拟南芥CRY2调控光形态建成的分子遗传学与生化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物的生长发育都依赖光,光不仅是植物光合作用所必需的,还是植物感受外部环境信息所必需的。这种光依赖的植物生长发育过程为植物的光形态建成过程。在模式植物拟南芥中,光形态建成的分子机制已被广泛研究。目前已知有几种光受体介导光形态建成的信号传递,包括红光和远红光光受体光敏色素、蓝光和紫外光光受体隐花色素、向光素及含LOV结构域的F-box家族蛋白ZTL/FKF/LKP2。这些蛋白通过与它们各自的信号蛋白发生光依赖的相互作用而启动信号的传递过程,从而调节植物的光形态建成。然而目前对于这些信号传递的具体过程的研究尚不清楚。本论文主要探讨与隐花色素CRY2互作的γCAL2和CIU1的遗传学功能与生物化学特性,以及蓝光依赖的CRY2降解的生化特性及参与CRY2降解的相关遗传因子,获得了如下研究结果。
     亚细胞定位研究发现,γCAL2仅定位在线粒体中,由于CRY2是核蛋白,因此推测γCAL2可能不是CRY2的信号传递蛋白。对γCAL2的遗传学功能及生物化学特性进行研究,发现拟南芥中的γCAL1和γCAL2都突变后导致胚胎发育异常及种子不萌发;表达了γCAL2RNAi载体的γcal1突变体(c1c2i)幼苗具有类似cop的持续光形态建成表型,而且c1c2i成年植物对光周期的敏感性降低。这些结果表明γCAL2及与之同源的γCAL1在植物的光形态建成过程中起重要作用,首次证明线粒体复合体I中的γCA亚复合体对植物发育的重要性。
     对CRY2与CIU1的相互作用进行深入研究发现,CIU1在蓝光下能够与CRY2相互作用,它们的互作不仅仅是蓝光依赖性的也是蓝光强度依赖性的;CIU1蛋白与CRY2的N端PHR结构域相互作用,CIU1通过其N端的前135个氨基酸(CIU1N135)与CRY2互作。免疫共沉淀实验进一步证明CRY2与CIU1相互作用,表明这两个蛋白在体内通过形成复合体而对蓝光作出响应。将CIU1过量表达到拟南芥中,发现该转基因植物表现出晚花表型,由于CRY2的主要功能之一是调节光周期开花,因此CIU1很可能参与调节CRY2的功能。
     鉴于蓝光依赖的CRY2蛋白的泛素化及降解在整个CRY2信号转导与调节过程中的重要性,本论文的第二部分着重于对蓝光依赖的CRY2蛋白泛素化及降解的生物化学及遗传方面的机理研究。第一,通过检测CRY2色氨酸三联体突变体在蓝光下的降解,发现CRY2色氨酸三联体突变体蛋白的降解减慢了,且CRY2色氨酸三联体突变体蛋白降解后会出现提前累积的现象,后经翻译抑制剂CHX处理植物后,发现CRY2色氨酸三联体突变体蛋白不再有累积现象,说明这种累积现象是由翻译的加强引起的。第二,通过检测CRY2在co,fd,ft,ft tsf,flc,toc1,cca1lhy,prr1579,ztl,ztllkp2,ztllkp2fkf1和hmr-1不同光信号传递分子突变体内的降解情况,发现CRY2在ft,ft tsf,flc和cca1lhy突变体内能够正常降解,且CRY2在ztl,ztllkp2和ztllkp2fkf1突变体中也降解正常,说明ZTL/LKP2/FKF1并不是蓝光下介导CRY2降解的光受体,CRY2在co,fd,toc1和prr1579突变体内的降解变慢,而在hmr-1突变体内的降解加快。第三,通过免疫印迹检测CRY2在ubR48过表达植株体内的降解情况,发现诱导表达ubR48能够抑制CRY2蛋白的降解,从而说明CRY2蛋白泛素链的形成依赖于赖氨酸48(Lys48)。第四,通过检测CRY2在E3泛素连接酶复合体突变体cul1和cop1突变体内的降解发现,CRY2在这两类突变体内的降解被抑制,证明光激活态的CRY2蛋白的泛素化至少需要基于Cul1的SCF类E3泛素连接酶及基于Cul4的COP1E3泛素连接酶的参与。第五,通过定量分析蓝光下野生型植物体内CRY2mRNA的变化,首次发现蓝光下调CRY2的mRNA表达,这说明蓝光不仅调节CRY2蛋白泛素化与降解,且调节CRY2mRNA的表达。
     为了找到参与CRY2泛素化降解的基因,利用LUC-CRY2转基因拟南芥,通过EMS诱变,构建了突变体库。目前已从中筛选到多个影响CRY2降解的突变体,这为今后深入研究CRY2在植物光形态建成中的作用及其信号转导与调节机制奠定了基础。
Plant growth and development are dependent on light for not onlyphotosynthetic energy supply but also for environmental information acquisition.This light-dependent plant developmental process is referred to asphotomorphogenesis. The molecular mechanism underlying photomorphogenesishas been extensively studied in the model plant Arabidopsis. It is currently knownthat several photoreceptors, including the red/far-red light receptor phytochromes,and blue/UV-A light receptors cryptochromes, phototropins and LOV-domain F-box receptors ZTL/FKF/LKP2mediate light signals to regulatephotomorphogenesis. It has also been discovered that those photoreceptorsundergo light-dependent interaction with respective signaling partners to triggersignal transduction process controlling photomorphogenesis. However, manydetails of the process remain unclear. The dissertation research mainly concernson the genetic function and biochemical property of two putative CRY-interactingproteins, γCAL2and CIU1, and also concerns on the biochemical property of bluelight-dependent CRY2degradation and the genetic components associated withCRY2degradation.
