用户名: 密码: 验证码:
基于转录组测序的石斛生物碱和人参皂苷生物合成相关基因的发掘、克隆及鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药用植物是传统中药主要来源,其次生代谢物是新药、新先导化合物、新化学实体的重要来源。随着药用植物在药物开发中的广泛应用,药用植物的需求量不断增加,药用植物长期的无序开发不仅造成药用植物资源紧缺,而且严重破坏生态环境,濒危野生药用植物物种数量也随之快速增加。通过植物生物技术大规模合成药效成分,己成为药物生产和新药开发的重要探索途径。药用植物高通量转录组测序技术的出现,结合关键酶基因的克隆与体外高效表达以及代谢工程大规模生产药用植物药效成分,为揭示药用植物药效成分生物合成途径提供了重要的基因资源。
     本研究采用454高通量测序技术,基于石斛生物碱、人参皂苷的研究现状,分别从转录组分析、石斛生物碱及人参皂苷生物合成途径、酶基因的发掘与克隆、蛋白异源表达等方面研究石斛生物碱和人参皂苷的生物合成途径。本文的研究内容主要包括以下几个方面:
     1)铁皮石斛(Dendrobium offlcinale Kimura et Migo)为兰科珍稀名贵药用植物,为《中国药典》收载的正品石斛之一。由于缺乏基因组和转录组数据,铁皮石斛生物碱生物合成途径尚不明确。本研究应用454GS FLX Titaninm高通量测序技术对铁皮石斛的转录组进行测序。获得553,084条EST序列,平均长度417bp,拼接组装后共获得36,407条独立基因(unique sequences)。将这些独立基因与公共数据库(SwissProt, KEGG, TAIR, Nr和Nt)进行比对注释,其中25,473条序列获得注释。通过分析KEGG数据库注释结果,发现25个参与生物碱合成的酶基因,将其中5个参与生物碱骨架合成的酶基因(共11个转录本)进行实时荧光定量PCR分析,发现这5个基因在石斛叶中的表达量均高于茎中表达量。在454转录组数据库中还发现了193条CYP450基因,22条氨基转移酶基因和122条甲基转移酶基因,11条多药耐药(MDR)基因和964条转录因子。通过对EST-SSR分析,从36,407条独立基因中共发现含了不同重复基元SSRs的序列有1,063条,二基元重复类型是最丰富类型,有179条含SSR位点的序列可以在KEGG数据库中得到注释。
     2)人参(Panax ginseng C. A. Meyer)是五加科人参属重要药用植物。采用454-GSFLX测序平台对人参根、茎、叶、花的转录组各进行1/2个run的测序,共获得2,423,076条原始序列。通过Newbler软件分别对根、茎、叶和花的转录组数据进行拼接,拼接后在四个组织部位分别获得45,849,6,172,4,041和3,273条单一序列(Unigenes)。合并拼接后共获得178,145条独立基因,包括86,609条重叠序列(contig)和91,536条单一序列(singleton),有105,522条独立基因是第一次发现,其中65.6%的新独立基因是在茎、叶、花的文库中发现的。通过注释共发现223条与人参皂苷骨架合成相关的转录本,还发现了326条CYP450序列和129条糖基转移酶序列。通过同源比对共发现14条microRNAs序列。从178,145条独立基因中共发现了13,044个SSR位点。
     3)三七(Panax notoginseng (Burk.) F.H.Chen)为五加科人参属多年生草本植物,通过甲羟戊酸途径(Mevalonic Acid Pathway)合成人参皂苷生物合成的前体物质。本研究通过分析课题组己获得的三七转录组数据,利用RT-PCR方法获得三七PnMVK1、PnUGT02086和PnUGT13895基因的全长cDNA序列;并对这些基因所编码的蛋白进行理化性质、蛋白二级结构及三维结构预测分析;利用实时荧光定量PCR方法检测了PnMVK1基因在三七的根、茎、叶、花中的表达情况,PnMVK1在三七的根中表达丰度最高。将PnUGT02086和PnUGT13895基因通过酶切连接到pET28a载体并转化表达菌株BL21,成功表达并纯化到了PnUGT02086和PnUGT13895蛋白,为进一步验证其功能奠定了基础。
Medicinal plants is a major source of traditional Chinese medicine, while the secondary metabolites are an important source of new drugs, drug leads and new chemical entities. With the extensive application of medicinal plants in drug development, the demand for medicinal plants is increasing. Long-term disorderly development of medicinal plants is not only caused by the scarcity of resources, but also seriously damage to the ecological environment. The number of endangered species of wild medicinal plants also increased rapidly. The use of biotechnology method to synthesize large-scale medicinal components has become important way to explore drug development. Based on the high throughput sequencing technology, the studies of transcriptome can provide important genetic resources for the medicinal natural product biosynthesis, combined with key gene cloning and identification, as well as large-scale production of medicinal components.
