生长调节剂对水分胁迫下幼龄葡萄生长及抗性生理代谢影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验研究了几种不同生长调节剂对盆栽和田间栽植的晚红葡萄幼树,在土壤水分胁迫过程中和离体叶片在自然失水过程中的新梢生长、叶片水分关系、叶片光合和蒸腾速率以及叶片抗氧化能力的影响。结果表明,1.在水分胁迫下,盆栽葡萄幼树新梢生长减弱,当胁迫严重时,其生长基本停止。叶面施用甜菜碱、调节剂Ⅱ号(R—Ⅱ)和调节剂Ⅲ号(R—Ⅲ)处理后可显著促进水分胁迫下盆栽葡萄幼树新梢生长,三次喷施后持续效应达15天以上,且R—Ⅱ、R—Ⅲ比甜菜碱促进效应更大;施用FA旱地龙处理的效应不稳定,且持续的时间短;而施用调节剂Ⅰ号(R—Ⅰ)处理对新梢生长无显著影响。在非水分胁迫条件下,对田间葡萄幼树进行处理,叶面施用甜菜碱和FA旱地龙后对葡萄新梢生长无显著影响;施用R—Ⅰ后对葡萄新梢生长有抑制作用;施用R—Ⅱ、R—Ⅲ处理后对新梢生长也有抑制作用,当土壤含水量(SWC)降到11.7%以下即临近水分胁迫发生时,R—Ⅱ、R—Ⅲ对新梢生长的抑制作用转为促进作用,但均未达到显著水平。2.在停止浇水第5天开始于盆栽葡萄幼树叶面喷施不同生长调节剂,R—Ⅱ处理的葡萄叶片含水量增加最多,与对照差异显著;R—Ⅲ和甜菜碱处理引起的叶片含水量的增加也与对照有显著差异;而R—Ⅰ和FA处理虽也可引起叶片含水量增加,但与对照无显著差异。在非水分胁迫下,对田间葡萄幼树叶面喷施不同生长调节剂,R—Ⅱ和R—Ⅲ处理使叶片含水量显著比对照提高;甜菜碱和FA处理的叶片含水量虽有提高,但与对照无显著差异;R—Ⅰ处理的叶片含水量与对照基本相同。3.水分胁迫条件下的盆栽葡萄幼树,其被水分饱和的离体叶片,在开始失水的前30min内,不同生长调节剂处理的叶片失水速率比对照均有减缓,其中R—Ⅱ和R—Ⅲ及甜菜碱处理与对照差异显著;而R—Ⅰ和FA处理与对照无显著差异。在开始失水的30min之后,各处理的叶片失水率与对照基本相同。非水
    
    分胁迫条件下的田间葡萄幼树,其被水分饱和的离体叶片,在开始失水的前
    4 smin内,不同生长调节剂处理的叶片失水率与对照基本相同。4.水分胁迫
    条件下,随水分胁迫时间的延长,葡萄幼树叶片SOD活性不断下降,而仇-
    产生速率和MDA含量均呈逐渐上升趋势。施用不同生长调节剂后,无论盆栽
    整体植株、还是离体叶片,钳菜碱以及R一n和R一111的处理都有明显的维护
    叶片SOD活性和减缓02一产生速率和MDA含量增多的作用;而R一I和FA旱地
    龙的处理作用不明显。5.水分胁迫条件下,施用不同生长调节剂处理盆栽葡
    萄幼树,其叶片光合速率和蒸腾速率均高于对照,但未达到显著水平。
The experiment studied different plant growth regulator to shoot growth relation of leaves and water, photosynthesis , transpire rete and resist oxidize ability of potted or field plant grapevine (Vitis Vinifera) small tree, during water stress period and detached leaves to natural drying in air was effect. The result showed that:
    1. The shoot growth of potted grapevine become weak under water stress condition, it's growth is stopped when the water stress become serious. The shoot growth of young potted grapevine is obviously promoted after the surface of leaves are dealt with betaine, R- II and R-III. The effect last over 15 days after spraying of three times, what's more, the increasing effect R-I and R- II is larger than betaine ; the effect of FA to grapevine young tree is not stable, and the time is short. If dealt with R-I, the effect is not obvious; under adequate water stress condition, the young field grapevine surface of leaves are dealt with betaine and FA,the effect is not obvious. R-I can restrain the growth of grapevine shoot growth; R-II and R-III can also restrains the growth of grapevine shoot growth; the restrain effect of R- II and R-III them into promotion when swc dropped to 11.7%, namely closing water stress, but they all did not attain obvious level.