     γCAL2is located exclusively in the mitochondria, according to thesubcellular localization experiment, whereas CRY2is an exclusively nuclearphotoreceptor, thus γCAL2is unlikely a bona fide CRY2-signaling protein. Anumber of genetics and photomorphogenic analyses were performed to furtherinvestigate the function of γCAL2. It was found that mutations of the γCAL1andγCAL2in Arabidopsis result in defective embryogenesis and non-germinatingseeds, and the γcal1mutant plant expressing the RNAi (referred as c1c2i)construct of the γCAL2gene showed a partial cop (constitutive photomorphogenic)phenotype in young seedlings, and a reduced photoperiodi c sensitivity in adultplants. All these results demonstrate that γ-CAL2and its close homolog γCAL1play important roles in photomorphogenesis and for the first time demonstrate thatthe functional significance of the γCA subcomplex of mitochondrial complex I inplant development.
     A detailed investigation of the physical interaction between CRY2and CIU1demonstrates that CIU1undergoes blue light-dependent interaction with CRY2, which is not only wavelength-specific but also fluence rate-dependent. Moreover,the interacting domains for the two proteins have been narrowed down to theCRY2-PHR domain and the CIU1N terminal135amino acid region (CIU1N135).The blue light-stimulated CRY2-CIU1interaction has also been shown by the co-IP assay, suggesting that the two proteins indeed form complex in response toblue light. CIU1-overexpressing transgenic plants showed delayed floweringphenotype. Because regulation of photoperiodic flowering is a major function ofCRY2, this result indicates that CIU1is likely to involve in CRY2functionregulation.
     Given the importance of the blue light-dependent ubiquitination anddegradation of CRY2in the overall CRY2signal transduction and regulation, thesecond part of this dissertation is focused on the biochemistry and geneticsmechanism studies underlying the blue light-dependent CRY2ubiquitination anddegradation. And the following results are obtained:(1) CRY2trp-triad mutantproteins degrade slower than wild type CRY2protein, and the mutant proteinsaccumulate right after degradation. The accumulation of the mutant proteins afterexposing to blue light can be eliminated by treating with CHX, suggestion that theaccumulation of CRY2trp-triad mutant proteins is caused by acceleratingtranslation.(2) After checking the degradation of CRY2in co, fd, ft, ft tsf, flc,toc1, cca1lhy, prr1579, ztl, ztllkp2, ztllkp2fkf1and hmr-1mutants, we found thatCRY2degraded normally in ft, ft tsf, flc,cca1lhy, ztl, ztllkp2and ztllkp2fkf1mutants and degraded slower in co, fd, toc1and prr1579, but accelerated itsdegradation in hmr-1mutant. The normal degradations of CRY2in ztl, ztllkp2andztllkp2fkf1indicate that ZTL/LKP2/FKF1are not the photoreceptor mediatingCRY2ubiquitination and degradation in response to blue light.(3) Thedegradation of CRY2is impaired in ubR48overexpressing plants, indicating thatubiquitination of CRY2is involved with Lysine48-dependent polyubiquitinationpathway.(4) The slow degradation of CRY2in cul1and cop1mutants suggest thatthe photoexcited CRY2is ubiquitinated by at least two types of E3ubiquitinligases, the Cul1-dependend SCF E3ubiquitin ligase and Cul4-dependent COP1E3ubiquitin ligase.(5) For the first time we found that the blue light-dependentregulation of CRY2expression may involve not only ubiquitination anddegradation of the CRY2protein, but also altered homeostasis of the CRY2mRNA.
     A LUC-CRY2EMS based genetics study was initiated to screen for genes involving in the blue light-dependent CRY2ubiquitination and degradation. Manymutations were isolated and studied. The results of this experiment will pave theway for future studies of CRY2signal transduction and regulation as well as therole of CRY photoreceptor signal transduction and regulation in plantphotomorphogenesis.