     In this study, we used the454high-throughput sequencing technology to analyze the transcriptome of Dendrobium officinale and Panax ginseng and discover key genes related to the Dendrobium alkaloids and ginsenoside biosynthesis. Moreover, several genes encoding key enzymes had been cloned and heterologously expressed in E.coli. The content of this study includes the following aspects:
     1) Dendrobium officinale Kimura et Migo(Orchidaceae) is a traditional Chinese medicinal plant. The stem contains an alkaloid that is the primary bioactive component. However, the details of alkaloid biosynthesis have not been effectively explored because of the limited number of expressed sequence tags (ESTs) available in GenBank. In this study, we analyzed RNA isolated from the stem of D. officinale using a single half-run on the Roche454GS FLX Titanium platform to generate553,084ESTs with an average length of417bases. The ESTs were assembled into38,951unique putative transcripts. A total of69.97%of the unique sequences were annotated, and a detailed view of alkaloid biosynthesis was obtained. Functional assignment based on Kyoto Encyclopedia of Genes and Genomes (KEGG) terms revealed69unique sequences representing25genes involved in alkaloid backbone biosynthesis. A series of qRT-PCR experiments confirmed that the expression levels of5key enzyme-encoding genes involved in alkaloid biosynthesis are greater in the leaves of D. officinale than in the stems. Cytochrome P450s, aminotransferases, methyltransferases, multidrug resistance protein (MDR) transporters and transcription factors were screened for possible involvement in alkaloid biosynthesis. Furthermore, a total of1,061simple sequence repeat motifs (SSR) were detected from36,407unigenes. Dinucleotide repeats were the most abundant repeat type. Of these,179genes were associated with a metabolic pathway in KEGG.
     2) Panax ginseng C A. Meyer is one of the most widely used medicinal plants. Two454pyrosequencing runs generated a total of2,423,076reads from P. ginseng roots, stems, leaves and flowers. The high-quality reads from each of the tissues were independently assembled into separate and shared contigs. In the separately assembled database,45,849,6,172,4,041and3,273unigenes were only found in the roots, stems, leaves and flowers database, respectively, In the jointly assembled database,178,145unigenes were observed, including86,609contigs and91,536singletons. Among the178,145unigenes,105,522were identified for the first time, of which65.6%were identified in the stem, leaf or flower cDNA libraries of P. ginseng. After annotation, we discovered223unigenes involved in ginsenoside backbone biosynthesis. Additionally, a total of326potential cytochrome P450and129potential UDP-glycosyltransferase sequences were predicted based on the annotation results, some of which may encode enzymes responsible for ginsenoside backbone modification. A BLAST search of the obtained high-quality reads identified14potential microRNAs in P. ginseng. A total of13,044simple sequence repeats were identified from the178,145unigenes.
     3) Panax notoginseng (Burk.) FH Chen is a perennial herb in Ginseng genus. The precursor substances of ginsenoside are biosynthesized through the mevalonic acid pathway. In this study, we found many genes related to ginsenoside biosynthesis based on the research of the P. notoginseng transcriptome data. The full-length cDNA sequences of PnMVKl, PnUGT02086, and PnUGT13895genes were obtained by RT-PCR strategies. The physical and chemical properties, secondary structure and three-dimensional structure of these proteins were predicted and analyzed, including of the structure and putative functions. Pn MVK1was more abundant in P. notoginseng root than other organisms. PnUGT02086and PnUGT13895were ligated into pET28a vector and transformed into BL21. The proteins of PnUGT02086and PnUGT13895were purified from E.coli, which laid the foundation for the further verification of the function for these genes.
引文
[1]D. Bouchez, H. Hofte. Functional genomics in plants [J]. Plant physiology,1998,118 (3):725-732.
    [2]G. Colebatch, B. Trevaskis, M. Udvardi. Functional genomics:tools of the trade [J]. New Phytologist,2002,153 (1):27-36.
    [3]E. S. Lander, L. M. Linton, B. Birren, et al. Initial sequencing and analysis of the human genome [J]. Nature,2001,409 (6822):860-921.