    2. The increasing of grapevine leaves water content is the most, this difference is obvious than the contrast, if using R-II, when potted grapevine young tree surface of leaves are dealt with difference growth regulator of stopped pour water for 5 days later; the water content of grapevine leaves increase obviously than contrast, if using R-ffl and betaine; the deposition of R-I and FA can lead to the increasing of water content, but it did not attain obvious difference. The water content of leaves are higher than contrast if sprayed R- II and R-ffl; the water content of leave are higher than contrast if sprayed betaine and FA, but it did not attain obvious level; the water content of leaves are the same as the contrast if dealt with R-I ,under adequate water supply condition, the young field grapevine surface of leaves are dealt with difference growth regulator.
    3. Under water stress condition potted grapevine young tree, the dehydration speed is slower than the contrast if detached leaves which are satiated by water are deposed of different growth regulator before 30 minutes, the difference is obvious than contrast if dealt with R- II, R-III and betaine; the difference is not obvious than contrast if dealt with R-I and FA. The dehydration speed is the same as the contrast if the leave are dealt with different regulator in 30 minutes. The dehydration speed is the same as the contrast if the detached
    
    
    
    leaves are dealt with different regulator before 45 minutes under inadequate water supply condition.
    4. Under water stress condition, following the prolong of water stress's time, SOD activity of grapevine young tree leaves continuously drop, yet the producing rate of O2- and MDA content are increasing. After be imposed difference kinds plant growth regulator, no matter potted plants or detached leaves, betaine, R-II and R-III all obviously defend leaves SOD activity and slowdown o2- produce rate and MDA content increasing action, other than R-I and FA effect was not obvious.
    5. The leaf photosynthesis and transpire of potted grapevine young tree which is deposed of different growth regulator are higher than the contrast, under water stress condition, but these can not attain obvious difference.
引文
1.刘友良。植物水分逆境生理。农业出版社。1992
    2.袁朝兴,丁静。水分胁迫对棉花叶片中IAA含量、IAA氧化酶和过氧化物酶活性的影响。植物生理学报,1990,16(2):179-184。
    3.薛崧,王沛洪,许大全,李立人。水分胁迫对冬小麦CO_2同化作用的影响。植物生理学报,1992,48(1):1-7。
    4.王建华,刘鸿先,徐同。超氧物歧化酶(SOD)在植物逆境和衰老生理中的作用。植物生理学通讯,1989,1:1-7。
    5.陈少裕。膜脂过氧化与植物逆境胁迫。植物生理学报,1989,6(4):211-217。
    6.陈少裕。水分胁迫对甘蔗叶片线粒体膜流动性的影响及其与膜脂过氧化的关系。植物生理学报,1991a,17(3):285-289。
    7.陈少裕。膜脂过氧化对植物细胞的伤害。植物生理学通讯,1991h,27(2):84-90。
    8.武宝轩,格林.托德。小麦幼苗中SOD活性与幼苗脱水忍耐力相关性的研究。植物学报,1985,27(2):152-160。
    9.盛宏达,奚雷,王韶唐。小麦籽粒发育初期土壤水分亏缺对植株各位光合作用的影响。植物生理学报,1986,12(2):109-115。
