地锦体胚发生和遗传转化体系的建立及离体筛选耐盐植株的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地锦(Parthenocissus tricuspidata Planch.)是城市垂直绿化中重要的攀缘木本植物之一,因其生长迅速、攀缘力强、夏叶浓绿、秋叶紫红、适应性广,在世界上应用极为普遍,主要用于楼房墙体,道路坡面等的垂直绿化。目前,国内外最常栽培该属植物还有五叶地锦(Parthenocissus quinquefolia Planch.),它与地锦相比抗性强、生长快,但吸盘不发达,附着力较差。为了创造地锦属新的种质资源,丰富垂直绿化的植物材料,需对地锦特有性状如耐盐碱和抗干旱性能、生长速度等进行遗传改良,但是由于五叶地锦和地锦的种间不亲和使得通过传统有性杂交进行地锦遗传改良未能成功,现代植物生物技术的应用为地锦的遗传改良提供了新方法。
     围绕利用生物技术提高地锦耐盐碱性能这一目标,本研究在前人研究的基础上,首先以地锦叶柄为外植体,建立了有效的地锦叶柄体胚发生途径的植株再生体系,并获得了胚性愈伤组织。其次,长期保存了地锦的胚性愈伤组织,并从胚性愈伤组织诱导大量体胚发生和植株再生,提高了地锦体胚再生频率;在此基础上,以胚性愈伤为转化受体,通过衡量抗性愈伤组织率的高低,对根癌农杆菌介导GUS报告基因转化地锦遗传转化的影响因素进行了研究,建立了地锦胚性愈伤组织遗传转化体系,为耐盐目的基因转化奠定了一定的基础。另外,以胚性愈伤组织为外植体,利用组织培养过程中发生的体细胞变异来筛选耐盐的愈伤组织和体胚,并在含NaCl的培养基上获得地锦耐盐再生植株。本研究的主要研究结果如下:
     1.以地锦无菌苗40d龄的叶柄为外植体,建立了地锦叶柄体胚发生途径的植株再生体系,并成功地获得了胚性愈伤组织。研究结果表明:将叶柄接种在B5+0.5-2.0mg/L 2,4-D+500mg/L CH+0.1g/L AC的培养基,不同的基因型均可以诱导胚性组织,然后将胚性组织接种在B5+1.0-2.0mg/L BA+0.1-0.3mg/L NAA+500mg/L CH的培养基上可诱导体胚产生。90%的正常体胚在不加激素的MS培养基上均可一次性长成根茎叶完整的植株,畸形胚在MS+1.0mg/L BA+0.01mg/L NAA+500mg/L CH的培养基中可先诱导芽后在1/2MS+0.5mg/L IBA上诱导根的形成,不同基因型形成体胚和再生植株的能力存在显著性差异。通过组织切片技术,观察了地锦体胚发生过程中的不同形态的胚性培养物和体胚,证实了地锦植株再生过程是经过体胚发生途径进行再生。将根系发育完好的再生植株移栽后,植株生长和外观形态表现正常。
     2.探讨了胚性愈伤组织长期保存的方法,并从长期继代的胚性愈伤组织中诱导了大量的体胚,提高了体胚再生频率。此外,利用ISSR标记分析了再生植株的变异情况。结果表明,在MS+0.1mg/L 2,4-D+0.1mg/L NAA+500mg/L CH培养基上,在弱光照培养条件下,胚性愈伤组织能快速增殖并保持较好的胚胎发生能力。培养基中添加适量的BA与生长素(NAA或2,4-D)可促使长期继代的胚性愈伤组织形成体胚,形成体胚的数目最高可达61/g FW(鲜重Fresh Weight),ISSR分析结果表明再生过程中存在体细胞变异。
     3.通过对农杆菌介导地锦胚性愈伤组织遗传转化的诸多影响因素如农杆菌菌株、共培养时间、农杆菌侵染液浓度、侵染时间和AS的浓度等进行比较研究,建立了根癌农杆菌介导地锦胚性愈伤组织遗传转化体系。研究结果表明:菌株EHA105与菌株C58相比具有较强的侵染力,胚性愈伤组织侵染最适宜的农杆菌菌液浓度为OD_(600)=0.7,侵染时间为40min,4d共培养时间和在共培养培养基中添加100μM AS有利于提高转化效率,利用这些参数能使抗性愈伤组织率达到42.6%左右。GUS组织化学染色、PCR分析和Southern杂交证实外源GUS报告基因已整合到转化植物基因组中。
     4.利用组织培养技术筛选耐盐愈伤组织并获得了耐盐植株。首先探讨了不同NaCl浓度对地锦胚性愈伤组织增殖的影响,发现NaCl对胚性愈伤组织的增殖、存活率和愈伤的状态都有极大的影响,确定了盐半致死浓度和致死浓度分别为10g/L和20g/L,随后通过筛选耐盐愈伤得到了耐盐的体胚,并诱导其再生植株,所得植株与对照相比,表现出一定的抗盐性状,初步判断为耐盐植株。
     5.对体胚发生过程发生的畸形胚和次生胚现象、体胚再生体系遗传稳定性的影响因素、胚性愈伤组织遗传转化的影响因素及假转化体的问题和细胞工程技术提高地锦耐盐性能的可行性进行了讨论,并对应用基因工程提高地锦耐盐性的应用前景和下一步工作重点进行了分析。
Parthenocissus tricuspidata (Boston ivy) is one of the most important climbing woody vines used for urban vertical greening. Owing to its many desirable traits such as fast growth, good holdfasts, large and dark green foliages that turn red-purple in autumn and wide adaptability, it is widely cultivated in many countries and usually used to cover walls, trellises, fences or for erosion control on slopes. Currently, there is another species widely cultivated in the world named P. quinquefolia in Parthenocissus. Comparing to P. tricuspidata, this species has stronger resistance and grows faster, but its cupule is undeveloped, so the adsorbability is weaker. In order to create new germplasm in Parthenocissus and enrich the plant materials used for vertical greening, genetic improvement of the species is necessary for the traits of fast growth, drought and salt tolerance in particular. However, conventional cross breeding experiments between P. tricuspidata and P. quinquefolia proved to be unsuccessful because of interspecific incompatibility. Application of plant biotechnology may offer great potential for genetic improvement of P. tricuspidata.
