拟南芥UNC-93基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温、低温、干旱和盐碱等非生物胁迫严重影响植物的生长发育,导致农作物的产量和品质降低。对植物逆境相关基因功能的研究,可为农作物的耐逆定向育种提供理论基础。植物存在可遗传的钾营养效率差异,提高农作物自身钾营养效率是目前农作物品质遗传改良的重要研究方向。本研究利用突变体、过量表达和遗传互补等技术手段对拟南芥UNC-93基因进行了功能鉴定,初步鉴定出在提高植物耐逆性、促进钾在植物体根冠部的运输和促进植株生长等方面发挥重要作用。主要结果如下:
     1.根据水稻高温胁迫下表达谱分析数据,共筛选了11个高温显著诱导表达基因,并从ABRC获得了其拟南芥同源基因的突变体。经PCR和RT-CR检测,共得到11个纯合突变体。
     2.通过对拟南芥11个突变体在高温、高盐、渗透和干旱等胁迫处理下耐受能力检测,筛选出2个对胁迫耐受能力显著降低的突变体unc-93-1和unc-93-2。unc-93-2株型矮小、开花发育较迟,而突变体unc-93-1在株型上与野生型的差异不及突变体unc-93-2明显。RT-PCR检测表明unc-93-1有UNC-93基因的3’端(T-DNA插入点之后)非全长转录产物表达,而unc-93-2却没有。
     3.UNC-93是钾离子通道的调控蛋白。UNC-93蛋白的跨膜结构分析表明其具有10个跨膜结构,预测为膜蛋白。亚细胞定位研究证实了UNC-93的确为膜蛋白。通过Real-time PCR检测,UNC-93基因的表达可被高温、高盐、甘露醇和ABA等处理诱导上调,但是对低温没有明显响应。正常生长条件下在各组织中均能检测到UNC-93的表达,但是根和幼苗中表达最强烈。经GUS报告基因转基因拟南芥材料的GUS组织化学染色发现,GUS在根、幼苗和叶脉中活性最强。
     4.构建了利用CaMV35S强启动子驱动UNC-93全长cDNA的过量表达载体和UNC-93基因3’端部分cDNA的过量表达载体,经农杆菌介导的花序浸泡法转化到野生型拟南芥(Col-0)中得到过量表达株系,转化到突变体UNC-93-1和UNC-93-2中得到遗传互补株系。
     5.突变体unc-93-1和unc-93-2在幼苗生长阶段都表现出明显降低对高温、高盐、干旱、甘露醇和ABA等处理的耐受能力,而UNC-93全长cDNA的过量表达能显著提高植株的耐盐性和耐旱性。在低温条件下,突变体lnc-93-1. unc-93-2.UNC-93过量表达和野生型没有明显差异。主要逆境相关基因RD29A. RD22、DREB2A.COR15A、COR47、HsfA2、Hsp101和Hsp70在胁迫处理前或者胁迫处理后突变体中表达量明显低于野生型,而UNC-93过量表达植株中部分基因的表达量却高于野生型。ABA响应基因AB11、AB12、MYB2和SnKR2.6等在突变体、UNC-93过量表达和野生型中的表达量具有显著差异。推测UNC-93可能是通过依赖于ABA途径来调控植物的耐逆性。在种子萌发阶段,unc-93-2和UNC-93过量表达种子的萌发相比野生型均受到高盐、渗透、高温和ABA的强烈抑制,而unc-93-1相比野生型却降低了对胁迫的敏感性。
     6.对突变体、UNC-93过量表达和野生型钾含量测定显示,突变体unc-93-1和unc-93-2冠部的钾含量都低于野生型。UNC-93过量表达植株只在低钾条件下钾含量才显著高于野生型,而在正常钾条件下,与野生型没有明显差异。根部钾含量各株系均无明显差异。正常生长条件下,unc-93-2的生长发育受到抑制,unc-93-1也表现出生长延迟现象,UNC-93过量表达植株相对野生型株型高大,根系发达。低钾条件下,与野生型和UNC-93过量表达相比,突变体unc-93-1和unc-93-2在幼苗生长上受到更严重抑制,而且黄化。在低钾低铵条件下,突变体unc-93-1和unc-93-2萌发后表现出子叶褐化、根弯曲多根毛等现象。
     7.遗传互补实验表明,当把UNc-93全长cDNA的过量表达载体转化到突变体unc-93-1和unc-93-2中,突变体unc-93-1和unc-93-2所具有的对高盐、渗透等胁迫的敏感性和unc-93-2的变异株型特征都得到明显的修复。而当UNC-93基因3’端部分cDNA的过量表达载体转化到unc-93-2以后,也能在一定程度上修复unc-93-2矮小的特征。
The plant growth and development were greatly affected by abiotic stresses, such as high or low temperature, drought and salinity, and resulted in significant reductions in crop yields and quality. Research on the functions of stress related genes in plant can provide theoretical basis for targeted genetic engineering of high stress tolerant crops. Plant K+efficiency can be genetically controlled, and diverse plant species have different K+efficiency. High K+efficiency is a target in genetic improvement of crop quality. The objective of this research is to characterize the functions of Arabidopsis UNC-93in stress tolerance, potassium transport and plant growth. The main results are as follows:
     1. A total of11highly heat responsive genes were screened from rice microarray data and19mutants of their homologous genes in Arabidopsis were obtained from ABRC. A total of11homozygous lines were identified by PCR and RT-PCR.