    [4]W. C. Wildering, P. M. Hermann, A. G. Bulloch. Lymnaea epidermal growth factor promotes axonal regeneration in CNS organ culture [J]. The Journal of Neuroscience,2001,21 (23):9345-9354.
    [5]薛建江,邱景富.病原菌感染宿主的转录组学研究进展[J].河北北方学院学报(医学版),2007,24(5):63-66.
    [6]吴春颖,宋经元,陈士林.表达序列标签在药用植物研究中的应用[J].中草药,2008,39(5):778-782.
    [7]胡松年.基因表达序列标签(EST)数据[M].杭州,浙江大学出版社,2005.
    [8]张骞,盛军.基因芯片技术的发展和应用[J].中国医学科学院学报,2008,30(3):344-347.
    [9]李星,李亚宁,杨文香,等.基因表达系列分析技术及其在植物抗病性研究中的应用[J].农业生物技术学报,2006,14(5):803-808.
    [10]陈杰.大规模平行测序技术(MPSS)研究进展[J].生物化学与生物物理进展,2004,31(8):761-765.
    [11]M. Margulies, M. Egholm, W. E. Altman, et al. Genome sequencing in microfabricated high-density picolitre reactors [J]. Nature,2005,437 (7057): 376-380.
    [12]C. Shaffer. Next-generation sequencing outpaces expectations [J]. Nature Biotechnology,2007,25 (2):149-149.
    [13]J. Shendure, H. Ji. Next-generation DNA sequencing [J]. Nature Biotechnology, 2008,26(10):1135-1145.
    [14]S. C. Schuster. Next-generation sequencing transforms today's biology [J]. Nature, 2008,200 (8):16-18.
    [15]E. R. Mardis. The impact of next-generation sequencing technology on genetics [J]. Trends in Genetics,2008,24 (3):133.
    [16]李明爽,赵敏.第三代测序基本原理[J].现代生物医学进展,2012,12(10):1980-1982.
    [17]F. Sanger, S. Nicklen, A. R. Coulson. DNA sequencing with chain-terminating inhibitors [J]. Proceedings of the National Academy of Sciences,1977,74 (12): 5463-5467.
    [18]T. C. Glenn. Field guide to next-generation DNA sequencers [J]. Molecular Ecology Resources,2011,11 (5):759-769.
    [19]J. M. Rothberg, J. H. Leamon. The development and impact of 454 sequencing [J]. Nature Biotechnology,2008,26 (10):1117-1124.
    [20]S. Huang, R. Li, Z. Zhang, et al. The genome of the cucumber, Cucumis sativus L [J]. Nature Genetics,2009,41 (12):1275-1281.
    [21]R. Velasco, A. Zharkikh, J. Affourtit, et al. The genome of the domesticated apple (Malus x domestica Borkh.) [J]. Nature Genetics,2010,42 (10):833-839.
    [22]V. Shulaev, D. J. Sargent, R. N. Crowhurst, et al. The genome of woodland strawberry (Fragaria vesca) [J]. Nature Genetics,2010,43 (2):109-116.
    [23]X. Argout, J. Salse, J. M. Aury, et al. The genome of Theobroma cacao [J]. Nature Genetics,2010,43 (2):101-108.
    [24]J. Lai, R. Li, X. Xu, et al. Genome-wide patterns of genetic variation among elite maize inbred lines [J]. Nature Genetics,2010,42 (11):1027-1030.
    [25]L.-Y. Zheng, X. S. Guo, B. He, et al. Genome-wide patterns of genetic variation in sweet and grain sorghum(Sorghum bicolor) [J]. Genome Biology,2011,12 (11): R114.
    [26]H.-M. Lam, X. Xu, X. Liu, et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection [J]. Nature Genetics, 2010,42(12):1053-1059.
    [27]X. Wu, C. Ren, T. Joshi, et al. SNP discovery by high-throughput sequencing in soybean [J]. BMC Genomics,2010,11 (1):469.
    [28]I. A. Graham, K. Besser, S. Blumer, et al. The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin [J]. Science,2010, 327 (5963):328-331.
    [29]J. Wu, Y. Zhang, H. Zhang, et al. Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology [J]. BMC Plant Biology,2010,10 (1):234.
    [30]C.Z. Zhao, H. Xia, T. Frazier, et al. Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.) [J]. BMC Plant Biology,2010,10 (1): 3.
    [31]M. Xin, Y. Wang, Y. Yao, et al. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.) [J]. BMC Plant Biology,2010,10 (1):123.