     For the objective of improving the salt tolerance of P. tricuspidata, firstly, an efficient system of plant regeneration from petiole explants of P. tricuspidata via somatic embryogenesis was successfully developed, and friable embryogenic callus was obtained. Secondly, friable embryogenic callus can be maintained for a long time and showed strong capability of embryogenesis, and was also able to produce a large number of somatic embroys. Thus, the frequency of plant regenerated from somatic embryos was improved. On the basis of these results, we comprehensively studied and optimized parameters that affecting the efficiency of Agrobacterium-mediated transformation of embryogenic callus of P. tricuspidata by assessing the frequency of resistant callus, and established an efficient transformation system, which will be valuable for genetic engineering of salt tolerance of P. tricuspidata. Furthermore, for selecting salt-tolerant plant in vitro via somacolonal variation during tissue culture, embryogenic callus of P. tricuspidata was transferred to the medium containing different concentration of NaCl. Salt tolerant plant has been regenerated from the salt tolerant somatic embryos. The major results of this study were introduced separately as following:
     1 An efficient system of plant regeneration from 40-old-day petiole explants of P. tricuspidata via somatic embryogenesis was successfully developed and friable embryogenic callus was obtained. Embryogenic tissue was induced on B5 basal medium supplemented with 0.5-2.0 mg/L 2, 4-D, 500 mg /L CH and 0.1 g/L AC. Somatic embryos were induced on B5 medium containing various concentrations of BA (1.0, 1.5, 2.0mg/L) and NAA (0.1, 0.3mg/L) plus 500mg/LCH. Ninety percent of normal somatic embryos converted into plantlets directly on MS medium free of plant growth regulators. Shoots could be induced from abnormal somatic embryos on MS medium containing 1.0mg/L BA, 0.01mg/L NAA and 500mg/L CH and rooted on half strength MS medium containing 0.5mg/L IBA. Genotypic differences were found in the process of somatic embryogenesis and plant regeneration. Histological analysis confirmed the process of somatic embryogenesis. Regenerated plantlets with well-developed roots were successfully acclimatized in greenhouse, and all plants showed normal morphological characteristics.
     2 The ways of embryogenic callus maintainence and induction of somatic embryos were studied. The ISSR marker was used to analyze the genetic stability of regeneration system. The results showed embryogenic callus can proliferate rapidly and show strong capability of embryogenesis on the MS medium supplemented with 0.1 mg/L 2, 4-D, 0.1 mg/L NAA and 500mg/L CH under the dim light. The proper addition of BA and 2, 4-D or NAA can promote the formation of somatic embryos, and the highest number was 61/g FW. ISSR analysis showed somaclonal variation in the process of plant regeneration.
     3 An efficient transformation protocol was developed by studing parameters that affecting the efficiency of Agrobacterium-mediated transformation of embryogenic callus of P. tricuspidata such as co-culture time and bacterial density and so on. The results showed the strains EHA105 has a superior virulent than the strains C58, the optimal bacterial density is OD6oo=0.7, and the ideal infection time is 40 min. In addition, 4 day of co-culture and 100μM AS in the co-culture medium can promote the T-DNA transfer. By infection according to this optimized T-DNA transformation and selection on the selection medium, the highest frequency of resistant callus was 42.6%. GUS histochemical staining and polymerise chain reaction and southern blot analysis confirmed the integration of the T-DNA into the plant genome.
     4 We obtained NaCl tolerant plants via in vitro selection during the process of P. tricuspidata tissue culture. Embryogenic callus were transferred to medium supplemented with different NaCl concentrations for callus selection, the results showed the growth, frequency of survival and morphology of callus were affected significantly by diffferent NaCl concentrations, and the half lethal concentration of NaCl was about 10g/L, the lethal concentration of NaCl was about 20 g/L. Salt tolerant somatic embryos were obtained during subculture of NaCl tolerant callus on the callus proliferation containg NaCl. Plants regenrated from these tolerant somatic embryos, and showed salt tolerant morphology on the medium supplimented 6 g/L NaCl compared to the control. Thus, these plants can be judged preliminarily as the NaCl tolerant plant.