    10.夏阳。几种果树对水分生理指标的比较及抗蒸剂的效应。山东农业大学硕士研究生论文。1989
    11.姚允聪,王有年,张瑞等。水分亏缺条件下草莓幼苗几个水分生理指标的变化。果树科学,1992,9:208-211
    12.姚允聪,曲泽洲,李树仁,张瑞,赵玉田。不同浇水处理过程中柿幼树SOD、CAT和脂质过氧化作用的变化。北京农学院学报,1994,9(1):22~27。
    13.姚允聪。苹果属植物抗旱性研究。博士论文,1997
    14.梁峥,骆爱玲.菜碱和甜菜碱合成酶.植物生理学通讯.1995,31(1).1-8
    15.许雯,孙梅好,朱亚芳,苏维埃.。甘氨酸甜菜碱增强青菜抗盐的作用.植物学报。2001,43(8):809-814
    16.邵莉楣等。植物生长调节剂。金盾出版社。2000,132-137
    17.贺晓鹃。苹果树对干旱生理生化的反应研究。博士论文。1996
    18.王中英。果树抗旱生理。农业出版社。2000
    19.李三玉,季作栋。植物生长调节剂在果树上的应用,化学工业出版社,北京2002
    20.饶景萍,任小林,童斌。植物生长调节物质对果实生长发育的调控,西北植物学报,1998,18(1):147—154
    21.杨文钰,樊高琼等。植物生长调节剂在粮食作物上的应用,化学工业出版社,北京 2002
    22.高秀萍,闫继耀,刘恩科,张大鹏。水分胁迫下梨、枣和葡萄叶片中甜菜碱含量的变化。园艺学报,2002,29(3):268-270
    
    
    23.王爱国,罗广华。植物的超氧自由基与羟胺反应的定量关系。植物生理学通讯1990,6:55-57
    24.王洪春。植物生理学通讯,1981,(6):72-81
    25.王仲春,罗新书,黄镇。水分胁迫对苹果蒸腾强度和气孔扩散阻力的影响。山东农业大学学报,1987,18(4):33-40
    26.蒋明义等。西北农业大学学报,1991,19(2):88—94
    27.潘瑞炽,豆志杰,叶庆生。茉莉酸甲酯对水分胁迫下花生幼苗SOD活性和膜脂过氧化作用的影响。植物生理学报,1995,21(3):221—228
    28.潘东明,郑国华,谢厚钗等,水分胁迫与枇杷叶片SOD活性及脂质过氧化作用。福建农业大学学报,1993,22:254-257
    29.陈立松,刘星辉。逆境胁迫诱导的氧化胁迫与园艺植物抗氧化作用的研究。园艺学进展,(第2辑)1998,23—29.
    30.汤章城,吴亚华,王育启等。高粱对干旱的反应和调节适应能力。植物生态学和地植物学丛刊,1984,8(1):15
    31. Agboma, P.C., Jones, M.G.K., Peltonen, S.P., Rita, H., Pehu, E.,. Exogenous glycinebetaine enhances grain yield of maize, sorghum and wheat grown under two supplementary watering regimes. J. Agron. Crop Sci. 1997, 178, 29-37.
    32. Alia Hayashi H. Chen T.H.H., Murata N. Transformation with a gene for cjoline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant. Cell & Environment. 1998, 21. 232-239
    33. Baisak R.,D. Rana, P.B.B. Acharya and M. Kar Alteration in the activities of active oxgen scavenging enzymes of wheat leaves subjected to water stress. Plant and Cell Physiol. 1994 , 35(3):489-495.
    34. Blechert S, Brodschelm W, Holder s, Kammrer L, Kutchan TM, MUELLER mj, Xia ZQ, Zenk MH. The octadecanoic pathway: Signal molecule for the regulation of secoddary pathway. Proceedings of the National Academy of Sciences of the United States of America 1995, 92:4099-4105
    35. Bowler C., W.V. Camp, M.V. Montagu and D. Inze Superoxide Dismutase in Plants. Critical Reviews in Plant Science 1994 , 13(3):199-218.
    36. Bradford K.J. and T.C. Hsiao Physiological responses to moderate water stress. In "Encyclopedia of Plant Physiology" .O.L. Lange, P.S. Nobel, C.B. Osmod and H. Ziegler (eds) .Springer-verlag, Berlin and New York. Vol. 12B p. 1982 , 325~378
    37. Creelman RA, Mullet JE. Jasmonic acid distribution and action in plants: regulation during development and response to biolic and abiolic stress. Proceedings of the National Academy of Sciences, 1995., 4114-4119
    38. Davies W.J. and T.T. Kozlowski Stomatal responses of five woody angiosperms to ligt intensity and humidity. Can. j. Bot. 1974, 52:1525-1534.