     2. The mutant unc-93-1and unc-93-2showed significantly decreased tolerance to high temperature, salt and osmotic stress among the11Arabidopsis mutants screened. The unc-93-2showed dwarf and later anthesis, while unc-93-1had less significant difference in plant type compared with wild type (WT) than that of unc-93-2. A truncate transcript of3' end of UNC-93(behind the site of T-DNA) was detected in unc-93-1by RT-PCR analysis, but no any expression of UNC-93was detected in unc-93-2.
     3. UN-93is a K+channel regulatory protein. UNC-93is a membrane protein with10transmembrane helices. Transient expression assay located UNC-93at the plasma membrane in onion epidermal cells. The expression of UNC-93was induced by high temperature, salt, osmotic and abscisic acid (ABA) treatments. But there was no response to low temperature. Although the transcript of UNC-93could be detected in almost all tissues, it was higher in root and seedling. The activities of GUS were higher in root, seedling and vein by GUS assay in UNC-93promoter driven GUS report gene transgenic plants.
     4. The overexpression vectors of full or partial cDNA of UNC-93were constructed, and were separately transformed into WT (Col-0), unc-93-1or unc-93-2.
     5. The mutant unc-93-1and unc-93-2greatly decreased stress tolerance to high temperature, salt, drought, osmotic and ABA compared with WT. Overexpression of UNC-93significantly improved to salt and drought tolerance. No significant difference was observed between unc-93-1, unc-93-2UNC-93-overexpressing plants and WT under low temperature treatment. The expression levels of main stress related genes were significantly decreased in mutants but were upgraded in WVC-93-overexpressing plant. The expression levels of ABA-responsive genes, such as ABI1, ABI2, MYB2, SnKR2.6, had significantly differences among mutants, WVC-93-overexpressing plants and WT. Seed germination of unc-93-2and WVC-93-overexpressing line were greatly inhibited compared with WT under high temperature, salt, osmotic and ABA treatments, while unc-93-1mutant decreased sensitivity to these stresses compared with WT.
     6. Compared with WT, the K+contents in shoots of unc-93-1and unc-93-2were significantly decreased, WVC-93-overexpressing line had much higher K+contents under low K+concentration, but there were no obvious differences between WVC-93-overexpressing line and WT under normal K+concentration. There were no detectable changes of the K+contents in roots of unc-93-1, unc-93-2, WVC-93-overexpressing line and WT. Under normal condition, compared with WT, the growth and development of unc-93-2was inhibited, and the growth of unc-93-1was delayed, while WVC-93-overexpressing plants showed higher shoots and more roots. Under low potassium condition, compared with WT and WVC-93-overexpressing plants, the growth of unc-93-1and unc-93-2were inhibited more gravely and etiolation. The unc-93-1and unc-93-2showed brown cotyledons, curled principal roots and more lateral roots after seeds germination under low K+and NH4+concentration.