引文
[1] C. Aubert, M. H. Vos, P. Mathis et al. Intraprotein radical transfer duringphotoactivation of DNA photolyase. Nature,2000,405(6786):586-590
    [2] V. Balland, M. Byrdin, A. P. Eker et al. What makes the difference between acryptochrome and DNA photolyase? A spectroelectrochemical comparison ofthe flavin redox transitions. J Am Chem Soc,2009,131(2):426-427
    [3] C. Lin,T. Todo. The cryptochromes. Genome Biol,2005,6(5):220
    [4] A. Sancar. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev,2003,103(6):2203-2237.
    [5] Y. Huang, R. Baxter, B. S. Smith et al. Crystal structure of cryptochrome3from Arabidopsis thaliana and its implications for photolyase activity. ProcNatl Acad Sci U S A,2006,103(47):17701-17706
    [6] R. Pokorny, T. Klar, U. Hennecke et al. Recognition and repair of UV lesionsin loop structures of duplex DNA by DASH-type cryptochrome. Proc NatlAcad Sci U S A,2008,105(52):21023-21027
    [7] T. Mockler, H. Yang, X. Yu et al. Regulation of photoperiodic flowering byArabidopsis photoreceptors. Proc Natl Acad Sci U S A,2003,100(4):2140-2145.
    [8] H. Liu, X. Yu, K. Li et al. Photoexcited CRY2interacts with CIB1to regulatetranscription and floral initiation in Arabidopsis. Science,2008,322(5907):1535-1539
    [9] H. Guo, H. Yang, T. C. Mockler et al. Regulation of flowering time byArabidopsis photoreceptors. Science,1998,279(5355):1360-1363
    [10] M. Koornneef, C. Alonso-Blanco, A. J. M. Peeters et al. Genetic control offlowering time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol,1998,49:345-370
    [11] F. Valverde, A. Mouradov, W. Soppe et al. Photoreceptor regulation ofCONSTANS protein in photoperiodic flowering. Science,2004,303(5660):1003-1006
    [12] M. Endo, N. Mochizuki, T. Suzuki et al. CRYPTOCHROME2in vascularbundles regulates flowering in Arabidopsis. Plant Cell,2007,19(1):84-93
    [13] M. Koornneef, C. Alonso-Blanco, H. Blankestijn-de Vries et al. Geneticinteractions among late-flowering mutants of Arabidopsis. Genetics,1998,148(2):885-892
    [14] T. C. Mockler, H. Guo, H. Yang et al. Antagonistic actions of Arabidopsiscryptochromes and phytochrome B in the regulation of floral induction.Development,1999,126(10):2073-2082
    [15] B. Liu, Z. Zuo, H. Liu et al. Arabidopsis cryptochrome1interacts with SPA1to suppress COP1activity in response to blue light. Genes Dev,2011,25(10):1029-1034
    [16] Z. Zuo, H. Liu, B. Liu et al. Blue light-dependent interaction of CRY2withSPA1regulates COP1activity and floral initiation in Arabidopsis. Curr Biol,2011,21(10):841-847
    [17] P. F. Devlin,S. A. Kay. Circadian photoperception. Annu Rev Physiol,2001,63:677-694
    [18] S. L. Harmer. The circadian system in higher plants. Annu Rev Plant Biol,2009,60:357-377
    [19] D. E. Somers, P. F. Devlin,S. A. Kay. Phytochromes and cryptochromes in theentrainment of the Arabidopsis circadian clock. Science,1998,282(5393):1488-1490
    [20] C. A. Brautigam, B. S. Smith, Z. Ma et al. Structure of the photolyase-likedomain of cryptochrome1from Arabidopsis thaliana. Proc Natl Acad Sci U SA,2004,101(33):12142-12147
    [21] X. Yu, H. Liu, J. Klejnot et al. The cryptochrome blue light receptors.Arabidopsis Book,2010,8: e0135
    [22] D. Shalitin, X. Yu, M. Maymon et al. Blue light-dependent in vivo and in vitrophosphorylation of Arabidopsis cryptochrome1. Plant Cell,2003,15(10):2421-2429.