     5 Some phenomena that occured during the process of regeneration, for example abnormal embryos formation and secondary somatic embryogenesis, and factors affecting the regeneration system stability and the efficiency of Agrobacterium-mediated genetic transformation and so on were disscussed. The prospect of plant gene engineering on the improvement of salt tolerant of P. tricuspidata and the further work of this study were also disscussed.
引文
1.卜学贤,林忠平,陈维伦.农杆菌对毛白杨的转化及完整植株的获得.植物学报,1991,33(3):206-213
    2.曹春艳,赵振利.利用根癌农杆菌转化木本植物的研究进展.河南林业科技,2006,26(1):16-18
    3.陈翠贞,崔潋.IAA、GA_3、椰子乳对爬山虎愈伤组织的生长呼吸及末端氧化酶活性的比较研究.植物生理学报,1964,1:323-331
    4.陈丽梅,潘俊松,何欢乐,蔡润.农杆菌介导的基因转化研究进展.甘肃科学学报,2005,17(2):61-63
    5.陈英,何秋伶,诸葛强,黄敏仁,王明庥.林木基因工程研究进展.分子植物育种.2006,4(1):1-7
    6.陈英,黄敏仁,王明庥.植物遗传转化新技术和新方法.中国生物工程杂志,2005,25(9):94-98
    7.陈有明.园林树木学.北京:中国林业出版社,1990,559-560
    8.丛郁,王三红,王红霞,姚泉洪,章镇.超声波辅助农杆菌介导八棱海棠转rolC基因.果树学报,2006,23(5):659-663
    9.崔凯荣,戴若兰.植物体细胞胚发生的分子生物学.北京:科学出版,2000,21-22
    10.邓秀新,刘功弼,章文才.柑桔愈伤组织染色体变异研究.中国柑桔,1985,(3):4-7
    11.杜景川,何正权,陈发菊,姚伟,李凤兰.木本植物转基因研究进展.福建林业科技,2007,34(1):142-148.
    12.杜丽.香樟体胚发生途径的植株再生体系的建立以及农杆菌介导遗传转化的初步研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    13.樊军峰.彭学贤.韩一凡等.mtlD/gutD双价基因转化美洲黑杨×青杨的研究.林业科学.2002,38(6):30-35
    14.冯大领,李云,孙振元.爬山虎离体培养的初步研究.河北林果研究,2005,20(2):100-102
    15.付彦荣,韩益,孙振元等.C0~(60)-ν辐射地锦种子发芽和M1性状的影响.中国农学通报,2004,20(6):73-76
    16.付彦荣,孙振元,赵梁军等.地锦和五叶地锦种间杂交不亲和性初步研究.林业科学,2005,18(1):52-56
    17.高玉红,李云.植物离体培养筛选耐盐突变体的研究.核农学报,2004,18(6):448-452
    18.韩元凤.甘薯耐盐突变体的离体筛选及鉴定.[硕士学位论文].北京:中国农业大学图书馆,2005
    19.何业华,熊兴华,林顺权等.根癌农杆菌介导反义ACC合成酶基因对枣树的转化.湖南农业大学学报(自然科学版),2004,30(1):33-36
    20.贺晶,谭晓风,杨伟.林木转基因工作研究进展.湖南林业科技2001,28(4):19-25
    21.贺适耀,余叔文.稻高脯氨酸愈伤组织变异体的选择及其耐盐性.植物生理学报,1992,21(1):65-72.
