低温锻炼提高冷敏感植物玉米和番茄的抗冷性及其生理基础.作物学报,2005,31(8):971-976
    [30]简令成,吴素萱.植物抗寒性的细胞学研究一小麦越冬过程中细胞结构的变化.植物学报,1965,13:1-15
    [31]江玲,侯名语,刘世家,等.水稻种了低温萌发生理机制的初步研究.中国农业科学,2005,38(3):480-485
    [32]康云艳,郭世荣,段九菊.新型植物激素与蔬菜作物抗逆性关系研究进展.中国蔬菜,2007,(5):39-42
    [33]李合生.现代植物生理学.北京:高等教育出版社,2006.193-242
    [34]李晶,阎秀峰,祖元刚.低温胁迫下红松幼苗活性氧的产生及保护酶的变化.植物学报,2000,42(2):148-152
    [35]李茂枝.浅谈甘蔗抗寒性及防寒措施.中国糖料,1998,(2):42-45
    [36]李素丽,杨丽涛,李志刚,等.不同冷敏感型甘蔗茎尖Ca2+和Ca2+-ATP酶活性对低温的响应.中国农业大学学报,2011,16(2):14-21
    [37]李素丽.不同冷敏感型甘蔗品种对低温的响应机制[博士学位论文].南宁:广西大学,2011.
    [38]李晓锋,侯瑞贤,朱玉英,等.高温胁迫对大白菜叶绿素荧光特性的影响.农业工程学报,2009,25(1):49-54
    [39]李杨瑞,方锋学,吴建明,等.2010/2011榨季广西甘蔗生产冻害调查及防御对策.南方农业学报,2011,42(1):37-42
    [40]李杨瑞,杨丽涛.20世纪90年代以来我国甘蔗产业和科技的新发展.西南农业学报,2009,22(5):1469-1476
    [41]李杨瑞主编.现代甘蔗学.北京:中国农业出版社,2010.409-421
    [42]李玉梅,李建英,王根林,等.水分胁迫对大豆幼苗叶片内源激素的影响.大豆科学,2007,26(4):627-629,636
    [43]李源,王赞,刘贵波,等.干旱胁迫下胶质苜蓿内源激素及解剖结构的研究.华北农学报,2010,25(6):211-216
    [44]李月梅,马莹莹,杨英良,等.低温对玉米光合和呼吸作用的影响及与冷害关系的研究.黑龙江省农业科学,1991,6(1):4-8
    [45]李长宁,Srivastava M K,农倩,等.水分胁迫下外源ABA提高甘蔗抗寒性的作用机制.作物学报,2010,36(5):863-870
    [46]李宗霆,周燮.植物激素及其免疫检测技术.南京:江苏科学技术出版社,1996.
    [47]林伟,周娜娜,王刚,等.铅迫胁下黄瓜幼苗期叶片内源激素的变化.生态环境,2007,16(5):1446-1448
    [48]凌宇,王宏芝,李瑞芬,等.eIF-5A的功能及其在植物改良中的应用.自然科学进展,2007,(3):19-27
    [49]刘德兵,魏军亚,崔百明,等.脱落酸对香蕉幼苗抗寒性的影响.热带作物学报,2007,28(2):1-4
    [50]刘光玲.低温胁迫对甘蔗幼苗根系生长和生理生化代谢的影响[硕士学位论文].南宁:广西大学,2011.
    [51]刘汉梅.玉米抗寒基因的克隆与表达的研究[硕士学位论文].成都:四川农业大学,2004.
    [52]刘慧民,王昆,李奇石,等.五叶地锦低温处理条件下与抗寒相关的部分生理生化指标的变化规律.东北林业大学学报,2003,31(4):74
    [53]刘晓静,郭凌飞,李鸣,等.水杨酸对低温胁迫下甘蔗苗期抗寒性的效应.中国农学通报,2011,27(5):265-268
    [54]刘雅萍,张希,葛安静,等.草莓ABA结合蛋白基因的克隆及序列分析.中国农学通报,2011,27(10):260-265
    [55]刘祖棋,林定波ABA/Gas调控特异蛋白质与柑桔的抗寒性.园艺学报,1993 20:335-340
    [56]罗新义,冯昌军,李红,等.低温胁迫下肇东首猎SOD、脯氨酸活性变化初报.中国草地,2004,26(4):79-81
    [57]马德华,庞金安.黄瓜对不同温度逆境的抗性研究.中国农业科学,1999,32(5):28-35
    [58]马霓,刘丹,张春雷,等.植物生长调节剂对油菜生长及冻害后光合作用和产量的调控效应.作物学报,2009,35(7):1336-1343
    [59]马长乐,王萍萍,曹子谊,等.盐地碱蓬(Suaeda salsa) APX基因的克隆及盐胁迫下的表达.植 物生理与分子生物学学报,2002,28(4):261-266
    [60]潘瑞炽.植物生理学.第4版.北京:高等教育出版社,2001.192-195
    [61]彭筱娜,易自力,蒋建雄.植物抗寒性研究进展.生物技术通报,2007,(4):15-18
    [62]戚元成,张小强,刘卫群,等.过量表达谷胱甘肽转移酶基因对转基因拟南芥抗旱能力的影响.植物生理学通讯,2008,44(2):268-270
    [63]曲凌慧,林志强,车永梅,等.三个葡萄品种叶片中激素变化与抗寒性关系的研究.北方园艺,2009,(6):1-5
    [64]饶进.斑茅FK506结合蛋白酶基因的分离克隆及其表达研究[硕十学位论文].福州:福建农林大学,2007.