    [23] H.-Q. Yang, Y.-J. Wu, R.-H. Tang et al. The C termini of Arabidopsiscryptochromes mediate a constitutive light response. Cell,2000,103:815–827
    [24] B. Liu, H. Liu, D. Zhong et al. Searching for a photocycle of the cryptochromephotoreceptors. Curr Opin Plant Biol,2010,13(5):578-586
    [25] C. Lin, D. E. Robertson, M. Ahmad et al. Association of flavin adeninedinucleotide with the Arabidopsis blue light receptor CRY1. Science,1995,269(5226):968-970
    [26] K. Malhotra, S. T. Kim, A. Batschauer et al. Putative blue-light photoreceptorsfrom Arabidopsis thaliana and Sinapis alba with a high degree of sequencehomology to DNA photolyase contain the two photolyase cofactors but lackDNA repair activity. Biochemistry,1995,34:6892-6899
    [27] J. P. Bouly, E. Schleicher, M. Dionisio-Sese et al. Cryptochrome blue lightphotoreceptors are activated through interconversion of flavin redox states. JBiol Chem,2007,282(13):9383-9391
    [28] R. Banerjee, E. Schleicher, S. Meier et al. The signaling state of Arabidopsiscryptochrome2contains flavin semiquinone. J Biol Chem,2007,282:14916-14922
    [29] P. Muller,M. Ahmad. Light-activated cryptochrome reacts with molecularoxygen to form a flavin-superoxide radical pair consistent withmagnetoreception. J Biol Chem,2011,286(24):21033-21040
    [30] S. H. Song, N. Ozturk, T. R. Denaro et al. Formation and function of flavinanion radical in cryptochrome1blue-light photoreceptor of monarch butterfly.J Biol Chem,2007,282(24):17608-17612
    [31] N. Ozturk, S. H. Song, C. P. Selby et al. Animal type1cryptochromes.Analysis of the redox state of the flavin cofactor by site-directed mutagenesis.J Biol Chem,2008,283(6):3256-3263
    [32] R. J. Gegear, L. E. Foley, A. Casselman et al. Animal cryptochromes mediatemagnetoreception by an unconventional photochemical mechanism. Nature,2010,463(7282):804-807
    [33] Y. T. Kao, C. Tan, S. H. Song et al. Ultrafast dynamics and anionic activestates of the flavin cofactor in cryptochrome and photolyase. J Am Chem Soc,2008,130(24):7695-7701
    [34] H. Liu, B. Liu, C. Zhao et al. The action mechanisms of plant cryptochromes.Trends Plant Sci,2011,16(12):684-691
    [35] D. Shalitin, H. Yang, T. C. Mockler et al. Regulation of Arabidopsiscryptochrome2by blue-light-dependent phosphorylation. Nature,2002,417(6890):763-767.
    [36] S. Burney, N. Hoang, M. Caruso et al. Conformational change induced by ATPbinding correlates with enhanced biological function of Arabidopsiscryptochrome. FEBS Lett,2009,583(9):1427-1433
    [37] C. Lin,D. Shalitin. Cryptochrome Structure and Signal transduction. Annu RevPlant Biol,2003,54(1):469-496
    [38] A. Sancar. Cryptochrome: the second photoactive pigment in the eye and itsrole in circadian photoreception. Annu Rev Biochem,2000,69:31-67
    [39] C. L. Partch, M. W. Clarkson, S. Ozgur et al. Role of structural plasticity insignal transduction by the cryptochrome blue-light photoreceptor. Biochemistry,2005,44(10):3795-3805
    [40] X. Yu, D. Shalitin, X. Liu et al. Derepression of the NC80motif is critical forthe photoactivation of Arabidopsis CRY2. Proc Natl Acad Sci U S A,2007,104(17):7289-7294
    [41] X. Yu, R. Sayegh, M. Maymon et al. Formation of nuclear bodies ofArabidopsis CRY2in response to blue light is associated with its blue light-dependent degradation. Plant Cell,2009,21(1):118-130
    [42] K. A. Lamia, U. M. Sachdeva, L. DiTacchio et al. AMPK regulates thecircadian clock by cryptochrome phosphorylation and degradation. Science,2009,326(5951):437-440
    [43] Y. Harada, M. Sakai, N. Kurabayashi et al. Ser-557-phosphorylated mCRY2isdegraded upon synergistic phosphorylation by glycogen synthase kinase-3beta.J Biol Chem,2005,280(36):31714-31721
    [44] M. Ahmad, J. A. Jarillo,A. R. Cashmore. Chimeric proteins between cry1andcry2arabidopsis blue light photoreceptors indicate overlapping functions andvarying protein stability. Plant Cell,1998,10(2):197-208
    [45] S. I. Godinho, E. S. Maywood, L. Shaw et al. The after-hours mutant reveals arole for Fbxl3in determining mammalian circadian period. Science,2007,316(5826):897-900
    [46] S. M. Siepka, S. H. Yoo, J. Park et al. Circadian mutant Overtime reveals F-box protein FBXL3regulation of cryptochrome and period gene expression.Cell,2007,129(5):1011-1023