    22.胡忠.耐盐性植物转基因工程的研究进展.热带亚热带植物学报,2006,14(2):169-178
    23.黄成林,周大跃.木本攀缘植物在城市绿化中的作用.安徽农业大学学报,1995,1:48-52
    24.黄桂兰.浅谈藤本植物与城市的垂直绿化.热带作物学报,1998,2:15-19
    25.黄素华,赖钟雄.荔枝胚性愈伤组织及其体胚发生过程中染色体数数目的变化.福建农林大学学报(自然科学版1,2003,32(4):458-463
    26.黄素华,赖钟雄.植物体细胞胚胎发生过程中的遗传变异研究进展.龙岩学院学报,2006,24(6):81-84
    27.黄学林,李筱菊.乙烯和多胺的生物合成与植物体细胞胚胎发生.植物生理学通讯,1995,31(2);84-85
    28.黄学林,李莜菊.高等植物组织离体培养的形态建成及其调控.北京:科学出版社,1995
    29.霍合强,郝玉金,邓秀新.宽皮柑橘品种的胚性愈伤组织诱导.实验生物学报,1999,32(3):289-294
    30.贾彩风,李悦,瞿超.木本植物体细胞胚胎发生技术.中国生物工程杂志,2004,24(3):26-29
    31.寇祥明,杨利民,韩梅,姜雷,李玉.不同施水量对五叶地锦幼苗生长及抗性生理的影响.干旱区资源与环境,2007,27(3):140-143
    32.赖钟雄,陈春玲,黄素华.龙眼胚性愈伤组织长期继代培养及其染色体稳定性研究.福建农业大学学报,2001,30(1):29-32
    33.李典友。地锦属植物资源的开发利用.特种经济动植物,2002,4:42
    34.李怀仓.组织培养在林业中的应用.陕西林业科技,2006,3:33-37
    35.李明浚编译.植物组织培养.北京:中国农业出版社,1992
    36.李卫,陈亮,蔡得田.柑桔基因转化新方法的研究.植物学报,1997,39(8):782-784
    37.李正红,孙振元,刘秀贤,彭镇华.地锦与五叶地锦原生质体分离及培养研究 林业科学研究.2005a,18(3):241-245
    38.李正红,孙振元等.地锦体细胞胚胎发生研究.林业科学研究,2005b,18(1):36-40
    39.李正红.地锦与五叶地锦种质创新研究.[博士学位论文].北京:中国林业科学研究院,2005c
    40.李周歧,郭军战,刘西平.河北杨体细胞抗盐性突变体试管苗抗盐性测定.西北林学院学报,1996,11(4):94-97
    41.林拥军.农杆菌介导的水稻基因转化研究.[博士学位论文].武汉:华中农业大学图书馆,2002
    42.刘德良,李明红,张琴.南岳爬山虎属植物种质资源及园林应用.中国野生植物资源,2001,6:31-32
    43.刘会超.耐盐和盐生园林植物引种、筛选、利用及其耐盐机理的研究.[博士后出站研究报告].北京:中国林业科学研究院,2004
    44.刘立安,石雷,赵敏.生态保护的功臣一地锦属植物.中国花卉盆景,2002,6:108
    45.陆明珍,徐筱昌.高架路下立柱垂直绿化植物的选择.植物资源与环境,1997,2:63-64
    46.马和平,臧建成,李毅,吴袖荣.生物技术在林木育种中的应用.河北林果研究.2005,20(4):343-346
    47.孟令国,李德远,顾克锁,杨艳茹.一个值得推广的园林绿化树种.山东林业科技.2001增刊,17-19
    48.牛菊兰.北方冷季型草坪耐盐能力的测定.草地学报,1997,5(3):190-195
    49.桑庆亮,赖钟雄.荔枝体细胞胚胎发生的研究进展.福建农业大学学报,2000,29(3):311-315
    50.邵建柱,马宝焜.转基因苹果研究进展.果树学报,2003,20(1):49-53
    51.沈庆斌.枇杷高频率体胚发生体系的建立及其遗传转化初步研究.[硕士学位论文].福州:福建农林大学,2005
    52.师校欣,王斌,杜国强,翁曼丽,高仪.根癌农杆菌介导豇豆胰蛋白酶抑制剂基因转入苹果主栽品种.园艺学报,2000,27(4):282-284
    53.施维德.垂直绿化植物与建筑墙面.成都建筑,1996,4:47-48
    54.谭文澄,戴策刚编.观赏植物组织培养技术.北京:中国林业出版社,1995
    55.汤浩茹,王永清,任正隆.果树体细胞胚发生.四川农业大学学报,1999,17(1):69-79
    56.唐巍,欧阳藩,郭仲琛.火炬松成熟合子胚培养直接体细胞胚胎发生和植株再生.应用与环境生物学报,1998,4(2):103-106
    57.唐玉海,郭春芳,张木清,陈常颂,陈荣冰.ISSR标记在茶树品种遗传多态性研究中的应用.福建农林大学学报(自然科学版),2007,36(1):51-55
    58.陶晶,秦彩云,姚露贤等.杨树耐盐性突变体育种的研究进展.吉林林业科技,2000,20(2):5-8
    59.汪丽虹,杨汉民.枸杞再生植株不同发育途径中染色体变异的研究.植物学通报,1998,8(增刊):61-64
    60.王傲雪,李景富.植物体细胞胚状体的诱导研究及应用.黑龙江农业科学,1999,2:39-41
    61.王关林,方宏筠编.植物基因工程原理与技术(第二版).北京:科学出版社,2002
    62.王仑山,王亚馥.利用组织和细胞培养筛选作物耐盐突变体的研究.植物学通报,1996,13(2):7-12
    63.王瑶,林木兰,沈锡辉等.农杆菌介导的木本植物遗传转化.生物技术通报,1999,6:23-27
    64.王哲之,李克勤,张大力等.陆地地棉胚性愈伤组织的变异及高频胚胎发生.植物学报,1994,36(5):331-338
    65.翁志林.试论垂直绿化的植物种类.中国园林,1989,1,49-49
    66.吴丽君.木本植物组织培养技术在林业科研与生产中的应用与局限.福建林业科技,2003,30(1):67-70
    67.吴姗,梁月荣,陆建良,黎昊雁.基因枪及其与农杆菌相结合的茶树外源基因转化条件优化.茶叶科学,2005,25(4):255-264
    68.吴泽鹏,朱报著,梁启英等.广东省爬山虎植物可利用资源状况及其评价.广东林业科技,2003,19(3):32-34
    69.谢从华,柳俊.植物细胞工程.北京:高等教育出版社,2004
    70.刑更生,崔凯荣,山仑等.植物体细胞胚发生的分子基础.遗传,1999,21(1):30-34
    71.徐莜昌.发展垂直绿化 增加城市绿量.中国园林,1999,2:49-50
    72.薛美凤,郭余龙,李名扬,裴炎.长期继代对棉花胚性愈伤组织体胚发生能力及再生植株变异的影响.2002,15(4):19-21