    [65]任旭琴,陈伯清.低温下辣椒幼苗光合特性的初步研究.江苏农业科学,2006,(6):243-244
    [66]师晨娟,刘勇,荆涛.植物激素抗逆性研究进展.世界林业研究,2006,5(19):21-26
    [67]孙富,杨丽涛,谢晓娜,等.低温胁迫对不同抗寒性甘蔗品种幼苗叶绿体生理代谢的影响.作物学报,2012,38(4):1-8
    [68]孙富.低温胁迫对甘蔗叶绿体生理代谢及其蛋白质表达的影响[硕士学位论文].南宁:广西大学,2011.
    [69]孙钦秒,冷静,李良璧,匡廷云.高等植物光系统Ⅱ捕光色素蛋白复合体结构与功能研究的新进展.植物学通报,2000,17(4):289-301
    [70]孙学成.钼提高冬小麦抗寒力的生理基础和分子机制[博士学位论文].武汉:华中农业大学,2006.
    [71]谭宗琨,欧钊荣,何燕.广西蔗糖发展主要气象灾害分析及蔗糖产业优化布局的研究.甘蔗糖业,2006,(1):17-21
    [72]唐海明,徐一兰,陈金湘,等.植物脱落酸、多胺和乙烯与逆境的关系.作物研究,2007,21(5):501-505
    [73]王爱国,邵从本,罗广华,等.大豆下胚轴线粒体的衰老与膜脂的过氧化作用.植物生理学报,1988,14(3):269
    [74]王彩娟,李志强,王晓琳,等.室外盆栽条件下盐胁迫对甜高粱光系统Ⅱ活性的影响.作物学报,2011,37(11):2085-2093
    [75]王超,杨传平,王玉成.白桦抗坏血酸过氧化物酶(APX)基因克隆及表达分析.东北林业大学学报,2009,37(3):79-82
    [76]王成章,潘晓建,张春梅,等.外源ABA对不同秋眠型苜蓿品种植物激素含量的影响.草业学报,2006,15(2):30-36
    [77]王国莉,郭振飞.低温对水稻不同耐冷品种幼苗光合速率和叶绿素荧光参数的影响.中国水稻科学,2005,(4):93-95
    [78]王磊,赵军,范云六.玉米Cat1基因顺式元件ABRE2结合蛋白ABP9的基因克隆及功能分析。科 学通报,2002,47(15):167-171
    [79]王伟青,李滨,孟庆伟,等.番茄类囊体膜抗坏血酸过氧化物酶基因TtAPX序列.植物生理与分子生物学学报,2002,28(6):491-492
    [80]王兴,于晶,杨阳,等.低温条件下不同抗寒性冬小麦内源激素的变化.麦类作物学报,2009,29(5):827-831
    [81]王翼川,李志军,徐雅丽,等.低温胁迫对海岛棉幼苗生理生化特性的影响.中国棉花,2001,22(5):13-14
    [82]吴楚,王政权.脱落酸及其类似物与植物抗寒性之间的关系.植物生理学通讯,2000,36(6):562-567
    [83]吴建明,李杨瑞,王爱勤,等.赤霉素处理对甘蔗节间伸长及产质量的影响.中国糖料,2010,(4):24-26
    [84]吴能表,钟永达,肖文娟.零上低温对甘蓝幼苗逆境指标的动态影响.西南师范大学学报(自然科学版),2005,30(3):525-528
    [85]吴忠义,陈伽,朱美君.脱落酸(ABA)受体的研究进展.植物学通报,1998,15(4):36-40
    [86]席景会.低温胁迫下拟南芥差异蛋白质组学研究[博士学位论文].长春:吉林大学,2007.