    [32]Y. Yang, X. Chen, J. Chen, et al. Differential miRNA expression in Rehmannia glutinosaplants subjected to continuous cropping [J]. BMC Plant Biology,2011,11 (1):53.
    [33]C. Song, C. Wang, C. Zhang, et al. Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata) [J]. BMC Genomics, 2010,11(1):431.
    [34]C. Liang, X. Zhang, J. Zou, et al. Identification of miRNA from Porphyra yezoensis by high-throughput sequencing and bioinformatics analysis [J]. PLoS One,2010,5 (5):e10698.
    [35]M. A. German, M. Pillay, D.H. Jeong, et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends [J]. Nature Biotechnology,2008,26 (8):941-946.
    [36]X. Wang, A. A. Elling, X. Li, et al. Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize [J]. The Plant Cell Online,2009,21 (4):1053-1069.
    [37]S. Sato, H. Hirakawa, S. Isobe, et al. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L [J]. DNA Research,2011,18 (1):65-76.
    [38]H. Luo, Y. Li, C. Sun, et al. Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation [J]. BMC Plant Biology,2010,10 (1): 209.
    [39]J. Qian, H. Xu, J. Song, et al. Genome-wide analysis of simple sequence repeats in the model medicinal mushroom Ganoderma lucidum [J]. Gene,2013,512(2): 331-336.
    [40]C. Molina, B. Rotter, R. Horres, et al. Super SAGE:the drought stress-responsive transcriptome of chickpea roots [J]. BMC Genomics,2008,9 (1):553.
    [41]T. T. Torres, M. Metta, B. Ottenwalder, et al. Gene expression profiling by massively parallel sequencing [J]. Genome Research,2008,18 (1):172-177.
    [42]F. Alagna, N. D'Agostino, L. Torchia, et al. Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development [J]. BMC Genomics, 2009,10 (1):399.
    [43]T. M. Kutchan. Ecological arsenal and developmental dispatcher. The paradigm of secondary metabolism [J]. Plant Physiology,2001,125 (1):58-60.
    [44]S. Irmler, G. Schroder, B. St-Pierre, et al. Indole alkaloid biosynthesis in Catharanthus roseusr. new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase [J]. The Plant Journal,2000,24 (6):797-804.
    [45]Q. Wu, C. Sun, H. Luo, et al. Transcriptome analysis of Taxus cuspidata needles based on 454 pyrosequencing [J]. Planta Medica-Natural Products and Medicinal Plant Research,2011,77 (4):394.
    [46]M. Wink. Functions of Plant Secondary Metabolites and their Exploitation in Biotechnology [M].1999. Sheffield Academic Press.
    [47]Rasmussen S, Dixon RA. Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway [J]. Plant Cell,1999,11:1537-1552.
    [48]H. Yang, Y. G. Gao, F. Y. Li. Research progress on biosynthetic pathway of terpenoids containing ginsenoside and the HMGR[J]. China Biotechnology,2008, 28(10):130-135.
    [49]W. Eisenreich, M. Schwarz, A. Cartayrade, et al. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms [J]. Chemistry biology,1998,5(9):R221-R233.
    [50]W. Eisenreich, F. Rohdich, A. Bacher. Deoxyxylulose phosphate pathway to terpenoids [J]. Trends in Plant Science,2001,6(2):78-84.
    [51]Y. C. Yue, Y. P. Fan. The terpene synthases and regulation of terpene metabolism in plants[J]. Acta Hortic Sin,2011,38:379-388.
    [52]P. J. Facchini, K. L. Huber-Allanach, L. W. Tari. Plant aromatic L-amino acid decarboxylases:evolution, biochemistry, regulation, and metabolic engineering applications [J]. Phytochemistry,2000,54 (2):121-138.
    [53]R. Edwards. No remedy in sight for herbal ransack [J]. New Science,2004, 181(2429):10-11.
    [54]J. Y. Wu, J. J. Zhong. Production of ginseng and its bioactive components in plant cell culture:Current technological and applied aspects [J]. Biotechnology Journey. 1999,68(2/3):89.
    [55]黄瑛,曾庆平.萜类生物合成的基因操作[J].中国生物工程杂志,2006,26(1):60-64.
    [56]张磊,开国银,许铁峰,等。利用基因工程生产植物次生代谢产物[J].国外医药植物药分册,2002,17(6):231-234.
    [57]M. Vanisree, C. Y. Lee, S. F. Lo, et al. Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures [J]. Bot. Bull. Acad. Sin,2004,45 (1):1-22.