    73.杨晓明,安黎哲,王雅梅,李胜.酿酒葡萄‘神索’体胚发生及再生体系遗传稳定性分析.园艺学报,2006,33(6):1317-1320
    74.杨映根,桂耀林,唐巍等.青杆愈伤组织在继代养的分化能力及染色体稳定性研究.植物学报,1994,36(72):934-939
    75.叶霞,黄晓德,陶建敏等.农杆菌介导Ferritin基因转化苹果的研究.果树学报,2005,22(4):387-389
    76.易鹏,侯开卫,周家齐等.外源DNA导入木豆及其在育种上的应用.林业科学 研究,1996,9(5):530-533
    77.余传隆,黄泰康主编.中药辞海(第一卷).北京:中国医药科技出版社,1993,1967-1968
    78.袁玉欣,王印肖,刘柄响,李子敬,梁海永,王连洲.木本植物耐盐选育研究进展.河北林业科技,2006,9:31-35
    79.苑增武,张孝民,毛齐来,曹志伟等.大庆地区的造林树种耐盐能力评价.防护林科技,2000,42(1):15-19
    80.臧德奎,周树军.攀缘植物与垂直绿化.中国园林,9,000,5:79-81
    81.翟凤林,曹鸣庆.植物的耐盐性及其遗传改良.北京:农业出版社,1989:23-35
    82.张建锋等.激素对白榆愈伤组织发生和生长的影响.林业科技,1992,(4):31-33
    83.张进仁,吴安仁,高峰.长期继代培养的柳橙胚愈伤组织再分化能力和遗传性研究.园艺学报,1987,14(3):213-215
    84.张绮纹等.群众杨39无性系耐盐悬浮细胞系的建立和体细胞变异体完整植株的诱导.林业科学研究,1995,(4):395-401
    85.张毅功,王素君,高仪.五叶爬山虎组织培养试验研究.河北农业大学学报,2004,27(5):51-53
    86.赵世伟,张佐双.园林植物景观设计与营造.北京:中国城市出版社,2001
    87.中国科学院中国植物志编辑委员会.中国植物志(第48卷第二分册).北京:科学出版社,1998,12-9.7
    88.钟瑾,刘树君,马世嵩,杨巍,胡鸢雷,吴錡,林忠平.核基质结合区对转爬山虎芪合酶基因烟草中产生白藜芦醇的作用(英文).植物学报,2004,46(8):948-954
    89.周福群,乔颖,乔晶.从生态学角度谈城市绿地系统的规划.国土与自然资源研究,2001,2:58-59
    90.周光宇,龚蓁蓁,王自芬.远缘杂交的分子基础—DNA片段杂交假设的一个论证.遗传学报,1979,6(4):405-412
    91.周冀明,卫志明,许智宏等.根癌农杆菌介导转化诸葛菜获得转基因植株.植物生理学报,1997,23(1):21-28
    92. Ammirato P V Embryogenesis, Handbook of Plant Cell Culture, 1983,1:82-123
    93. Ayadi R, Tremouillaux-Guiller J. Root formation from transgenic calli of Ginkgo biloba. Tree Physiology, 2003, 23(10): 713-718
    94. Baucher M, Chabbert B, Pilate G et al. Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol de-hydrogenase in poplar. Plant Physiol, 1996,112:1479-149
    95. Bell R L, Scorza R, Srinivasan C et al.Transformation of Beurre Bosc pear with the rolC gene. J Am Soc Hortic Sci, 1999,124: 570-574
    96. Blanc G, Baptiste C, Oliver G, Martin F, Montoro P, Effcient Agrobacterium tumefaciens-mediated transformation of embryogenic calli and regeneration of Hevea brasiliensis Mull Arg. Plant Cell Rep, 2006, 24: 724-733
    97. Bornhoff B A, Harst M, Zyprian E, Topfer R. Transgenic plants of Vitis vinifera cv, Seyval blanc. Plant Cell Rep, 2005, 24: 433-438
    98. Broothaerts W, Keulemans J, Van Nerum I. Self fertile apple resulting from S-RNase gene silencing. Plant Cell Rep, 2004, 22: 497-50
    99. Bruno D, Philippe G, Jullien M. Agrobacterium-mediated transformation of Asparagus officinalis L. long-term embryogenic callus and regeneration of transgenic plants. Plant Cell Rep, 1993, 12 (3): 129-132
    100.Burns Jude W. Grosser Vardi A. Beichman S, Aviv D. Transformation of citrus protoplasts and regeneration of transgenic plants. Plant Science, 1990, 69: 199-206
    101.Carimi F, DePasquale F, Crescimanno F G. Somatic embryogenesis and plant regeneration from pistil thin cell layers of Citrus. Plant Cell Rep, 1999,18: 935-940
    102.Cervera M, Pina J A, Juarez J et al. A broad exploration of a transaenic population of citrus: stability of gene expression and phenotype. Theor Appl Genet, 2000,100: 670- 677.