    [87]徐红霞,陈俊伟,谢鸣.脱水素在植物低温胁迫响应中的作用.西北植物学报,2009,29(1):199-206
    [88]徐田军,董志强,兰宏亮,等.低温胁迫下聚糖萘合剂对玉米幼苗光合作用和抗氧化酶活性的影响.作物学报,2012,38(2):352-359
    [89]许树成,丁海东,鲁锐,等.ABA在植物细胞抗氧化防护过程中的作用.中国农业大学学报,2008,13(2):11-19
    [90]许树成,祝雪兰,张丽.蛋白激酶组在玉米叶片ABA和H2O2诱导抗氧化防护中的作用.植物分类与资源学报,2011,33(3):275-286
    [91]玄祖迎.滇杨对增强紫外辐射、干旱和喷施脱落酸的生态生理响应[硕士学位论文].北京:中国科学院,2007
    [92]严寒静,谈锋.栀子对自然降温的适应性研究.植物研究,2006,26(2):238-241
    [93]严寒静,谈锋.自然降温过程中扼了叶片脱落酸,赤霉素与低温半致死温度的关系.西南师范大学学报(自然科学版),2001,26(2):195-199
    [94]严顺平.水稻响应盐胁迫和低温胁迫的蛋白质组研究[博士学位论文].上海:中国科学院上海生命科学研究院,2006
    [95]杨德浩,杨敏生,王进茂,等.欧洲白桦苗期低温胁迫时膜系统的变化.东北林业大学学报,2004,32(6):13-15
    [96]杨丽涛,张保青,朱秋珍,等.应用飞机大面积喷施抗旱型甘蔗增糖增产剂的效果研究.热带作物学报,2011,32(2):189-197
    [97]杨玲,唐建军.水稻干胚磷脂酞甘油的饱和度与抗冷性的关系.浙江大学学报,2000,34(6): 624-627
    [98]杨荣仲,李杨瑞,王维赞,等.干旱霜冻条件下甘蔗耐寒性评价分析.西南农业学报,2011,24(1):52-57
    [99]杨盛昌,谢潮添,张平,等.低温胁迫下弓葵幼苗膜脂过氧化及保护酶活性的变化.园艺学报,2003,30(1):104-106
    [100]杨小春.低温弱光对西葫芦幼苗叶绿素荧光参数的影响.甘肃农业科技,2006,(12):10-12
    [101]于晶,张林,苍晶,等.外源ABA对寒地冬小麦东农冬麦1号幼苗生长及抗冷性的影响.麦类作物学报,2008,28(5):883-887
    [102]郁继华,舒英杰,吕军芬,等.低温弱光对茄子幼苗光合特性的影响.西北植物学报,2004,24(8):831-836
    [103]张阿英.MAPK在ABA诱导的玉米叶片抗氧化防护中的作用[博士学位论文].南京:南京农业大学,2006.
    [104]张保青,杨丽涛,李杨瑞.自然条件下甘蔗品种抗寒生理生化特性的比较.作物学报,2011,37(3):496-505
    [105]张国民,王连敏,王立志,等.苗期低温对玉米叶绿素含量及生长发育的影响.黑龙江农业科学,2000,(1):10-12
    [106]张明生,谢波,谈峰.水分胁迫下甘薯内源激素的变化与品种抗旱性的关系.中国农业科学,2002,35(5):498-501
    [107]张木清,陈如凯,吕建林,等.甘蔗低温胁迫对叶绿素a荧光诱导动力学的影响.福建农业大学学报,1999,28(1):1-7
    [108]张小英.不同苜蓿品种对秋冬低温条件的生理适应性研究[硕十学位论文].呼和浩特:内蒙古农业大学,2008.
    [109]张雪峰.低温胁迫对玉米种子萌发过程中内源激素含量变化的影响.沈阳农业大学学报,2011,42(2):147-151
    [110]张以顺,黄霞,陈云凤.植物生理学实验教程.北京:高等教育出版社,2009.128-129
    [111]张勇,汤浩茹,罗娅,等.低温锻炼对草莓组培苗抗寒性及抗氧化酶活性的影响.中国农学通报,2008,24(1):325-329
    [112]赵世杰,刘华山,董新纯.植物生理学实验指导.北京:中国农业科技出版社,1998.120-164
    [113]郑东虎,葛晓光,张宪政,等.冷胁迫对番茄膜脂过氧化与抗氧化酶系统的影响.北方园艺,2003,(4):46-47
    [114]钟新榕.外源ABA及GA对NaCl胁迫下黄瓜幼苗的影响[硕士学位论文].兰州:甘肃农业大学,2005.
    [115]周碧燕,郭振飞.ABA及其合成抑制剂对柱花草抗冷性及抗氧化酶活性的影响.草业学报,2005,14(6):94-96
    [116]周玉萍,郑燕玲,田长恩,等.脱落酸、多效唑和油菜素内酯对低温期间香蕉过氧化物酶和电 导率的影响.广西植物,2002,22(5):444-448
    [117]朱秋珍.甘蔗抗寒性鉴定方法研究.广西农业科学,1995,(6):264-265
    [118]Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabdopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression. Plant Cell,1997, (9):1859-1868
    [119]Allagulova C R, Gimalov F R, Shakirova F M, et al. The plant dehydrins:structure and putative functions. Biochemistry,2003,68(9):945-951
    [120]Allen D J, Ort D R. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science,2001,6(1):36-42
    [121]Anderson M D, Prasad T K, Martin B A, et al. Differential gene expression in chilling-acclimated maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance. Plant Physiol, 1994,105:331-339
    [122]Apel K, Hirt H. Reactive oxygen species:Metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol,2004,55:373-379
    [123]Ariizumi T, Kishitani S, Inatsugi R, et al. An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell Physiol,2002,43(7):751-758
    [124]Arnon D I, Whatley F R. Factors influencing oxygen production by illuminated chloroplast fragments. Archiv Biochem,1949,23(1):141-156
    [125]Arnon D I. The discovery of ferredoxin:the photosynthetic path. Trends Biochem Sci,1988,13(4): 30-33
    [126]Aro E M, Virgin I, Anderson B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta,1993,1143(2):113-125
    [127]Artus N N, Uemura M. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15-a gene affects both chloroplast and protoplast freeing tolerance. Proc Natl Acad Sci,1996,93: 13404-13409
    [128]Badawi G H, Kawano N, Yamauchi Y, et al. Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant,2004,121(2): 231-238
    [129]Bae E K, Lee H, Lee J S, et al. Differential expression of a poplar SK2-type dehydrin gene in response to various stresses. BMB Rep,2009,42(7):439-443
    [130]Bae M S, Cho E J, Choi E Y, et al. Analysis of'the Arabidopsis nuclear proteome and its response to cold stress. Plant J,2003,36 (5):652-663
    [131]Bellaire B A, Carmody J, Braud J, et al. Involvement of abscisic acid-dependent and independent pathways in the upregulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue. Free Rad Res,2000,33(5):531-545
    [132]Berry J A, Biorkman O. Photosynthetic response and adaptation to temperature in higher plants. Rev Plant Physio,1980,31:491-543
    [133]Bertrand A, Castonguay Y. Plant adaptations to over wintering stresses and implications of climate change. Canadian Journal of Botanica,2003,81:1145-1152