    [58]B. N. Mijts, C. Schmidt Dannert. Engineering of secondary metabolite pathways [J]. Current Opinion in Biotechnology,2003,14 (6):597-602.
    [59]V. J. Martin, D. J. Pitera, S. T. Withers, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids [J]. Nature Biotechnology,2003,21 (7):796-802.
    [60]Y. Sun, H. Luo, Y. Li, et al. Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport [J]. BMC Genomics,2011,12 (1):533.
    [61]Y. Li, H. M. Luo, C. Sun, et al. EST analysis reveals putative genes involved in glycyrrhizin biosynthesis [J]. BMC Genomics,2010,11 (1):268.
    [62]李滢,孙超,罗红梅,等.基于高通量测序454 GS FLX的丹参转录组学研究[J].药学学报,2010,45(4):524-529.
    [63]吉占和.中国石斛属的初步研究[J].植物分类学报,1980,18(4):427-449.
    [64]王雁,李振坚,彭红明.石斛兰[M].北京,中国林业出版社,2007.
    [65]铃木秀干.药学杂志(日)[J].1932,52(12):1049.
    [66]T. Onaka, S. Kameta, T. Maeda. The structune of dendrobine [J]. Chem Pharm Bull, 1964,12 (4):506.
    [67]张光浓,毕志明,王峥涛,等.石斛属植物化学成分研究进展[J].药学学报,1999,34(1):113.
    [68]C. K. Sha, R. T. Chiu. Total synthesis of (-)-dendrobine via a-carboryl radical cyclization [J]. J. Am. Chem. SoC,1997,119:4130.
    [69]L. Blomquist, S. Brandange, L Gawell, et al. Studies on orchidaceae ⅩⅩⅩⅤⅡ1* dendrowarbine, a quaternary alkaloid from Dendrobium wardianrm Wr [J]. Acta Chem Scand,1973,27 (4):1429.
    [70]H. Morita, M. Fujiwara, N. Yoshida, et al. New Picrotoxinin-type and Dendrobine-type Sesquiterpenoids from Dendrobium [J]. Tetrahedron,2000,56 (32):5801-5805.
    [71]B. Luning, K. Leander. Studies on ordidaceae alkaloids Ⅲ:the alkaloids in Dendrobium primulinum Lindl and Dendrobium chrysanthum Wall [J]. Acta Scand, 1965,19 (7):1607.
    [72]李满飞,平四义正,徐国钧,等.粉花石斛化学成方研究[J].药学学报,1991,26(4):307.
    [73]E. Leete, G. B. Bodem. Biosynthesis of shihunine in Dendrobium pierardii [J]. Journal of the American Chemical Society,1976,98 (20):6321-6325.
    [74]E. Breuer, S. Zbaida. The synthesis of shihunine and related compounds from ortho carboxyphenyl cyclopropyl ketone [J]. Tetrahedron,1975,31 (6):499-504.
    [75]M. Elander, K. Leander, J. Rosenblom. Studies on orchidaceae alkaloids ⅩⅩⅩⅡ1* crepidine, crepidamine and dendrocrepine, three new alkaloids from Dendrobium Lindl [J]. Acta Chem Scand,1973,27 (6):1907.
    [76]L. Blomqvist, K. Leander, B. Luning. Studies on orchidaceae alkaloid ⅩⅪⅩ, the absolute configuration of dendroprimine, an alkaloid D. Primulinum Lindl [J]. Acta Scand,1972,26 (8):3203.
    [77]K. Leander, B. Luning. Studies on orchids VIII:an imidaxolium salt from Dendrobium anomum Lindl, and D. parishii Rchb. f [J]. Teirxhedron Letter,1968, 8 (2):905.
    [78]T. Hemscheidt, I. D. Spenser. Biosynthesis of anosmine:incorporation of intact six-carbon chain of lysine and of pipecolic acid [J]. J Nat Prod,1993,56 (8):1281.
    [79]李亚芳,张晓华,孙国明.石斛中总生物碱和多糖的含量测定[J].中国药事,2002,16(7):426-428.
    [80]金蓉鸾,孙继军,张远名.11种石斛的总生物碱的测定[J].南京药学院学报,1981,(1):9.
    [81]丁亚平,杨道麒,吴庆生,等.安徽霍山三种石斛总生物碱的测定及其分布规律研究[J].安徽农业大学学报,1994,21(4):503-506.
    [82]丁亚平,于力文.霍山石斛最佳采收期研究[J].中国药学杂志,1998,33(8):459-461.