    103.Chengalrayan K, Mhaske V B, Hazra S. High-frequency conversion of abnormal peanut somatic embryos. Plant Cell Rep, 1997,16: 783-786
    104.Costa M G C, Otoni W C, Moore G A. An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradisi (Macf.) and production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Rep, 2002,21: 365-373
    105.Daniell H, Muthukumar H, Lee B et al. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Current Genet, 2001, 39(2): 109-116
    106.Das D K, Reddy M K, Upadhyaya K C. An efficient leaf-disc culture method for the regeneration via somatic embryogenesis and transformation of grape. Plant Cell Rep, 2002,20:999-1005
    107.Duan Y X, Guo W W,Meng H J,Tao N G, Li D D, Deng X X. High efficient transgenic plant regeneration from embryogenic calluses of Citrus sinensis, Biologia Plantarum, 2007, 51: 212-216
    108.Firoozabady E, MoyY, Courtney-Gutterson N, Robinson K. Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue, Bio/technology, 1994; 12: 609-613
    109.Fitch M M M, Manshardt R M, Gonsalves D et al. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Biotechnolony, 1992,10: 1466-1472
    110.Flach J, Jolles P, Pilet P E. Induction of chitinase and beta-1, 3-glucanase in Parthenocissus quinquefolia cultured in vitro. Physiol Plant, 1993, 89 (2): 399-403
    111 .Fromm M E, Morrish F, Armstrong C, Williams R, Thomas J, Klein T. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio Technology, 1990, 8: 833-839
    112.Gao M, Sakamolo A, MinuraK et al. Transformation of Japanese Persimmon (Diospyroskaki Thumb) with a bacterial gene for choline oxidase. Molecular Breeding, 2000,6(5): 501-510
    113.Gervera M, Orlega C, Navarro A et al. Generation of transgenic Citrus plants with the tolerance to salinity gene HAL2 from Yeast. Journal of Horticulture science & Biolechnolony, 2000, 75(1): 26- 30
    114.Guo W W, Duan Y X, Olivares-Fuster O, Wu Z C et al. Protoplasts transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene. Plant Cell Rep. 2005,24 (8): 482-486
    115.Gupta P K, Pullman G S, Timmis R, Forestry in the 21st Century-The biotechnolony of somatic emhrynenesis. Bio Technology, 1993,11: 454-459
    116.Haccis B. Question of unicellar origin on non-zygotic embryos in callus cultures. Phytomotphology, 1978, 28: 74-81
    117.Hansen G, Chilton M D. "Agrolistic" transformation of plant cells integration of T-strands generated in plant. Proc Natl Acad Sci. USA. 1996, 93: 978-983
    118.Harst M, Bornhoff B A, Zyprian E et al. Influence of culture technique and genotype on efficiency of Agrobacterium-mediated transformation of somatic embryos(Vitis vinifera) and their conversion to transgenic plants. Vitis. 2000,29: 9-102
    119.Hasegawa P M, Bressan R A, Zhu J K, Plant cellular and molecular responses to high salinity, Annu Rev Plant Physio. Plant Mo Biol, 2000, 51: 463-399
    120.Hatanaka T, Choi Y E, Kusano T, Sano H. Transgenic plants of coffee (Coffea canephora) from embryogenic callus via Agrobacterium tumefaciens-mediated transformation. Plant Cell Rep, 1999,19: 106-110
    121 .Holmstrom K O, Somersalo S, Mandal A et al. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot, 2000, 51 (343): 177-185
    122.Hu W J, Harding S A, Lung J et al. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees.Nat Biotechnol, 1999, 17: 808-812
    123.Iocco P, Franks T, Thomas M R. Genetic transformation of major wine grape cultivars of Vitis vinifera.Transgenic search. 2001, 10: 105-112
    124.Jain S M, GupLa P K, Newton R J. Somatic embryogenesis in woody plants. Dordrecht Kluwer Academic Publishers, 1995: 17-143
    125.Jia G X, Zhu Z Q, Chang F Q, Li Y X. Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant cell Rep, 2002, 21(2): 141-146
    126.Jin S X, Zhang X L, Liang S G, NieY C, Guo X P, Huang C. Factors affecting transformation effciency of embryogeniccallus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens, Plant Cell Tiss Org Cult 2005, 81: 229-237
    127.Khalilian H, Evans P K. Enucleation of protoplasts derived from suspension cultures of crown gall cell line of Parthenocissus tricuspidata. Biol, Plant, 1988,6:401-408
    128.Kim C K, Chung J D, Park S H, Burrell A M, Kamo K K, Byrne D H. Agrobacterium tumefaciens-mediated transformation of Rosa hybrida using the green fluorescent protein(GFP) gene, Plant Cell, Tiss Org Cult, 2004, 78: 107-111
    129.Kintzios S, Manos C, Makri O. Somatic embryogenesis from mature leaves of rose (Rosa sp.). Plant Cell Rep, 1999, 18: 467-472
    130.Ko K, Norelli J L, Revnoird J P et al. Effect of untranslated leader sequence of AM V RNA 4 and signal peptide of pathogenesis-related protein 1b on attacin gene expression, and resistance to fire blight in transgenic apple. Biotechnol Lett. 2000, 22: 373-381.