    [134]Bishopp A, Mahonen A P, Helariutta Y. Signs of change:hormone receptors that regulate plant development. Development,2006,133:1857-1869
    [135]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein dyebinding. Analy Biochem,1976,72:248-254
    [136]Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol,1977,59:411-416
    [137]Breusegem F V, Slooten L, Stassart J M, et al. Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress. J Exp Bot,1999a,50(330):71-78
    [138]Breusegem F V, Slooten L, Stassart J M, et al. Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol,1999b,40(5):515-523
    [139]Cakir B, Agasse A, Gaillard C, et al. A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell,2003,15(9):2165-2180
    [140]Cater J V, Brenner M L. Plant growth regulators and. low temperature stress, Encyclopedia of Plant Physiol,1985,11:418-443
    [141]Chance B, Maehly A C. Assay of catalase and peroxidase. Methods Enzymol,1955,12:764-775
    [142]Chen T H H, Gusta L V. Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol,1983,73:71-74
    [143]Cheng S H, Willmann M R, Chen H C, et al. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinases gene family. Plant Physiology,2002,129:469-485
    [144]Christiansen M N. Stimulation of Solute Loss from Radicles of Gossypium hirsutum L. by Chilling, Anaerobiosis and Low pH. Plant Physiol,1970,46:53-56.
    [145]Christine H F, Helene V, Leonardo D G, et al. Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures:review. Plant Physiology and Biochemistry,2002,40(6):659-668
    [146]Close T J. Dehydrins:A commonalty in the response of plants to dehydration and low temperature. Physl Plant,1997,100(2):291-296
    [147]Close T J. Dehydrins:emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant,1996,97(4):795-803
    [148]Cui S, Huang F, Wang J, et al. A proteomic analysis of cold stress responses in rice seedlings. Proteomics,2005,5(12):3162-3172
    [149]Cushman J C, Bohnert H J. Genomic approaches to plant stress tolerance. Curr Opin Plant Biol,2000, 3(2):117-124
    [150]Cutler A J, Krochko J E. Formation and breakdown of ABA. Trends in Plant Science,1999,4: 472-478
    [151]Danyluk J, Perron A, Houde M, et al. Accumulat ion of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimati on of wheat. Plant Cell,1998,10(4):623-638
    [152]Davidson W S, Jonas A, Clayton D F, et al. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. Biol Chem,1998,273(16):9443-9449
    [153]Degand H, Faber A M, Dauchot N, et al. Proteomic analysis of chicory root identifies proteins typically involved in cold acclimation. Proteomics,2009,9(10):2903-2907
    [154]Deng Z, Pang Y, Kong W, et al. A novel ABA-dependent dehydrin ERD10 gene from Brassica napus. DNA Seq,2005,16(1):28-35
    [155]Depeille P, Cug P, May S, et al. Glutathione S-transferase M1 and multidrug resistance protein 1 act in synergy to protect melanoma cells from vincristine effects. Mol Pharmacol,2004,65(4):897-905
    [156]Doczi R, Brader G, Pettko-Szandtner A, et al. The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell,2007, (19):3266-3279
    [157]Donald E R, Kathryn E K. How gibberellin regulates plant growth and development:a moleeuler genetic analysis of gibberellin signaling. Annu Rev Plant Mol Biol,2001,52:67-88
    [158]Du Y C, Nose A, Wasano K. Effects of chilling temperature on photosynthetic rates, photosynthetic enzyme activities and metabolite levels in leaves of three sugarcane species. Plant Cell Environ,1999, 22:317-324
    [159]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology,1982,33:317-334
    [160]Forzani C, Carreri A, de la Fuente van Bentem S, et al. The Arabidopsis protein kinase Pto-interacting 1-4 is a common target of the oxidative signal-inducible 1 and mitogen-activated protein kinases. FEBS Joural,2011,278(7):1126-1136
    [161]Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell,2002,14:1675-1690
    [162]Foyer C H, Noctor G Redox homeostasis and antioxidant signaling:A metabolic interface between stress perception and physiological responses. Plant Cell,2005,17:1866-1875
    [163]Fridovichi I. The biology of oxygen radicals. Science,1978,201:875-880
    [164]Galiba G, Kerepesi I, Vagujfalvi A, et al. Mapping of genes involved in glutathione, carbohydrate and COR14b cold induced protein accumulation during cold hardening in wheat. Euphytica,2001,119: 173-177