    
    
    39. Davies FS. And Albigo LG. Water relations of small fruits. In: TT. Kozlowski (ed), Water deficits and plant growth. Academic Press, New York. 1983, 7:89-136.
    40. Dhindsa RS, Dhindsa PP, Thorpe TA. Leaf sensecence, correlated with increased levels of membrane peameability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot, 1980, 32:93
    41. Dhindsa R.S. and W. Matowe. Drought tolerance in two mosses correlated with enzymatic defence against lipid peroxidation. J. Exp. Bot. 1981, 32:79-91.
    42. During H. Osmotic adjustment in grapevines. Acta Hort. 171ISHS. First Int. Symp. On water relations in fruit crops. 1984, 315-322.
    43. Fanjul L. and P. H. Rosher Effects of water stress on internal water relations of apple leaves. Physiol. Plant. 1984, 62:321-328.
    44. Fujii S, Yamamoto R, Miyamoto K, Ueda J. Occurrence of jasmonic acid in Dunaliella (Dunaliellales, Chlorophyta). Phycol Research 45, 1997, 223-226
    45. Gao XP, Yan JY, Liu EK, Zhang DP. Water stress induces in pear leaves the rise of betaine level that is associated with drought tolerance in pear. Scientia Horticulturae (Accepted, in press). 2003
    46. Ghasempour HR, Anderson EM, Gianello RD, Gaff DF. Growth inhibitor effects on protoplasmic drought tolerance and protein synthesis inn leaf cells of the resurrection grass, Sporobolus stapfianus. Plant Growth Regulation 1998, 24, 179-183
    47. Harinasut P. Tsutsui K Takabe T Nomura M Takabe T Kishitani S Exogenous glycinebetaine accumulation and increased salt-tolerance in rice seedings. Bionsci Biotech Biochem 1996, 60, 366-368
    48. Hayashi H. Alia. Sakamoto A. Nonaka H. Chen THH. Murate N. Enhanced germination under high-salt condition of seeds of transgenic Arabidopsis with a bacterial gene (cod A) for choline oxidase. Journal of Plant Research 111. 1998, 357-362
    49. Henckel P. A. Physiology of plants under drought. Ann. Rev. Plant Physiol. 1964, 15:366-386.
    50. Hsiao T.C. Plant response to water stress. Ann. Rev. Plant Physiol. 1973, 24: 519-570.
    51. Kishitani S. Takanami T. Suzuki M. Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betanie aldehyde dehydrogenase from barley. Plant. Cell & Environment. 2000, 23:107-114
    52. Kriedemann P.E. Stomatal and photosynthetic limitation to leaf growth. Aust. J. Plant Physiol. 1986,13:15-31
    
    
    53. Lakso A.N. Aeanonal changes in stomatal response to leaf water potential in apple. J. Amer. Soc. Hort. Sci. 1979,104: 58~60.
    54. Landsberg JJ. and HG. Jones. Apple orchards, In: TT. Kozlowski (eds), Water deficits and plant growth, Academic Press, New York. 1981,6:419-469.
    55. Levy Y. Effect of evaporative demand on water relation of citrus lemon, Ann. Bot. 1980,46:695-700.
    56. Lone MI. Kueh JSH. Wyn Jones RG. Bright SWJ Influence of proline and glycinebetaine on salt tolerance of cultured barley embryos. Journal of Experimental Botany 1987 ,38:479-490
    57. Loveys B.R., S.P. Robinson and W.J.S. Downton Seasonal and diurnal changes in abscisic acid and water relations of apricot leaves (Prunus armeniaca L.). New Phytol. 1987 ,107:15-27.
    58. Makela, P., Kleemola, J., Jokinen, K., Mantila, J., Pehu, E., Peltonen, S.P., Growth response of pea and summer turnip rape to foliar application of glycinebetaine. Acta Agri. Scan. Soil Plant Sci. Section B 1997,47:168-175.