     7. The genetic complement assay showed that overexpression full cDNA of UNC-93can resume the tolerance to salt and osmotic stresses in unc-93-1and unc-93-2. The dwarf phenotype of unc-93-2returned to normal. When the overexpression vector of partial cDNA of UNC-93was transformed into unc-93-2, the dwarf phenotype of unc-93-2also returned to a certain extent.
引文
刘海燕,冯冬茹,刘兵,何炎明,王宏斌,王金发.农杆菌介导的MpASR蛋白在洋葱表皮细胞的定位研究[J].热带亚热带植物学报,2009,17(3):218-222.
    任昌福,陈安和,刘保国.高温影响杂交水稻开花结实的生理生化基础[J].西南农业大学学报,1990,12(5):440-443.
    赵志刚,江玲,肖应辉,张文伟,翟虎渠,万建民.水稻孕穗期耐热性QTLs分析[J].作物学报,2006,32(5):640-644.
    朱昌兰,江玲,张文伟,王春明,翟虎渠.万建民.稻米直链淀粉含量和胶稠度对高温耐性的QTL分析[J].中国水稻科学,2006,20(3):248-252.
    朱昌兰,肖应辉,王春明,江玲,翟虎渠,万建民.水稻灌浆期耐热害的数量性状基因位点分析[J].中国水稻科学,2005,19(2):117-121.
    Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J]. Plant Cell,2003,15:63-78.
    Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae [J]. Proc. Natl. Acad. Sci.1992,89(2):3736-3740.
    Banti V, Mafessoni F, Loreti E, Alpi A, Perata P, The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis [J]. Plant Physiol.2010, 152:1471-1483.
    Bensmihen S, Rippa S, Lambert G, Jublot D, Pautot V, et al. The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis [J]. Plant Cell,2002,14:1391-1403.
    Bhandal IS, Malik CP. Potassium estimationm, uptake, and its role in the physiology and metabolism of flowering plants [J]. Int Rev Cytol.1988.110:205-254.
    Bharti K, Von Koskull-Doring P, Bharti S, Kumar P, Tintschl-Korbitzer A, Treuter E, Nover L. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1 [J]. Plant Cell,2004,16:1521-1535.
    Blevins DG, Barnett NM, Frost WB. Role of potassium and malate in nitrate up take and translocation by wheat seedlings [J]. Plant Physiol.1978,62:784-788.
    Boyer RB, Lardy HA, Phillips PH. The role of potassium in muscle phosphorylations [J]. J Biol. Chem.1943a,146:673-682.
    Boyer RB, Lardy HA, Phillips PH. Further studies on the role of Potassium and other ions in the phosphorylation of the adenylic system [J]. J Biol. Chem.1943b, 149:529-541.
    Campbell CL, Lehmann CJ, Gill SS, Dunn WA, James AA, Foy BD. A role for endosomal proteins in alphavirus dissemination in mosquitoes [J]. Insect Mol Biol.2011,20(4):429-36.
    Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis [J]. Plant Physiol,2007,143:251-262.
    Chen X, Zhang W, Zhang B, Zhou J, Wang Y, Yang Q, Ke Y, He H. Phosphoproteins regulated by heat stress in rice leaves [J]. Proteome Sci.2011,9:37.
    Clough SJ, Bent AF. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J]. Plant J.1998,16(6):735-43.
    Czarnecka-Verner E, Pan S, Salem T, Gurley WB. Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP [J]. Plant Mol Biol.2004, 56:57-75.