    [83]陈照荣,来平凡,林巧.不同炮制方法对石斛中石斛碱和多糖溶出率的影响[J].浙江中医学院学报,2002,26(4):79-81.
    [84]罗建平,查学强,姜绍通.药用霍山石斛原球茎的液体悬浮培养[J].中国中药杂志,2003,28(7):611-613.
    [85]何道同,王兵,陈珺明.人参皂苷药理作用研究进展[J].辽宁中医药大学学报,2012,14(7),118-120.
    [86]吴琼,周应群,孙超,等.人参皂苷生物合成和次生代谢工程[J].中国生物工程杂志,2009,29(10):102-108.
    [87]C. Sun, Y. Li, Q. Wu, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis [J]. BMC Genomics,2010,11 (1):262.
    [88]Q. Wu, J. Song, Y. Sun, et al. Transcript profiles of Panax guinquefolius from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation [J]. Physiologia Plantarum,2010,138 (2): 134-149.
    [89]M. B. Ali, K. W. Yu, E. J. Hahn, et al. Methyl jasmonate and salicylic acid eliciation induces ginsenosides accumulation, enzymatic and non-enzymatic anti-oxidant in suspension culture Panax ginseng roots in bioreactors [J]. Plant Cell Reports,2006, 25:613-620.
    [90]M. H. Lee, J. H. Jeong, J. W. Seo, et al. Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene [J]. Plant and Cell Physiology,2004,45 (8):976-984.
    [91]J. Y. Han, J. G. In, Y. S. Kwon, et al. Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panaxginseng [J]. Phytochemistry,2010,71 (1):36-46.
    [92]P. Tansakul, M. Shibuya, T. Kushiro, et al. Dammarenediol-Ⅱ synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng [J]. FEBS Letters, 2006,580 (22):5143-5149.
    [93]S. Chen, H. Luo, Y. Li, et al.454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng [J]. Plant cell reports,2011,30 (9): 1593-1601.
    [94]H. Luo, C. Sun, Y. Sun, et al. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers [J]. BMC Genomics,2011,12 (Suppl 5):S5.
    [95]B. Engels, P. Dahm, S. Jennewein. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol Paclitaxel production [J]. Metabolic Engineering,2008,10 (3):201-206.
    [96]J. A. Chemler, M. A. Koffas. Metabolic engineering for plant natural product biosynthesis in microbes [J]. Current Opinion in Biotechnology,2008,19 (6): 597-605.
    [1]杜刚,杨海英,朱绍林,等.铁皮石斛种子诱导成苗试验[J].中药材,2007,30(10):1207-1208.
    [2]宋经元.菌根真菌对两种药用石斛的生长发育和基因表达的影响[D].北京,中国协和医科大学博士学位论文,2002.
    [3]A. R. Kuehnle, N. Sugii. Transformation of Dendrobium orchid using particle bombardment of protocorms [J]. Plant Cell Reports,1992,11 (9):484-488.
    [4]杨雪飞,王瑛,罗建平.铁皮石斛外源lea3基因的转化及耐盐性分析[J].应用与环境生物学报,2010,16(5):622-626.
    [5]H. Yu, S. Yang, C. Goh. Agrobacterium-mediated transformation of a Dendrobium orchid with the class 1 knox gene DOH1 [J]. Plant Cell Reports,2001,20 (4): 301-305.
    [6]魏小勇.石斛属植物生物碱研究进展[J].中国药事,2005,19(7):445-447.
    [7]郭孟璧,封良燕,田茂军,等.人工培养铁皮石斛营养成分分析研究[J].云南化工,2006,33(2):15-16.
    [8]郭顺星,徐锦堂.真菌在罗河石斛和铁皮石斛种子萌发中的作用[J].中国医学科学院学报,1991,13(1):46-49.
    [9]邵华,张玲琪,李俊梅,等.铁皮石斛研究进展[J].中草药,2004,35(1):109-112.
    [10]陈晓梅,肖盛元,郭顺星.铁皮石斛与金钗石斛化学成分的比较[J].中国医学科学院学报,2006,28(4):524-529.
    [11]王玥月.植物生物碱合成代谢工程:功能基因组途径[J].亚太传统医药,2012,8(011):186-189.
    [12]M. El-Sayed, R. Verpoorte. Catharanthus terpenoid indole alkaloids:biosynthesis and regulation [J]. Phytochemistry Reviews,2007,6 (2-3):277-305.