    [47] L. Busino, F. Bassermann, A. Maiolica et al. SCFFbxl3controls the oscillationof the circadian clock by directing the degradation of cryptochrome proteins.Science,2007,316(5826):900-904
    [48] S. Sathyanarayanan, X. Zheng, S. Kumar et al. Identification of novel genesinvolved in light-dependent CRY degradation through a genome-wide RNAiscreen. Genes Dev,2008,22(11):1522-1533
    [49] K. M. Folta, M. A. Pontin, G. Karlin-Neumann et al. Genomic andphysiological studies of early cryptochrome1action demonstrate roles forauxin and gibberellin in the control of hypocotyl growth by blue light. Plant J,2003,36(2):203-214
    [50] R. Sellaro, U. Hoecker, M. Yanovsky et al. Synergism of red and blue light inthe control of Arabidopsis gene expression and development. Curr Biol,2009,19(14):1216-1220
    [51] L. Corbesier,G. Coupland. The quest for florigen: a review of recent progress.J Exp Bot,2006,57(13):3395-3403
    [52] H. L. Lian, S. B. He, Y. C. Zhang et al. Blue-light-dependent interaction ofcryptochrome1with SPA1defines a dynamic signaling mechanism. Genes Dev,2011,25(10):1023-1028
    [53] Y. Jiao, O. S. Lau,X. W. Deng. Light-regulated transcriptional networks inhigher plants. Nat Rev Genet,2007,8(3):217-230
    [54] J. Yang, R. Lin, J. Sullivan et al. Light regulates COP1-mediated degradationof HFR1, a transcription factor essential for light signaling in Arabidopsis.Plant Cell,2005,17(3):804-821
    [55] L. J. Liu, Y. C. Zhang, Q. H. Li et al. COP1-Mediated Ubiquitination ofCONSTANS Is Implicated in Cryptochrome Regulation of Flowering inArabidopsis. Plant Cell,2008,20(2):292-306
    [56] S. Jang, V. Marchal, K. C. Panigrahi et al. Arabidopsis COP1shapes thetemporal pattern of CO accumulation conferring a photoperiodic floweringresponse. Embo J,2008,27:1277-1288
    [57] J. W. Yu, V. Rubio, N. Y. Lee et al. COP1and ELF3control circadian functionand photoperiodic flowering by regulating GI stability. Mol Cell,2008,32(5):617-630
    [58] S. Laubinger, V. Marchal, J. Le Gourrierec et al. Arabidopsis SPA proteinsregulate photoperiodic flowering and interact with the floral inducerCONSTANS to regulate its stability. Development,2006,133(16):3213-3222
    [59] M. Perales, G. Parisi, M. S. Fornasari et al. Gamma carbonic anhydrase likecomplex interact with plant mitochondrial complex I. Plant Mol Biol,2004,56(6):947-957
    [60] J. L. Heazlewood, K. A. Howell,A. H. Millar. Mitochondrial complex I fromArabidopsis and rice: orthologs of mammalian and fungal components coupledwith plant-specific subunits. Biochim Biophys Acta,2003,1604(3):159-169
    [61] M. Garmier, A. J. Carroll, E. Delannoy et al. Complex I dysfunction redirectscellular and mitochondrial metabolism in Arabidopsis. Plant Physiol,2008,148(3):1324-1341
    [62] D. Hewett-Emmett,R. E. Tashian. Functional diversity, conservation, andconvergence in the evolution of the alpha-, beta-, and gamma-carbonicanhydrase gene families. Mol Phylogenet and Evol,1996,5(1):50-77
    [63] B. C. Tripp,J. G. Ferry. A structure-function study of a proton transportpathway in the gamma-class carbonic anhydrase from Methanosarcinathermophila. Biochemistry,2000,39(31):9232-9240
    [64] T. M. Iverson, B. E. Alber, C. Kisker et al. A closer look at the active site ofgamma-class carbonic anhydrases: high-resolution crystallographic studies ofthe carbonic anhydrase from Methanosarcina thermophila. Biochemistry,2000,39(31):9222-9231
    [65] S. Sunderhaus, N. V. Dudkina, L. Jansch et al. Carbonic anhydrase subunitsform a matrix-exposed domain attached to the membrane arm of mitochondrialcomplex I in plants. J Biol Chem,2006,281(10):6482-6488
    [66] N. V. Dudkina, H. Eubel, W. Keegstra et al. Structure of a mitochondrialsupercomplex formed by respiratory-chain complexes I and III. Proc Natl AcadSci U S A,2005,102(9):3225-3229
    [67] G. Parisi, M. Perales, M. S. Fornasari et al. Gamma carbonic anhydrases inplant mitochondria. Plant Mol Biol,2004,55(2):193-207
    [68] M. Sabar, R. De Paepe,Y. de Kouchkovsky. Complex I impairment, respiratorycompensations, and photosynthetic decrease in nuclear and mitochondrial malesterile mutants of Nicotiana sylvestris. Plant Physiol,2000,124(3):1239-1250