    Czarnecka-Verner E, Yuan CX, Scharf KD, Englich G, Gurley WB. Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential [J]. Plant Mol Biol.2000,43:459-471.
    de la Cruz IP, Levin JZ, Cummins C, Anderson P, Horvitz HR. sup-9, sup-10, and unc-93 May Encode Components of a Two-Pore K+Channel that Coordinates Muscle Contraction in Caenorhabditis elegans [J]. The Journal of Neuroscience. 2003,27(27):9133-9145.
    Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP. Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis [J]. Plant Physiol.2001, 127(3):1012-1019.
    Du H, Liu L, You L, Yang M, He Y, Li X, Xiong L. Characterization of an inositol 1,3.4-trisphosphate 5/6-kinase gene that is essential for drought and salt stress responses in rice [J]. Plant Mol Biol.2011,77(6):547-563.
    Elumalai RP. Nagpal P, Reed JW. A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion [J]. Plant Cell.2002,14: 119-131.
    Evans HJ, Wildes RA. Potassium and its role in enzyme activation. Proceedings of 8th International Potash In statute Colloquia, Bern,1971, P.13-39.
    Finkelstein RR, Gampala SS. Rock CD. Abscisic acid signaling in seeds and seedlings [J]. Plant Cell.2002,14 Suppl:S15-45.
    Finkelstein RR, Lynch TJ. The Arabidopsis abscisic acid response gene AB15 encodes a basic leucine zipper transcription factor [J]. Plant Cell.2000,12:599-609.
    Finkelstein RR, Rock CD. Abscisic Acid biosynthesis and response [J]. Arabidopsis Book.2002, 1:e0058.
    Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein [J]. Plant Cell. 1998,10(6):1043-1054.
    Flowers TJ, Yeo AR. Ion relations of plants under drought and salinity [J]. Australian J Plant Physiol.1986.13(1):75-91.
    Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventinginteraction with 14-3-3 protein [J]. Plant Cell.2007,19:1617-1634.
    Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK. In vitro reconstitution of an abscisic acid signaling pathway [J]. Nature,2009,462:660-664.
    Gajdanowicz P, Michard E, Sandmann M, Rocha M, Correa LG, Ramirez-Aguilar SJ, Gomez-Porras JL, Gonzalez W, Thibaud JB, van Dongen JT, Dreyer I. Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues [J]. Proc Natl Acad Sci.2011.108:864-869.
    Gaymard F, Pilot G. Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferriere N, Thibaud JB, Sentenac H. Identification and disruption of a plant Shaker-like outward channel involved in K+release into the xylem sap [J]. Cell.1998,94:647-655.
    Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX. Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes [J]. Planta.2008, 228:191-201.
    Gierth M, and Maser P. Potassium transporters in plants involvement in K+acquisition, redistribution and homeostasis. FEBS Lett.2007.581:2348-2356.
    Gierth M, Maser P, Schroeder JI. The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+uptake and AKT1 K+channel contribution to K+uptake kinetics in Arabidopsis roots [J].2005,137(3):1105-14.
    Glenn EP, Brown JJ, Blumwald E. Salt tolerance and crop potential of halophytes [J]. Critical Reviews in Plant Sciences.1999,18:227-255.
    Gong D, Guo Y, Schumaker KS, Zhu JK. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis [J]. Plant Physiol.2004, 134(3):919-26.
    Gong M, Li Y J and Chen S Z. Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems [J]. J. Plant Physiol,1998,153:488-496.
    Gosti F, Beaudoin N, Serizet C, Webb A R, Vartanian N, Giraudata J. ABIl protein phosphatase 2C is a negative regulator of abscisic acid signaling [J]. Plant Cell. 1999,11:1897-1909.
    Grabov A. Plant KT/KUP/HAK potassium transporters:Single family-multiple functions [J]. Ann. Bot. (Lond.) 2007,99:1035-1041.
    Greenwald I, Horvitz HR. A visible allele of the muscle gene sup-1 OX of C. elegans [J]. Genetics.1986,113(1):63-72.