    [165]Giannopolitis C N, Ries S K. Purification and quantitative relationship with water-soluble protein in seedling. Plant Physiology,1977,59:315-318
    [166]Gilmour S J, Sebolt A M, Salazar M P, et al. Overexpression of the Arabidopsis CBF3 transcriptional activator mimicsmultiple biochemical changes associated with cold acclimation. Plant Physiology, 2000 124:1854-1865
    [167]Guan L M, Zhao J, Scadalios J G. Cis-elements and trans-factors that regulate expression of the maize Catl antioxidant gene in response to ABA and osmotic stress:H2O2 is the likely intermediary signaling molecule for the response. Plant J,2000,22:87-95
    [168]Gusta L V, Trischuk R, Weiser C J. Plant cold acclimation:the role of abscisic acid. J Plant Growth Regul.2005, (24):308-318
    [169]Guy C L. Cold acclimation and freezing stress tolerance:role of protein metabolism. Annu Rev Plant Physiol Plant Mol Bio 1,1990,41:187-223
    [170]Haard N F. Chilling injury of green banana fruitatinetic anomolies of IAA oxidase at chilling tempratures. J Food Sci,1973,38:907-908
    [171]Hajela K K, Horvath D P, Gilmour S J, et al. Molecular cloning and expression of cor(cold regulated) genes in Arabidopsis thaliana. Plant Physiol,1990,93:1246-1252
    [172]Handschumacher R E, Harding M W, Rice J, et al. Cyclophilins:a specific cytosolic binding protein for cyclosporin A. Science,1984, (226):544-547
    [173]Hansen H, Grossmann K. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol,2000,124(3):1437-1448
    [174]Hara M, Fujinaga M, Kuboi T. Metal binding by citrus dehydrin with histidine-rich domains. Journal of Experimental Botany,2005,56(420):2695-2703
    [175]Hara M, Fujinaga M, Kuboi T. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem,2004,42(7-8):657-662
    [176]Hong C Y, Hsu Y T, Tsai Y C, et al. Expression of ASCORBATEPEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. Journal of Experimental Botany,2007,58(12): 3273-3283
    [177]Hu X L, Jiang M Y, Zhang J H, et al. Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize(Zea mays) plants. New phytologis,2007,173(1):27-38
    [178]Huang T, Nicodemus J, Zarka D G, et al. Expression of an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature. Plant Molecular Biology,2002,50:333-344
    [179]Hughes M A, Dunn M A. The molecular biology of plant acclimation to low temperature. J Exp Bot, 1996,47(296):291-305
    [180]Ingvardsen C, Veierskov B. Ubiquitin and proteasome-dependent proteolysis in plants. Physiol Plant, 2001,112:451-459
    [181]Iqbal M, Ashraf M, Rehman S, et al. Does polyamine seed pretreatment modulate growth and levels of some plant growth regulators in hexaploid wheat (Triticum aestivum L.) plants under salt stress? Bot Studies,2006,47:239-250
    [182]Irving R M, Lanphear F O. Regulation of cold hardiness in Acer negundo. Plant Physiol,1968,43: 9-13
    [183]Jain R, Shrivastava A K, Solomon S, et al. Low temperature stress-induced biochemical changes affect stubble bud sprouting in sugarcane (Saccharum spp. hybrid). Plant Growth Regul,2007,53: 17-23
    [184]Jain R, Solomon S, Shrivastava A K, et al. Nutrient application improves stubble bud sprouting under low temperature conditions in sugarcane. Sugar Tech,2009,11(1):83-85
    [185]Janda T, Szalai G, Gonzalez R K, et al. Comparative study of frost tolerance and antioxidant activity in cereals. Plant Science,2003,164:301-306
    [186]Jarvis P. Organellar proteomics:chloroplasts in the spotlight. Curr Biol,2004,14:317-319
    [187]Jian L C, Li J H, Chen W P, et al. Cytochemical location of calcium and Ca2+-ATPase activity in plant cells under chilling stress:a comparative study between the chilling sensitive maize and the chilling insensitive winter wheat. Plant Cell Physiol,1999,40:1061-1071
    [188]Jiang M Y, Zhang J H. Involvement of plasma-membrane NADPH oxidase in abscisic acid-and water stress-induced antioxidant defense in leaves of maize seedlings. Planta,2002,215:1022-1030
    [189]Jiang M Y, Zhang J H. Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Rad Res,2002,36(9):1001-1015
    [190]Johnson D C, Dean D R, Smith A D, et al. Structure function and formation of biologicaliron-sulfurclusters. Annn Rev Biochem,2005,74(11):247-281
    [191]Joshee N, Kisaka H, Kitagawa Y. Isolation and characterization of a water-stress specific genomic gene, pwsil8 from rice. Plant Cell Physiol,1998,39:64-72