    [69] H.-P. Braun,E. Zabaleta. Carbonic anhydrase subunits of the mitochondrialNADH dehydrogenase complex (complex I) in plants. Physiol Plant,2007,129(1):114-122
    [70] M. M. Neff, I. H. Street, E. M. Turk et al. Interaction of light and hormonesignaling to mediate photomorphogenesis. Photomorphogenesis in Plants andBacteria,2006, ch21:439-473
    [71] J. Li, P. Nagpal, V. Vitart et al. A role for brassinosteroids in light-dependentdevelopment of Arabidopsis. Science,1996,272(5260):398-401
    [72] Y. Tao, J. L. Ferrer, K. Ljung et al. Rapid synthesis of auxin via a newtryptophan-dependent pathway is required for shade avoidance in plants. Cell,2008,133(1):164-176
    [73] X.-Y. Zhao, X.-H. Yu, X.-M. Liu et al. Light Regulation of GibberellinsMetabolism in Seedling Development. Journal of Integrative Plant Biology,2007,49(1):21
    [74] M. de Lucas, J. M. Daviere, M. Rodriguez-Falcon et al. A molecularframework for light and gibberellin control of cell elongation. Nature,2008,451(7177):480-484
    [75] S. Feng, C. Martinez, G. Gusmaroli et al. Coordinated regulation ofArabidopsis thaliana development by light and gibberellins. Nature,2008,451(7177):475-479
    [76] X. M. Luo, W. H. Lin, S. Zhu et al. Integration of light-and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis. Dev Cell,2010,19(6):872-883
    [77] J. Gallego-Bartolome, E. G. Minguet, F. Grau-Enguix et al. Molecularmechanism for the interaction between gibberellin and brassinosteroidsignaling pathways in Arabidopsis. Proc Natl Acad Sci U S A,2012,109(33):13446-13451
    [78] Y. Hao, E. Oh, G. Choi et al. Interactions between HLH and bHLH factorsmodulate light-regulated plant development. Molecular Plant,2012,5(3):688-697
    [79] E. Oh, J. Y. Zhu,Z. Y. Wang. Interaction between BZR1and PIF4integratesbrassinosteroid and environmental responses. Nature Cell Biol,2012,14(8):802-809
    [80] W. B. Terzaghi,A. R. Cashmore. Light-regulated transcription. Annu Rev PlantPhysiol Plant Mol Biol,1995,46:419-444
    [81] M. Y. Bai, J. X. Shang, E. Oh et al. Brassinosteroid, gibberellin andphytochrome impinge on a common transcription module in Arabidopsis.Nature Cell Biol,2012,14(8):810-817
    [82] Q. Wang, Z. Zhu, K. Ozkardesh et al. Phytochromes and phytohormones: theshrinking degree of separation. Molecular Plant,2013,6(1):5-7
    [83] S. Zhong, H. Shi, C. Xue et al. A Molecular Framework of Light-ControlledPhytohormone Action in Arabidopsis. Curr Biol,2012,22:1530
    [84] K. A. Franklin,P. H. Quail. Phytochrome functions in Arabidopsisdevelopment. J Exp Bot,2010,61(1):11-24
    [85] C. Kami, S. Lorrain, P. Hornitschek et al. Light-regulated plant growth anddevelopment. Curr Top Dev Biol,2010,91:29-66
    [86] J. Li, W. Terzaghi,X. W. Deng. Genomic basis for light control of plantdevelopment. Protein&Cell,2012,3(2):106-116
    [87] M. Ni, J. M. Tepperman,P. H. Quail. PIF3, a phytochrome-interacting factornecessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell,1998,95(5):657-667
    [88] E. Huq,P. H. Quail. PIF4, a phytochrome-interacting bHLH factor, functionsas a negative regulator of phytochrome B signaling in Arabidopsis. Embo J,2002,21(10):2441-2450.
    [89] D. Bauer, A. Viczian, S. Kircher et al. Constitutive photomorphogenesis1andmultiple photoreceptors control degradation of phytochrome interacting factor3, a transcription factor required for light signaling in Arabidopsis. Plant Cell,2004,16(6):1433-1445
    [90] P. Leivar,P. H. Quail. PIFs: pivotal components in a cellular signaling hub.Trends Plant Sci,2011,16(1):19-28
    [91] T. Imaizumi, T. F. Schultz, F. G. Harmon et al. FKF1F-box protein mediatescyclic degradation of a repressor of CONSTANS in Arabidopsis. Science,2005,309(5732):293-297
    [92] W. Y. Kim, S. Fujiwara, S. S. Suh et al. ZEITLUPE is a circadianphotoreceptor stabilized by GIGANTEA in blue light. Nature,2007,449(7160):356-360
    [93] S. Ito, Y. H. Song,T. Imaizumi. LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Molecular plant,2012,5(3):573-582
    [94] H. Wang, L. G. Ma, J. M. Li et al. Direct interaction of Arabidopsiscryptochromes with COP1in light control development. Science,2001,294(5540):154-158.
    [95] L. Ma, J. Li, L. Qu et al. Light control of Arabidopsis development entailscoordinated regulation of genome expression and cellular pathways. Plant Cell,2001,13(12):2589-2607.