    Greenwald IS, Horvitz HR. unc-93(e1500):A behavioral mutant of Caenorhabditis elegans that defines a gene with a wild-type null phenotype [J]. Genetics.1980, 96(1):147-164.
    Hahn A, Bublak D, Schleiff E, Scharf KD. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato [J]. Plant Cell.2011, 23:741-755.
    Halfter U, Ishitani M, Zhu JK. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3 [J]. Proc Natl Acad Sci.2000,97(7):3735-3740.
    Hirsch RE, Lewis BD, Spalding EP, Sussman MR. A role for the AKT1 potassium channel in plant nutrition [J]. Science.1998,280(5365):918-921.
    Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H. The Arabidopsis outward K+channel GORK is involved in regulation of stomatal movements and plant transpiration [J]. Proc Natl Acad Sci.2003, 100(9):5549-5554.
    Hu C, Lin SY, Chi WT, Charng YY. Recent gene duplication and subfunctionalization produced a mitochondrial GrpE, the nucleotide exchange factor of the Hsp70 complex, specialized in thermotolerance to chronic heat stress in Arabidopsis [J]. Plant Physiol.2012,158(2):747-758.
    Hu HH, Dai MQ. Yao JL, Xiao BZ, Li X. Zhang QF. Xiong LZ. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice [J]. Proc Natl Acad Sci.2006,103(35):12987-12992.
    Hu HH, You J, Fang YJ, Zhu XY, Qi ZY, Xiong LZ. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice [J]. Plant Mol Biol. 2008,67(1-2):169-181.
    Huang J, Sun SJ, Xu DQ, Yang X, Bao YM, Wang ZF, Tang HJ, Zhang H. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245 [J]. Biochem Biophys Res Commun.2009a,389(3):556-561.
    Huang J, Wang MM, Jiang Y, Bao YM, Huang X, Sun H, Xu DQ, Lan HX, Zhang HS. Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance [J]. Gene.2008,420(2):135-144.
    Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control [J]. Genes & development,2009b,23(15):1805-1817.
    Ibrahim AMH, Quick JS. Genetic control of high temperature tolerance in wheat as measured by membrane thermal stability [J]. Crop Sci.2001,41:1405-1407.
    Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance [J]. Plant Physiol.2011,157:1243-1254.
    Ikeda M, Ohme-Takagi M. A novel group of transcriptional repressors in Arabidopsis [J]. Plant Cell Physiol.2009,50:970-975.
    Jain M, Tyagi AK, Khurana JP. Constitutive expression of a meiotic recombination protein gene homolog, OsTOP6A1, from rice confers abiotic stress tolerance in transgenic Arabidopsis plants [J]. Plant Cell Rep,2008,27(4):767-778.
    Jeanguenin L, Alcon C, Duby G. Boeglin M, Cherel I, Gaillard I, Zimmermann S, Sentenac H, Very AA. AtKCl is a general modulator of Arabidopsis inward Shaker channel activity [J]. Plant J,2011,67(4):570-582.
    Kang J, Choi H, Im M, Kim S Y. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling [J]. Plant Cell,2002,14: 343-357.
    Kang M, Fokar M, Abdelmageed H, Allen RD. Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity [J]. Plant Mol Biol,2011,75(4-5):451-466.
    Kim BG Waadt R. Cheong YH, Pandey GK, Dominguez-Solis JR, Schultke S, Lee SC, Kudla J, Luan S. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis [J]. Plant J,2007,52(3):473-484.
    Kim MJ. Ruzicka D, Shin R, Schachtman DP. The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions [J]. Mol Plant.2012,5(5):1042-1057.
    Kirkby EA, Armstrong MJ. Nitrate up take by roots as regulated by nitrate assimilation in the shoot of castor oil plants [J]. Plant Physiol.1980,65(2): 286-290.
    Kumar M, Busch W, Birke H, Kemmerling B, Nurnberger T. Schoffl F. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdfl.2 expression and pathogen resistance in Arabidopsis [J]. Mol Plant,2009,2(1):152-165.
    Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB. A Shaker-like K+channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis [J]. Plant Cell.2000,12:837-851.
    Lang V, Palva E T. The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh [J]. Plant Mol Biol,1993,21(3):581-582.
    Lebaudy A, Very AA, Sentenac H. K+channel activity in plants:genes, regulations and functions [J]. FEBS Lett.2007,581(12):2357-66.
    Leung J, Merlot S. Giraudat J. The Arabidopsis ABSCISIC ACID-1NSENSITIVE2 (AB12) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. [J]. Plant Cell,1997,9(5):759-771.
    Levin JZ, Horvitz HR. The Caenorhabditis elegans unc-93 gene encodes a putative transmembrane protein that regulates muscle contraction [J]. J Cell Biol.1992, 117(l):143-55.
    Levin JZ, Horvitz HR. Three new classes of mutations in the Caenorhabditis elegans muscle gene sup-9 [J]. Genetics.1993,135(1):53-70.
    Li C, Chen Q, Gao X, Qi B, Chen N, Xu S, Chen J, Wang X. AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis [J]. Sci China C Life Sci,2005,48(6):540-550.
    Li HY, Chang CS, Lu LS, Liu CA, Chan MT, Charng YY. Over-expression of Arabidopsis thaliana heat shock factor gene (AtHsfAlb) enhances chilling tolerance in transgenic tomato [J]. Bot Bull of Acad Sin,2003,44:129-140.
    Li M. Doll J, Weckermann K, Oecking C. Berendzen KW, Schoffl F. Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins [J]. Eur J Cell Biol.2010,89:126-132.
    Liu AL, Zou J, Liu CF, Zhou XY, Zhang XW, Luo GY, Chen XB. Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice [J]. BMB Rep, 2013,46:31-36.
    Liu AL, Zou J, Zhang XW, Zhou XY, Wang WF, Xiong XY, Chen LY, Chen XB. Expression profiles of class A rice heat shock transcription factor genes under abiotic stresses [J]. J Plant Biol.2010,53(2):142-149.
    Liu HC, Liao HT, Charng YY. The role of class Al heat shock factors (HSFAls) in response to heat and other stresses in Arabidopsis [J]. Plant Cell Environ,2011, 34:738-751.
    Liu LL, Ren HM, Chen LQ, Wang Y, Wu WH. A protein kinase, calcineurin B-like protein-interacting protein Kinase9, interacts with calcium sensor calcineurin B-like Protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis [J]. Plant Physiol.2013,161(1):266-277.
    Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis [J]. Plant Cell.1998,10(8):1391-1406.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct Method. Methods.2001,25:402-408.
    Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christman A, Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors [J]. Science,2009, 324(5930):1064-1068.
    Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J. Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML. Phylogenetic relationships within cation transporter families of Arabidopsis [J]. Plant Physiol.2001,126(4):1646-1667.
    Mengel K, irkby E. Potassium in crop production [J]. Adv. Agron.1980,33,59-110.
    Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu JK. Gain-and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress [J]. FEBS Lett.2006.580(28-29):6537-6542.
    Munns R. Comparative physiology of salt and water stress [J]. Plant Cell Environ. 2002,25(2):239-250.
    Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses [J]. Plant Physiol.2009 149,1:88-95.
    Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses [J]. Plant J,2003, 34:137-148.
    Nieves-Cordones M, Aleman F, Martinez V, Rubio F. The Arabidopsis thaliana HAK5 K+transporter is required for plant growth and K+acquisition from low K+ solutions under saline conditions [J]. Mol Plant.2010,3(2):326-333.
    Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress [J]. Plant J.2006,48:535-547.
    Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, Tamoi M, Ikeda M, Ohme-Takagi M, Yoshimura K, Yabuta Y, HsfAld and HsfAle involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress [J]. Plant Cell Physiol. 2011,52:933-945.