    131.Kumar S, Agrawal V, Gupta S C. Somatic embryogenesis in the woody legume Calliandra tweedii. Plant Cell Tiss Org Cult, 2002, 71: 77-80
    132.Larkin P J, Scow Croft W R, Somaclonal variation- a novel source of variability from cell cultures for plant improvement. Theor App Genet 1981, 60: 117-124
    133.Leelavathi S, Sunnichan V G, Kumria R, Vijaykanth GP, Bhatnagar R K, Reddy V S. A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): Embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep, 2004,27: 465-470
    134.Li Z N, Fang F,Liu G F, Bao M Z. Stable Agrobacterium-mediated genetic transformation of London plane tree (Platanus acerifolia Willd.). Plant Cell Rep, 2007, 26: 641-650
    135.Liu C Q, Xia X L, Yin W L, Zhou J H, Huang L C. Shoot regeneration and somatic embryogenesis from needles of redwood (Sequoia sempervirens (D, Don.) Endl.). Plant Cell Rep, 2006,25: 621-628
    136.Lowe J M, Davey M R, Power J B, Blundy K S. A study of some factors affecting Agrobacterium transformation and plant regeneration of Dendranthema grandiflora Tzvelev (syn, Chrysanthemum morifolium Ramat.). Plant Cell Tiss Organ Cult, 1993, 33:171-180
    137.Martinelli L, Mandolino G Genetic transformation and regeneration of transgenic plants in grapevine (Vitis rupestris S.). Theoretical and Applied Genetics, 1994, 88: 621-624
    138.Matsuoka D, Nanmori T, Sato K et al. Activation of AtMEKI, an Arobidopsis mitogen-activated protein kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J, 2002,29: 637-647
    139.McGranahan G H, Leslie C A, Dandekar A M et al , Transformation of pecan and regeneration of transgenic plants. Plant Cell Rep, 1993,12: 634-638
    140.McGranahan G H, Uratsu S L, Uratsu S L. Agrobacterium-mediated transformation of walnut somatic embryos and reeneration regeneration of transgenic plants. Bio Technology 1988, 6: 800-804
    141.Men S, Ming X, Wang Y, Liu R, Wei C, Li Y. Genetic transformation of two species of orchid by biolistic bombardment. Plant Cell Rep, 2003,21: 592-598
    142.Merkle S A, Battle P J, Enhancement of embryogenic culture initiation from tissues of mature sweetgum trees. Plant Cell Rep, 2000,19: 268-273
    143.Mondal T K, Bhattacharya A, Ahuja P S, Transgenic tea (Camellia sinensis (L.) O. Kuntze cv Kangra Jat plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep, 2001,20: 712-720
    144.Montoro P, Teinseree N, Rattans W. Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli. Plant Cell Rep, 2000,19: 851-855
    145 .Netting A G pH, abscisic acid and the integration of metabolism in plants under stressed and non-stressed conditions: cellular responses to stress and their implication for plant water relations. J Exp Bot, 2000, 51 (343): 147-158
    146.Oliveira M M, Miguel CM, Raquel M H. Transformation studies in woody fruit species. Plant tissue culture and biotechnology, 1996, 2(2): 76-93
    147.Parrott W A, Merkle S A, Williams E G Somatic embryogenesis: potential for use in propagation and gene transfer systems, In: Murray D, R,, ed, Advanced methods in plant breeding and biotechnology, Wallingford, U, K: CAB International; 1991: 158-200,
    148.Passaquet C, Teodorescu I N, Zuily F Y, Pham T A T. Changes in fatty acid and lipid content in callus and protoplasts of Parthenocissus tricuspidata and Petunia hybrida during culture. Physiol Plant, 1986, 67:211-216
    149.Pena L, Martin-Trillo M, Juarez J A et al. Constitutive expression of Arabidopsis LEAFY or APETALAT 1 Genes in citrus reduces their geneneration time. Nal Bio technol. 2001, 19: 263—267.
    150.Perera P I P, Hocher V, Verdei J L, Doulbeau S, Yakandawala D M D, Weerakoon L K. Unfertilized ovary: a novel explant for coconut(Cocos nucifera L,) somatic embryogenesis. Plant cell Rep, 2007, 26(1): 21-28
    151.Piispanen R, Aronen T, Chen X et al. Silver birch(Betula pendula) plants with aux and rol genes shows consistent changes in morphology, xylem structure and chemistry. Tree Physiol, 2003,23(10): 721-733
    152.Puterka G J, Bocchelli C, Dang P, et al. Pear transformedwith a lytic pelide gene for disease control affects nontarget organism, pear Psylla(Homoplera: Psyllidae) Econ Entomol, 2002, 95: 797-802.