    [192]Juan M G, Jose M A, Juan F R. Modulation of Electroenzymatic NADPH oxidation through oriented immobilization of ferredoxin:NADP+ reductase onto modified gold electrodes. J Am Chem Soc,2000, 122:9808-9817
    [193]Kang G Z, Wang Z X, Sun G C. Participation of H2O2 in enhancement of cold chilling by salicylic acid in banana seedlings. Acta Botanica Sinica,2003,45(5):571-574
    [194]Kawamura Y, Uemura M. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J,2003,36:141-154
    [195]Kirch H H, Van Berkel J, Glaczinski H, et al. Structural organization, expression and promoter activity of a cold-stress-inducible gene of potato(Solanum tuberosum L.). Plant Mol Biol,1997,33(5): 897-909
    [196]Kirchsteiger K, Pulido P, Gonzalez M, et al. NADPH thioredoxin reductase C controls the redox status of chloroplast 2-Cys peroxiredoxins in Arabidopsis thaliana. Molecular Plant,2009,2(2): 298-307
    [197]Kocsy G, Brunner M, Ruegsegger A, et al. Glutathione synthesis in maize genotypes with different sensitivities to chilling. Planta,1996,198:365-370
    [198]Kornyeyev D, Logan B A, Payton P, et al. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem Ⅱ in cotton overexpression genes encoding chloroplast-targetedant ioxidant enzymes. Physiol Plant,2001, (133):323-331
    [199]Kosova K, Vitamvas P, Prasil L T, et al. Plant proteome changes under abiotic stress-Contribution of proteomics studies to understanding plant stress response. J Proteomics,2011,74(8):1301-1322
    [200]Krause G H, Weiss E. Chlorophyll fluorescence and photosynthesis:the basics. Annu Rev Plant Phsyiol Plant Mol Biol,1991,42:313-349
    [201]Lebherz H G, Leadbeter M M, Bradshaw R A. Isolation and characterization of the cytosolic and Chloroplast forms of spinach leaf fructose diphosphate aldolase. J Boil Chem,1984,259:1011-1017
    [202]Lejeune P, Prinsen E, Onckelen H V, et al. Hormoal control of ear abortion in a stress-sensitive maize inbred. Australian J Plant Physiol,25(4):481-488
    [203]Leung J, Giraudat J. Abscisic acid signal transdution. Annu Rev Plant Physiol Plant Mol Biol,1998, 49:199-222
    [204]Li Y R, Yang L T. Status of the sugar in dustry development in China. In:Li Y R, Nasr M I, Solomon S, Rao G P (Editors-in-Chief). Meeting the Challenges of Sugar Crops & Integrated Industries in Developing Countries. Engineering House Press Co, Cairo, Egypt,2008,759-763
    [205]Liu J, Jiang M Y, Zhou Y F, et al. Production of polyamines is enhanced by endogenous abscisic acid in maize seedlings subjected to salt stress. J Integr Plant Biol,2005,47:1326-1334
    [206]Liu Q, Kasuga M, Sakuma Y, et al. Two transduction factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabilopsis. Plant Cell,1998,10: 1391-1406
    [207]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T) (-Delta Delta C) method. Methods,2001,25:402-408
    [208]Llorente F, Lopez-Cobollo R M, Catala R, et al. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J,2002,32(1):13-24
    [209]Luan S, Kudla J, Gruissem W, et al. Molecular characterization of a FKBP-type immunophilin from higher plants. PNAS,1996,93:6964-6969
    [210]Lyons J M. Chilling injury in plants. Ann Rev Plant Physiol,1973,24:445-466
    [211]Mackay V L, Li X H, Flory M R, et al. Gene expression analyzed by high-resolution state array analysis and quantitative proteomics:Response of yeast to mating pheromone. Mol Cell Proteomics, 2004,3:478-489
    [212]Manning B D, Cantley L C. AKT/PKB Signaling:Navigating Downstream. Cell,2007,129: 1261-1274
    [213]Marrs K A, Walbot V. Expression and RNA splicing of the maize glutathione S-transferase bronze2 gene is regulated by cadmium and other stresses. Plant Physiol,1997,113(1):93-102
    [214]Martin M L, Busconi L A. Rice membrane-bound calcium-dependent protein kinase is activated in response to low temperature. Plant Physiology,2001,125:1442-1449
    [215]Maupin-Furlow J A, Humbard M A, Kirkland P A, et al. Proteasomes from structure to function: perspectives from Archaea. Curr Top Dev Biol,2006,75:125-169
    [216]Maxwell K, Johnson G N. Chlorophyll fluorescence:A practical guide. J Exp Bot,2000,51:659-668
    [217]McGonigle B, Keeler S J, Lau S M, et al. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiology,2000,124(3): 1105-1120
    [218]Menossi M, Silva-Filho M C, Vincentz M, et al. Sugarcane functional genomics:Gene discovery for agronomic trait development. International Journal of Plant Genomics,2008, doi:l0.1155/2008/458732. Article ID 458732,11 pages.