    Ogawa D, Yamaguchi K, Nishiuchi T, High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth [J]. J Exp Bot.2007,58:3373-3383
    Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H, Ohiraki H, Yamada K, Seo SU, Abo M, Yoshimura E, Shinozaki K, Yamaguchi-Shinozaki K. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis [J]. Plant Cell.2013,25(2):609-624.
    Pandey S, Nelson D C, Assmann S M. Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis [J]. Cell.2009,136:136-148.
    Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S. Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL. McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins [J]. Science.2009,324(5930):1068-1071.
    Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells [J]. Nature.2000,406(6797):731-734.
    Pla M, Vilardell J, Guiltinan MJ, Marcotte WR, Niogret MF, Quatrano RS, Pages M. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28 [J]. Plant Mol Biol.1993,21(2):259-266.
    Pyo YJ, Gierth M, Schroeder JI, Cho MH. High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions [J]. Plant Physiol.2010,153(2):863-875.
    Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress [J]. Plant Cell.2007, 19(4):1415-1431.
    Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis [J]. Proc Natl Acad Sci. 2002,99(13):9061-9066.
    Reed JW, Elumalai RP, Chory J. Suppressors of an Arabidopsis thaliana phyB mutation identify genes that control light signaling and hypocotyl elongation [J]. Genetics.1998,148(3):1295-1310.
    Ren XL, Qi GN, Feng HQ, Zhao S, Zhao SS, Wang Y, Wu WH. Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis [J]. Plant J.2013,74(2):258-266.
    Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX. A rice quantitative trait locus for salt tolerance encodes a sodium transporter [J]. Nature Genetics.2005,37,1141-1146.
    Rigas S, Debrosses G., Haralampidis K, Vicente-Agullo F, Feldmann KA, Grabov A, Dolan L, Hatzopoulos P. TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs [J]. Plant Cell.2001,13:139-151.
    Sanders D, Brownlee C, Harpe JE. Communicating with calcium [J]. Plant Cell, 1999.11:691-706.
    Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Doring P, The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis [J]. Plant Mol Biol. 2006.60:759-772.
    Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses [J]. Current Opinion in Plant Biology,2003,6:410-417.
    Singh A, Mittal D, Lavania D, Agarwal M, Mishra RC, Grover A. OsHsfA2c and OsHsfB4b are involved in the transcriptional regulation of cytoplasmic OsClpB (Hsp100) gene in rice(Oryza saliva L.) [J]. Cell Stress Chaperones.2012, 17(2):243-254.
    Spalding EP, Hirsch RE, Lewis DR, Qi Z, Sussman MR, Lewis BD. Potassium uptake supporting plant growth in the absence of AKT1 channel activity inhibition by ammonium and stimulation by sodium [J]. The Journal of General Physiology. 1999,113(6):909-918.
    Tahir M., Signh M. Assessments of screening techniques for heat tolerance in wheat [J]. Crop Sc.1993,33:740-744.
    Tang N, Zhang H, Li XH, Xiao JH, Xiong LZ. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice [J]. Plant Physiol.2012, 158:1755-1768.
    Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice [J]. J Exp Bot.2011,62(14):4863-4874.
    Tester M, Blatt MR. Direct measurement of K channels in thylakoid membranes by incorporation of vesicles into planar lipid bilayers [J]. Plant Physiol.1989,91: 249-252.
    Tester M, Davenport R. Na+tolerance and Na+transport in higher plants [J]. Annals of Botany,2003.91:503-527.
    Uno Y, Furihata T, Abe H, Yoshida R. Shinozaki K, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions [J]. Proc Natl Acad Sci,2000,97:11632-11637.
    Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder Jl. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in xenopus laevis oocytes and Na uptake in Saccharomyces cerevisiae [J]. Plant Physiol.2000,122(4):1249-1259.
    Very AA, Sentenac H. Molecular mechanisms and regulation of K+transport in higher plants [J]. Annu Rev Plant Biol.2003.54:575-603.