    153.Qu S L, Huann X D, Zhann Z et al. Agrohacterium-mediated transformation of Malus robust with tomato iron transporter gene. Journal of Plant Physiology and Molecular Biolony, 2005, 31(3):235-240.
    154.Ramakrishnan N R, Dutta, G, S. High-frequency plant regeneration through cyclic secondary somatic embryogenesis in black pepper(Piper nigrum L.). Plant Cell Rep, 2006, 24:699-707
    155.Ranch J P, Oglesby L, Zielinski A C. Plant regeneration from tissue cultures of soybean by somatic embryogenesis, In: Vasil. I. K. ed. Cell culture and somatic cell genetics of plants. New York: Academic Press, 1986:97-110
    156.Sambrook J,Russell D W.Molecular Cloning:A Laboratory Manual,3rd ed.Cold Spring Harbor Lab Press,2001,黄培堂等译.分子克隆实验指南.北京:科学出版社,2002
    157.SAS Institute, Inc, SAS/STAT User's Guide, Release 6,12, Cary, NC: SAS Institute; 1995
    158.Sauer U, Wilhelm E. Somatic embryogenesis from ovaries, developing ovules and immature zygotic embryos, and improved embryo development of Castanea sativa. Biol Plant, 2005, 49:1-6
    159.Schlappi M, Hohn B. Competence of immature maize embryos for Agrobacterium-mediated gene transfer. Plant Cell, 1992,4: 7-16
    160.Schopke C, Taylor N, Carcamo R, Konan N K, Marmey P, Henshaw G G, Beachy R N, Fauquet C. Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures. Nat Biotechnol, 1996, 14: 731-735
    161.Scorza R, Cordts J M, Gray D J, Gonsalves D, Emershad R L, Ramming D W. Producing transgenic 'Thompson Seedless'Grape (Vtis vinifera). Plant J mer Soc Hort Sci, 1996,121:616-619
    162.Smith C J S, Watson C F, Morris P C, et al. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature, 1988, 334: 724-726
    163.Suzuki S, Nakano M. Agrobacterium-mediated production of transgenic plants of Muscari armeniacum Leichtl. ex Bak. Plant Cell Rep, 2002,20: 835-841
    164. Tang W, Peng X X, Newton R J. Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1 -phosphate dehydrogenase and glucitol- 6-phosphate dehydrogenase. Plant Physiology and Bio chemistry, 2005. 43: 139-146.
    165.Tang W, Samuels V. Genetic transformation and its practical application in plants. Developmental&Reproductive Biology, 2001,10 (2): 77-88
    166.Tanji Kenneth K. Society of Civil Engineers, Agricultural salinity assessment and management. New York: American Society of Civil Engineers. 1990,108:425-431
    167.Tarczynski M C, Jensen R G, Bohnert H J. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science,1993,259 (22): 508-510
    168.van der Salm T P M, van der Toorn C J G et al. Production of Roll gene transformed plants of Rosa hybrida L, and characterization of their rooting ability, Molecular Breeding, 1997, 3: 39-47
    169.Vasic D, Alibert, G, Skoric D. Protocols for efficient repetitive and secondary embryogenesis in Helianthus maximiliani (Schrader). Plant Cell Rep, 2001, 20: 121-125
    170.Xie D Y, Hong Y. Regeneration of Acacia mangium through somatic embryogenesis. Plant Cell Rep, 2001,20: 34-40
    171.Yanofsky M. Floral meristems to floral organs: genes controlling early events inArabidopsis flower development. Annu Rev Plant Physiol Mol Biol, 1995, 46:167-188
    172.Z J, L S J, M S S. Effect of Matrix Attachment Regions on Resveratrol Production in Tobacco with Transgene of Stilbene Synthase from Partheuocissus henryaua. Acta Botanica Sinica, 2004,46 (8): 948-954
    173.Zaragoza C, Muuoz B J. Regeneration of herbicide-tolerant black locust transgenic plants by SAAT. Plant Cell Rep, 2004,22: 832-838
    174.Zenk M H. Haploids in physiological and biochemical research, In Haploids In Ingher plants advances potential, Ed, by Kasha K J, Guelph Lniv Guelph, 1974: 339- 354
    175 .Zhang H X, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol, 2001,19: 765-768
    176.Zhang J, Nguyen H T, Btum A. Genetic analysis of osmotic adjustment in crop plants, J Exp Bot, 1999, 50 (322): 291-302
    177.Zhu L H, Holefors A, Ahlman A et al. Transformation of the apple root stock M.9/29 with the rolB gene and its influence on rooting and growth. Plant Science, 2001, 160: 433-439
    178.Zuily F Y, Esnault R. Comparative study of RNA metabolism in freshly isolated protoplasts and callus cultures of Parthenocissus tricuspidata crown gall. Physiol Plant, 1980,50:211-226
    179.Zurk A, Lchang PE, Ahroni A. Transformation of carnation by microprojectile bombardment. Scientia Horticulture, 1995, 64: 177-185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700