    [219]Meurer J, Plucken H, Kowallik K V, et al. A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana. EMBO J,1998,17:5286-5297
    [220]Meyer Y, Miginiac M M, Schiinnann P. Protein-protein interactions in plant thioredoxin dependent systems. Plant Rex,2002,7(5):1-28
    [221]Mittler R, Zilinskas D A. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate Peroxidase. J Biol Chem,1992,267(30):21802-21807
    [222]Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002,7: 405-410
    [223]Mittova V, Guy M, Tal M, et al. Response of the cultivated tomato and its wild salt-tolerant relative lycopersicon pennelluto salt-dependent oxidative stress:Increased activities of antioxidant enzymes in root plastids. Free Radic Res,2002,36(2):195-202
    [224]Monroy A F, Sarhan F, Dhindsa R S. Cold-induced changes in freezing tolerance, protein phosphrylation, and gene expression (Evidence for a role of calcium). Plant Physiol,1993,102: 1227-1235
    [225]Moons A. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitamins & Hormones,2005,72:155-202
    [226]Murata N, Los D A. Membrane fluidity and temperature perception. Plant Physiol,1997,115: 875-879
    [227]Mustata A, Veselov S, Valcke R, et al. Contents of abscisic acid and cytokinins in shoots during dehydration of wheat seedlings. Biologia Plantarum,1998,40(2):291-293
    [228]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol,1981,22:867-880
    [229]Nanjo T, Kobayashi M, Yoshiba Y, et al. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters,1999,461(3):205-210
    [230]Nayyar H, Gupta D. Differential sensitivity of C3 and C4 plants to water deficit stress:Association with oxidative stress and antioxidants. Environ Exp Bot,2006,58(1-3):106-113
    [231]Noctor G, Arisi A M, Jouanin L, et al. Rennenberg H, Foyer C H. Glutathione:biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot,1998,49: 623-647
    [232]Noctor G, Foyer C H. Ascorbate and glutathione:keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol,1998,49:249-279
    [233]Nogueira F T S, De Rosa V E, Menossi M, et al. RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol,2003,132:1811-1824
    [234]Ovkova I V, Serebriiskaya T S, Popov V, et al. Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling to lerance of plants. Plant Cell Physiol,2003, 44:447-450
    [235]Pagadala N S, Arha M, Reddy P S, et al. Phylogenetic analysis, homology modelling, molecular dynamics and docking studies of caffeoyl-CoA-O-methyl transferase (CCoAOMT 1 and 2) isoforms isolated from subabul (Leucaena leucocephala). Journal of Molecular Modeling,2009,15(2):203-221
    [236]Pang C H, Zhang S J, Gong Z Z, et al. NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa. Physiologia Plantarum,2005,125:490-499
    [237]Boyer P D. The ATP Synthase-A Splendid Molecular Machine. Annual Review of Biochemistry, 2003,66:717-749
    [238]Peng M, Kuc J. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Physiologe and Biochemistry,1992,11:696-700
    [239]Perras M, Sarhan F. Synthesis of freezing tolerance proteins in leaves, crown and roots during cold acclimation of wheat. Plant Physiol,1989,89:577-585
    [240]Pflugmacher S, Schroder P, Sandermanm H. Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics. Phytochemistry,2000,54(3):267-273
    [241]Puhakainen T, Hess M V, Makela P, et al. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol,2004,54(5):743-753
    [242]Qiu J L, Zhou L, Yun B W, et al. Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol,2008,148(1):212-222
    [243]Rasheed R, Wahid A, Ashraf M, et al. Role of proline and glycinebetaine in improving chilling stress tolerance in sugarcane buds at sprouting. Int J Agric Biol,2010,12:1-8.
    [244]Renaut J, Lutts S, Hoffmann L, et al. Responses of poplar to chilling temperature:proteomics and physiological aspects. Plant Biol,2004,6(1):81-90
    [245]Saijo Y, Hata S, Kyozuka J, et al. Over expression of a single Ca-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. The Plant Journal,2000,23:319-327
    [246]Saikia R, Singh T, Kumar R, et al. Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Microbiol Res,2003, 158(3):203-213
    [247]Schaedle M, Bassham J A. Chloroplast glutathione reductase. Plant Physiol,1977,59:1011-1012
    [248]Schfirmann P, Jacquot J P. Plant thioredoxin systems revisited. Plant Physiol,2000,51(6):371-400
    [249]Shao D, Kenth J, Myroslawa M M, et al. Structural basis of redox signaling in photosynthesis: structure and function of ferredoxin:thioredoxin reductase and target enzymes. Photo Res,2004, 79(29):233-248
    [250]Shao H B, Liang Z S, Shao M A, et al. Changes of anti-oxidative enzymes and membrane peroxidation for soil water deficits among 10 wheat genotypes at seedling stage. Colloids Surfaces, 2005,42(2):107-113
    [251]Shen Y Y, Wang X F, Wu F Q, et al. The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 2006,443:823-826
    [252]Shimabukuro R H, Frear D S, Swanson H R, et al. Glutathione conjugation. An enzymatic basis for atrazine resistance in corn. Plant Physiol,1971,47:10-14
    [253]Shin M. How is ferredoxin-NADP reductase involved in the NADP photoreduction of chloroplasts? Photosynthesis Research,2004,80:307-313
    [254]Shinozaki K, Yamaguehi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol,2000, 3:217-223