    Vicente-Agullo F. Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A. Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots [J]. Plant J.2004,40:523-535.
    Wang Y, He L. Li HD, Xu J, Wu WH. Potassium channel a-subunit AtKCl negatively regulates AKT1-mediated K+uptake in Arabidopsis roots under low-K+stress [J]. Cell Res.2010,20(7):826-837.
    Xiang JH, Ran J, Zou J. Zhou XY, Liu AL, Zhang XW, Peng Y. Tang N, Luo GY Chen XB. Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice [J]. Plant Cell Rep.2013,32(11):1795-1806.
    Xiang Y, Tang N, Du H, Ye HY, Xiong LZ. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice [J]. Plant Physiol.2008,148(4):1938-1952.
    Xie T Ren R, Zhang YY, Pang Y, Yan C, Gong X, He Y, Li W, Miao D, Hao Q, Deng H, Wang Z, Wu JW, Yan N. Molecular mechanism for inhibition of a critical component in the Arabidopsis thaliana abscisic acid signal transduction pathways, SnRK2.6, by protein phosphatase ABI1 [J]. J Biol Chem.2012, 287(1):794-802.
    Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. Plant Cell.2002;14 Suppl:S165-83.
    Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+transporter AKT1 in Arabidopsis [J]. Cell.2006,125(7):1347-60.
    Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress [J]. Plant Cell,1994,6:251-64.
    Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters [J]. Trends Plant Sci,2005,10: 88-94.
    Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses [J]. Annu Rev Plant Biol,2006.57:781-803.
    Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis [J]. Planta.2008, 227:957-967.
    Yoshida T. Ohama N, Nakajima J. Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim JM. Seki M, Todaka D, Osakabe Y, Sakuma Y, Schoffl F, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis HsfAl transcription factors function as the main positive regulators in heat shock-responsive gene expression [J]. Mol Genet Genomics.2011.286(5-6):321-332.
    Zhang X, Zhang L, Dong F. Gao J, Galbraith DW. Song CP. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba [J]. Plant Physiol. 2001,126(4):1438-48.
    Zhang XW, Li JP, Liu AL, Zou J, Zhou XY, Xiang JH, Rerksiri W, Peng Y, Xiong XY, Chen XB. Expression profile in rice panicle:insights into heat response mechanism at reproductive stage [J]. PLoS One.2012,7:e49652.
    Zhang XW, Rerksiri W, Liu AL, Zhou XY, Xiong HR, Xiang JH, Chen XB, Xiong XY. Transcriptome profile reveals heat response mechanism at molecular and metabolic level in rice flag leaf [J]. Gene.2013,530(2):185-192.
    Zhu B, Ye C, Lu H, Chen X, Chai G, Chen J, Wang C. Identification and characterization of a novel heat shock transcription factor gene, GmHsfAl, in soybeans (Gtycine max) [J]. J Plant Res.2006,119:247-256
    Zhu JK. Regulation of ion homeostasis under salt stress [J]. Curr Opin Plant Biol. 2003,6(5):441-5.
    Zhu JK. Salt and drought stress signal transduction in plants [J]. Annu Rev Plant Biol. 2002,53:247-73.
    Zhu X, Thalor SK, Takahashi Y. Berberich T, Kusano T. An inhibitory effect of the sequence-conserved upstream open-reading frame on the translation of the main open-reading frame of HsfBl transcripts in Arabidopsis [J]. Plant Cell Environ. 2012,35:2014-2030.
    Zou J, Liu AL. Chen XB, Zhou XY, Gao GF, Wang WF, Zhang XW. Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment [J]. J Plant Physiol.2009,166:851-861.
    Zou J, Liu CF, Chen XB. Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice [J]. Plant Cell Rep.2011, 30:2155-2165.
    Zou J, Liu CF, Liu AL, Zou D, Chen XB. Overexpression of OsHspl7.0 and OsHsp23.7 enhances drought and salt tolerance in rice [J]. J Plant Physiol.2012, 169:628-635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700