    [96] M. E. Ruckle, S. M. DeMarco,R. M. Larkin. Plastid signals remodel lightsignaling networks and are essential for efficient chloroplast biogenesis inArabidopsis. Plant cell,2007,19(12):3944-3960
    [97] M. E. Ruckle,R. M. Larkin. Plastid signals that affect photomorphogenesis inArabidopsis thaliana are dependent on GENOMES UNCOUPLED1andcryptochrome1. New Phytol,2009,182(2):367-379
    [98] H.-P. a. Brauna,E. Zabaleta. Carbonic anhydrase subunits of the mitochondrialNADH dehydrogenase complex (complex I) in plants. Physiol Plant,2007,129:114–122
    [99] C. Hunte, V. Zickermann,U. Brandt. Functional modules and structural basisof conformational coupling in mitochondrial complex I. Science,2010,329(5990):448-451
    [100] N. V. Dudkina, H. Eubel, W. Keegstra et al. Structure of a mitochondrialsupercomplex formed by respiratory-chain complexes I and III. Proc Natl AcadSci U S A,2005,102(9):3225-3229
    [101] J. B. Bultema, H. P. Braun, E. J. Boekema et al. Megacomplex organization ofthe oxidative phosphorylation system by structural analysis of respiratorysupercomplexes from potato. Biochim Biophys Acta,2009,1787(1):60-67
    [102] R. G. Efremov, R. Baradaran,L. A. Sazanov. The architecture of respiratorycomplex I. Nature,2010,465(7297):441-445
    [103] J. Klodmann,H. P. Braun. Proteomic approach to characterize mitochondrialcomplex I from plants. Phytochemistry,2011,72(10):1071-1080
    [104] S. Sunderhaus, N. V. Dudkina, L. Jansch et al. Carbonic anhydrase subunitsform a matrix-exposed domain attached to the membrane arm of mitochondrialcomplex I in plants. J Biol Chem,2006,281(10):6482-6488
    [105] D. J. Morgan,L. A. Sazanov. Three-dimensional structure of respiratorycomplex I from Escherichia coli in ice in the presence of nucleotides. BiochimBiophys Acta,2008,1777(7-8):711-718
    [106] N. Grigorieff. Three-dimensional structure of bovine NADH:ubiquinoneoxidoreductase (complex I) at22A in ice. J. Mol. Biol.,1998,277(5):1033-1046
    [107] A. F. de Longevialle, E. H. Meyer, C. Andres et al. The pentatricopeptiderepeat gene OTP43is required for trans-splicing of the mitochondrial nad1Intron1in Arabidopsis thaliana. Plant cell,2007,19(10):3256-3265
    [108] I. Keren, L. Tal, C. C. des Francs-Small et al. nMAT1, a nuclear-encodedmaturase involved in the trans-splicing of nad1intron1, is essential formitochondrial complex I assembly and function. Plant J,2012:
    [109] C. Dutilleul, S. Driscoll, G. Cornic et al. Functional mitochondrial complex I isrequired by tobacco leaves for optimal photosynthetic performance inphotorespiratory conditions and during transients. Plant Physiol,2003,131(1):264-275
    [110] M. Perales, H. Eubel, J. Heinemeyer et al. Disruption of a nuclear geneencoding a mitochondrial gamma carbonic anhydrase reduces complex I andsupercomplex I+III2levels and alters mitochondrial physiology inArabidopsis. J Mol Biol,2005,350(2):263-277
    [111] J. Klodmann, S. Sunderhaus, M. Nimtz et al. Internal architecture ofmitochondrial complex I from Arabidopsis thaliana. Plant cell,2010,22(3):797-810
    [112] M. Koornneef, C. J. Hanhart,J. H. van der Veen. A genetic and physiologicalanalysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet,1991,229(1):57-66
    [113] C. R. Somerville,W. L. Ogren. Photorespiration mutants of Arabidopsisthaliana deficient in serine-glyoxylate aminotransferase activity. Proc NatlAcad Sci U S A,1980,77(5):2684-2687
    [114] C. H. Foyer, A. J. Bloom, G. Queval et al. Photorespiratory metabolism: genes,mutants, energetics, and redox signaling. Annu Rev Plant Biol,2009,60:455-484
    [115] C. Peterhansel, I. Horst, M. Niessen et al. Photorespiration. Arabidopsis Book,2010,8: e0130
    [116] J. G. Ferry. The gamma class of carbonic anhydrases. Biochim Biophys Acta,2010,1804(2):374-381
    [117] C. R. Raetz,S. L. Roderick. A left-handed parallel beta helix in the structure ofUDP-N-acetylglucosamine acyltransferase. Science,1995,270(5238):997-1000
    [118] F. H. Haas, C. Heeg, R. Queiroz et al. Mitochondrial serine acetyltransferasefunctions as a pacemaker of cysteine synthesis in plant cells. Plant Physiol,2008,148(2):1055-1067