    [13]E. De Carolis, V. De Luca. Purification, characterization, and kinetic analysis of a 2-oxoglutarate-dependent dioxygenase involved in vindoline biosynthesis from Catharanthus roseus [J]. Journal of Biological Chemistry,1993,268 (8): 5504-5511.
    [14]D. R. Nelson, M. A. Schuler, S. M. Paquette, et al. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot [J]. Plant Physiology,2004,135 (2):756-772.
    [15]K. Terasaka, K. Sakai, F. Sato, et al. Thalictrum minus cell cultures and ABC-like transporter [J]. Phytochemistry,2003,62 (3):483-489.
    [16]K. Sakai, N. Shitan, F. Sato, et al. Characterization of berberine transport into Coptis japonica cells and the involvement of ABC protein [J]. Journal of Experimental Botany,2002,53 (376):1879-1886.
    [17]Y. Sakuma, Q. Liu, J. G. Dubouzet, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-Inducible gene expression [J]. Biochemical and Biophysical Research Communications,2002,290 (3):998-1009.
    [18]张计育,王庆菊,郭忠仁.植物AP2/ERF类转录因子研究进展[J].遗传,2012,34(7):835-847.
    [19]F. L. Menke, A. Champion, J. W. Kijne, et al. A novel jasmonate-and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate-and elicitor-inducible AP2-domain transcription factor, ORCA2 [J]. The EMBO Journal,1999,18 (16):4455-4463.
    [20]L. van der Fits, J. Memelink. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism [J]. Science Signaling,2000, 289 (5477):295.
    [21]S. Gu, X. Ding, Y. Wang, et al. Isolation and characterization of microsatellite markers in Dendrobium officinale, an endangered herb endemic to China [J]. Molecular Ecology Notes,2007,7 (6):1166-1168.
    [22]G. Yue, L. LAM-CHAN, Y. Hong. Development of simple sequence repeat (SSR) markers and their use in identification of Dendrobium varieties [J]. Molecular Ecology Notes,2006,6 (3):832-834.
    [23]周廷清.DNA分子标记技术在植物研究中应用[M].北京,化学工业出版社,2005.
    [1]张翠英,董梁,陈士林,等.人参药材皂苷类成分UPLC特征图谱的质量评价方法[J].药学学报,2010,45(10):1296-1300.
    [2]李向高.人参三萜成分的提取分离与鉴定[J].植物学报1979,21(2):181-185.
    [3]徐绥绪,谭俊靖.人参化学成分的研究[J].沈阳药学院学报,1987,4(1):53.
    [4]郭秀丽,高淑莲.人参化学成分和药理研究进展[J].中医临床研究,2012,4(14):26-27.
    [5]刘炳仁,于瑞兰.人参高效栽培新技术[M].北京,科学技术文献出版社.2008.
    [6]S. Chen, H. Luo, Y. Li, et al.454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng [J]. Plant Cell Reports,2011,30 (9):1593-1601.
    [7]J. Y. Han, H. J. Kim, Y. S. Kwon, et al. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-Ⅱ during ginsenoside biosynthesis in Panax ginseng [J]. Plant and Cell Physiology,2011, 52 (12):2062-2073.
    [8]C. Sun, Y. Li, Q. Wu, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis [J]. BMC Genomics,2010, 11(1):262.
    [9]H. Luo, C. Sun, Y. Sun, et al. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers [J]. BMC Genomics,2011,12 (Suppl 5):S5.
    [10]J. C. Carrington, V. Ambros. Role of microRNAs in plant and animal development [J]. Science Signaling,2003,301 (5631):336.
    [11]N. Fahlgren, M. D. Howell, K. D. Kasschau, et al. High-throughput sequencing of Arabidopsis microRNAs:evidence for frequent birth and death of MIRNA genes [J]. PLoS One,2007,2 (2):e219.
    [12]B. Wu, M. Wang, Y. Ma, et al. High-throughput sequencing and characterization of the small RNA transcriptome reveal features of novel and conserved microRNAs in Panax ginseng[J]. PLoS One,2012,7 (9):e44385.
    [13]C. P. Hong, S. J. Lee, J. Y. Park, et al. Construction of a BAC library of Korean ginseng and initial analysis of BAC end sequences [J]. Molecular Genetics and Genomics,2004,271(6):709-716.
    [14]K. H. Ma, A. Dixit, Y. C. Kim, et al. Development and characterization of new microsatellite markers for ginseng(Panax ginseng CA Meyer) [J]. Conservation Genetics,2007,8 (6):1507-1509.