    59. Makela, P., Jokinen, K., Kontturi, M., Peltonen-Sainio, P., Pehu, E., Somersalo, S.,. Foliar application of glycinebetaine a novel product from sugar beet-as an approach to increase tomato yield. Industrial Crops and Products 1998,7: 139-148.
    60. McCord J. M. and I. Fridovich Superoixde dismutase an enzymic function for erthocuprein. J. Biol. Chem. 1969,244:6049-6055
    61. Meidner H. and M. Edwards Direct measurement of turgor pressure potential of guard cell. J. Exp. Bot. 1975,36:319-330
    62. Paleg L.G. and D. Aspinall (eds.) Biochemistry and physiology of Drought Resistance in plants. Academic Press, London, 1981
    63. Placer Z.A., L.L. Cushman and B.C. Johnson Estimation of product of lipid peroxidation (malonl dialehyde) in biochemical systems. Anal. Biochem. 1966,16:359-364
    64. Premachandra G.S. and R.J. Joly Solutes contributing to osmotic potential in yong versus mature leaves of cacao seedlings. J. Plant Physiol. 1992,139(3):355-360.
    65. Pukcacka S. and P.J.C. Kuiper Phospholipid composition and fatty acid peroxidation during aging of Acer plantanoides seeds. Physiol. Plant 1988 ,72:89-93
    66. Rhodes D. Hanson A D. Quaternary ammonium and tertiary sulfonium compounds in higher plant. Annual review of plant physiology and plant molecular biology 1993,44:357-384.
    67. Rodrigues M. L., M.M. Chaves, R. Wendler, M.M. David, W.P. Quick, P.C. Leegood,
    
    M. Stitt and J.S. Pereira Osmotic adjustment in water stressed grapevine leaves in relation to carbon assimilation. Aust. J. Plant Physiol. 1993,20(3):309-321.
    68. Robinson T.L. and B.H. Barritt Endogenous abscisic acid concentritions, vegetative growth, and water relation of apple seedling following PEG-induced water stress.J. Amer. Soc. Hort. 11990,15(6):991-999
    69. Sakai A. Yoshida S. The role of sugars and related compounds in variations of freezing resistance. Cryobiology 1968, 5:160-174
    70. Sembdner G, Parthier B. The biochemistry and the physiological and molecular actions of jasmonates. Annual Review of Plant Physiology and Plant Molecular Biology1993, 44:569-589
    71. Simon E.W. Phosphlipids and plant membrane permeability. New Phytol. 1974,73:377.
    72. Slatyer R.O. Plant Water Relationships. Academic Press, London, 1967
    73. Smart RE. and Coombe. In:Water Deficits and plant Growth. Academic Press, N.Y.1983 ,7:137-196.
    74. Storey R. Wyn Jones RG. Betaine and choline levels in plant and their relationship to NaCL stress. Plant Science 1975, 4:161
    75. Stutte C.A. and G.W. Todd Some enzyme and protein changes associated with water stress in wheat leaves. Crop Sci1969,9:510-522.
    76. Turner N.C. Stomatal behaviour and water status of maiz, sorghum and tabacco under field condition 2. At low soil water potential. Plant Physiol. 1974,53: 360-365.
    77. Ueda, J. et al. Plant Physiol, 1980, 66:246
    78. Wang CY, Buta JG. Methyl jasmonate reduces chilling injury in Cucurbita pepo throught its regulation of abscisic acid and polyamine levels. Environmental and Experimental Botany 1994,34:427-432
    79. Wyn Jones RG. Storey R. Betaines. In: Paleg LG. Aspinall D. eds. The Physiology and Biochemistry of Drought Resistance in Plant. Sydney: Academic Press. 1981,172-204.
    80. XingWB, Rajashekar CB. Alleviation of water stress in beans by exogenous gylcine betaine. Plant Science1999,148:185-192
    81. Xing WB. Rajashekar CB. Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana. Environmental and Experimental Botany 2001,46:21-28
    82. Zhang J.X. and M.B. Kirkham Drought-stress-induced changes in activities of superoide dismutase, catalase and peroxidase in wheat species. Plant and Cell Physiol. 1994 ,3593:785-791.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700