    [119] H. S. Feiler, T. Desprez, V. Santoni et al. The higher plant Arabidopsis thalianaencodes a functional CDC48homologue which is highly expressed in dividingand expanding cells. EMBO J,1995,14(22):5626-5637
    [120] D. M. Rancour, S. Park, S. D. Knight et al. Plant UBX domain-containingprotein1, PUX1, regulates the oligomeric structure and activity of arabidopsisCDC48. J Biol Chem,2004,279(52):54264-54274
    [121] D. M. Rancour, C. E. Dickey, S. Park et al. Characterization of AtCDC48.Evidence for multiple membrane fusion mechanisms at the plane of celldivision in plants. Plant Physiol,2002,130(3):1241-1253
    [122] S. Park, D. M. Rancour,S. Y. Bednarek. In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division,expansion, and differentiation. Plant Physiol,2008,148(1):246-258
    [123] S. Elsasser, D. Chandler-Militello, B. Muller et al. Rad23and Rpn10serve asalternative ubiquitin receptors for the proteasome. J Biol Chem,2004,279(26):26817-26822
    [124] C. R. Wilkinson, M. Seeger, R. Hartmann-Petersen et al. Proteins containingthe UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol,2001,3(10):939-943
    [125] H. Rao,A. Sastry. Recognition of specific ubiquitin conjugates is important forthe proteolytic functions of the ubiquitin-associated domain proteins Dsk2andRad23. J Biol Chem,2002,277(14):11691-11695
    [126] S. Elsasser, R. R. Gali, M. Schwickart et al. Proteasome subunit Rpn1bindsubiquitin-like protein domains. Nat Cell Biol,2002,4(9):725-730
    [127] K. Hofmann,P. Bucher. The UBA domain: a sequence motif present inmultiple enzyme classes of the ubiquitination pathway. Trends Biochem Sci,1996,21(5):172-173
    [128] C. Schuberth, H. Richly, S. Rumpf et al. Shp1and Ubx2are adaptors of Cdc48involved in ubiquitin-dependent protein degradation. EMBO Reports,2004,5(8):818-824
    [129] R. Hartmann-Petersen, M. Wallace, K. Hofmann et al. The Ubx2and Ubx3cofactors direct Cdc48activity to proteolytic and nonproteolytic ubiquitin-dependent processes. Curr Biol,2004,14(9):824-828
    [130] A. Buchberger. Control of ubiquitin conjugation by cdc48and its cofactors.Subcellular Biochemistry,2010,54:17-30
    [131] S. Raasi,D. H. Wolf. Ubiquitin receptors and ERAD: a network of pathways tothe proteasome. Semin Cell Dev Biol,2007,18(6):780-791
    [132] S. Elsasser,D. Finley. Delivery of ubiquitinated substrates to protein-unfoldingmachines. Nat Cell Biol,2005,7(8):742-749
    [133] A. Stolz, W. Hilt, A. Buchberger et al. Cdc48: a power machine in proteindegradation. Trends Biochem Sci,2011,36(10):515-523
    [134] X. Yu, J. Klejnot, X. Zhao et al. Arabidopsis cryptochrome2completes itsposttranslational life cycle in the nucleus. Plant Cell,2007,19:3146-3156
    [135] X. Li, Q. Wang, X. Yu et al. Arabidopsis cryptochrome2(CRY2) functions bythe photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. Proc Natl Acad Sci U S A,2011,108(51):20844-20849
    [136] M. Chen, R. M. Galv o, M. Li et al. Arabidopsis HEMERA/pTAC12InitiatesPhotomorphogenesis by Phytochromes. Cell,2010,141(7):1230-1240
    [137] E. S. Johnson, P. C. M. Ma, I. M. Ota et al. A Proteolytic Pathway ThatRecognizes Ubiquitin as a Degradation Signal. J Biol Chem,1995,270(29):17442-17456
    [138] B. H. Kim, X. Cai, J. N. Vaughn et al. On the functions of the h subunit ofeukaryotic initiation factor3in late stages of translation initiation. GenomeBiol,2007,8: R60
    [139] A. Hershko,A. Ciechanover. The ubiquitin system. Annu Rev Biochem,1998,67:425-479
    [140] P. Schlogelhofer, M. Garzon, C. Kerzendorfer et al. Expression of the ubiquitinvariant ubR48decreases proteolytic activity in Arabidopsis and induces celldeath. Planta,2006,223(4):684-697
    [141] F. Ikeda,I. Dikic. Atypical ubiquitin chains: new molecular signals.'ProteinModifications: Beyond the Usual Suspects' review series. EMBO Reports,2008,9(6):536-542
    [142] E. Mazzucotelli, S. Belloni, D. Marone et al. The e3ubiquitin ligase genefamily in plants: regulation by degradation. Curr Genomics,2006,7(8):509-522

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700