    [15]杨成君,王军,穆立蔷,等.人参EST-SSR标记的建立[J].农业生物技术学报,2008,16(1):114-120.
    [1]王海静,严铭铭,邵帅,等.人参三七皂苷化学成分及药理作用对比研究[J].人参研究,2008,20(1):2-11.
    [2]岳跃冲,范燕萍.植物萜类合成酶及其代谢调控的研究进展[J].园艺学报,2011,38(2):379-388.
    [3]杨鹤,郜玉钢,李瑶瑛,等.人参皂苷等萜类化合物生物合成途径及HMGR的研究进展[J].中国生物工程杂志,2008,28(10):130-135.
    [4]X. Chu, D. Li. Cloning, expression, and purification of His-tagged rat mevalonate kinase [J]. Protein Expression and Purification,2003,27 (1):165-170.
    [5]K. Huang, A. Scott, G. N. Bennett. Overexpression, purification, and characterization of the thermostable mevalonate kinase from Methanococcus jannaschii[J].Protein Expression and Purification,1999,17 (1):33-40.
    [6]C. Riou, Y. Tourte, F. Lacroute, et al. Isolation and characterization of a cDNA encoding Arabidopsis thaliana mevalonate kinase by genetic complementation in yeast [J]. Gene,1994,148 (2):293-297.
    [7]N. N. Alexandrov, V. V. Brover, S. Freidin, et al. Insights into corn genes derived from large-scale cDNA sequencing [J]. Plant Molecular Biology,2009,69 (1-2): 179-194.
    [8]Y. Ma, L. Yuan, B. Wu, et al. Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza [J]. Journal of Experimental Botany,2012,63 (7):2809-2823.
    [9]A. J. Simkin, G. Guirimand, N. Papon, et al. Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta [J]. Planta,2011,234 (5):903-914.
    [10]Y. Hu, S. Walker. Remarkable structural similarities between diverse glycosyltransferases [J]. Chemistry & biology,2002,9 (12):1287-1296.
    [11]J. M. Augustin, V. Kuzina, S. B. Andersen, et al. Molecular activities, biosynthesis and evolution of triterpenoid saponins [J]. Phytochemistry,2011,72 (6):435-457.
    [12]J. P. Vincken, L. Heng, A. de Groot, et al. Saponins, classification and occurrence in the plant kingdom [J]. Phytochemistry,2007,68 (3):275-297.
    [13]M. A. Naoumkina, L. V. Modolo, D. V. Huhman, et al. Genomic and coexpression analyses predict multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula [J]. The Plant Cell Online,2010,22 (3): 850-866.
    [14]A. Kohara, C. Nakajima, K. Hashimoto, et al. A novel glucosyltransferase involved in steroid saponin biosynthesis in Solanum aculeatissimum [J]. Plant Molecular Biology,2005,57 (2):225-239.
    [15]M. C. Herold, M. Henry. UDP-Glucuronosyltransferase activity is correlated to saponin production in Gypsophila paniculata root in vitro cultures [J]. Biotechnology Letters,2001,23 (5):335-337.
    [16]H. Luo, C. Sun, Y. Sun, et al. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers [J]. BMC Genomics,2011,12 (Suppl 5):S5.
    [17]G. Popjak. Enzymes of sterol biosynthesis in liver and intermediates of sterol biosynthesis [M]. Methods in Enzymology,1969,15:393-454.
    [18]王晓波,解天然,潘陈陈,等.大豆质膜内在水孔蛋白的生物学功能预测[J].安徽农业科学,2010,38(34):2-3.
    [19]M. A. Lluch, A. Masferrer, M. Arro, et al. Molecular cloning and expression analysis of the mevalonate kinase gene from Arabidopsis thaliana [J]. Plant Molecular Biology,2000,42 (2):365-376.
    [20]S. Champenoy, C. Vauzelle, M. Tourte. Activity of the yeast mevalonate kinase promoter in transgenic tobacco [J]. Plant Science,1999,147 (1):25-35.
    [21]R. Mierendorf, K. Yeager, R. Novy. The pET system:your choice for expression [J]. Innovations,1994,1 (1):1-3.
    [22]张锐,孙美榕,欧阳红生,等.真核基因在pET系统中表达出现的问题与拟解决的方案[J].生物技术,2004,14(2):62-63.
    [23]任霞,吴忠义,黄丛林,等.拟南芥FT基因原核表达载体的构建,表达和蛋白纯化[J].生物技术通报,2010,(003):99-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700