    [255]Simon E W. Phospholipids and plant membrane permeability. New Phytol,1974,73:377-420
    [256]Sivamani E, Bahieldin A, Wraith J M. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci, 2002,25:1-9
    [257]Soumen B. Reactive oxygen species and oxidative burst Roles in stress, senescence and signal transduction in plants. Curr Sci,2005,89:1113-1121
    [258]Stenbaek A, Hansson A, Wulff R P, et al. NADPH dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg protoporphyrin monomethyl ester cyclase. FEBS Letter,2008,582(18):2773-2778
    [259]Steponkus P L, Uemura M, Joseph R A, et al. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA,1998,95:14570-14575
    [260]Svensson J, Ismail A M, Palva E T. Dehydrins sensing, signaling and cell adaptation. Amst erdam: Elsevier,2002,3:155-171
    [261]Tahtiharju S, Sangwan V, Monroy A F, et al. The induction of kin genes in cold-acclimating Arabidopsis thaliana:Evidence of a role calcium. Planta,1997,203:442-447
    [262]Thomashow M F. Plant cold accliamtion:freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol,1999,50:571-599
    [263]Thomashow M F. Role of cold-responsive genes in plant freezing tolerance. Plant Physiology,1998, 118:1-8
    [264]Thompson J E, Hopkins M T, Taylor C, et al. Regulation of senescence by eukaryotic translation initiation factor SA:implications for plant growth and development. Trends in Plant Science,2004,9: 174-179
    [265]Tian Q, Stepaniants S B, Mao M, et al. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteomics,2004,3:960-969
    [266]Uemura M, Stepoukus P L. A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiology,1994,104:479-496
    [267]Uno Y, Furihata T, Abe H, et al. Arabilopsis basic leucine zipper transcription factors involved an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc PNAS,2000,97:11632-11637
    [268]Walker J C. Structure and function of the receptor-like protein kinase of higher plants. Mol Biol, 1994,26:1599-1609
    [269]Wang M C, Peng Z Y, Li C L, et al. Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics,2008,8(7):1470-1489
    [270]Washburn M P, Koller A, Oshiro G, et al. Protein pathway and complex clustering of correlated mRNA andprotein expression analyses in Saccharomyces cerevisiae. PNAS,2003,100:3107-3112
    [271]Weber, H. Chetelat A, Reymond P, et al. Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. The Plant Journal,2004,37:877-888
    [272]Worrall D, Elias L, Ashford D. A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science,1998,282(2):115-117
    [273]Wu F Q, Xin Q, Cao Z, et al. The magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling:New evidence in Arabidopsis. Plant Physiology,2009,150:1940-1954
    [274]Xin Z, Browse J. Cold comfort farm:the acclimation of plants to freezing temperatures. Plant Cell and Environment,2000,23:893-902
    [275]Xin Z, Li P H. Abscisic acid-induced chilling tolerance in maize suspension-cultured cells. Plant Physiol,1992,99:707-711
    [276]Xin Z, Li P H. Alteration of gene expression associated with abscisic acid-induced chilling tolerance in maize suspension-cultured cells. Plant Physiol,1993,101:277-284
    [277]Xu D, Duan X, Wang B. Expression of a late embryogenesis is abundant protein gene, HVA1, from barely confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol,1996,110: 249-257
    [278]Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol,2006,57:781-803
    [279]Yan S P, Zhang Q Y, Tang Z C, et al. Comparative proteomic analysis provides new insight into chilling stress response in rice. Mol Cell Proteomics,2006,5(3):484-496
    [280]Yanaguchi-Shinozaki K, Koizum M, Urao S, et al. Molecular cloning and characterization of 9 cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol,1992,33(3):217-224
    [281]Yang C Y, Chen Y C, Jauh G Y, et al. A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiology,2005,139:836-846
    [282]Yang C Y, Chen Y C, Jauh G Y, et al. A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol,2005,139(2):836-846
    [283]Yang L T, Hong L, Takahashi Y, et al. Proteomic analysis of grapevine stem in response to Xylella fastidiosa inoculation. Physiol Mol Plant Pathol,2011,75(3):90-99
    [284]Yao K, Lockhart K M, Kalanack J J. Cloning of dehydrin coding sequences from Brassicajuncea and Brassicanapus and their low temperature-inducible expression in germinating seeds. Plant Physiol Biochem,2005,43(1):83-89
    [285]Yeom J, Jeon C O, Madsen E L, et al. Ferredoxin-NADP+ reductase from Pseudomonas putida functions as a ferric reductase. J Bacteriol,2009,191(5):1472-1479
    [286]Yin Z, Rorat T, Szabala B M, et al. Expression of a solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci,2006,170(6):1164-1172
    [287]Zhang J H, Jia W S, Yang J C, et al. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res,2006,97:111-119
    [288]Zhang X X, Takano T. Over expression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana. Biotechno 1 Lett,2008,30(7):1289-1294
    [289]Zhang X, Zhang L, Dong F C, et al. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol,2001,126(4):1438-1448
    [290]Zhu B, Choi D W, Fenton R, et al. Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol Gen Genet,2000,264(1-2):145-153
    [291]Zhu J K. Plant salt tolerance. Trends in Plant Science,2001,6(2):66-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700