用户名: 密码: 验证码:
赤拟谷盗热激蛋白70基因的竞争定量PCR系统的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用RT-PCR技术构建了赤拟谷盗(Tribolium castaneum)热激蛋白
    70基因的竞争定量PCR系统.竞争性对照模板的构建方法是:利用计算机
    辅助优选设计引物,在合适的退火温度下,得到单一的特异性强的赤拟
    谷盗的热激蛋白70靶标基因的条带,而后降低退火温度,从几条非靶标
    的条带中选择一条,后经胶回收纯化、连接、转化,最后得到纯的质粒。
    此质粒就是在赤拟谷盗的竞争定量PCR系统中的竞争性对照模板,它与
    赤拟谷盗的热激蛋白70靶标基因的两端都含有PCR引物DNA序列,但是
    它们的PCR产物的分子量不同,并且能通过琼脂糖凝胶电泳区分开来。
    在竞争PCR中,利用系列浓度稀释后的竞争性对照模板与靶标DNA在同
    一试管中反应,由于它们互相竞争PCR引物的结果,靶标PCR产物和竞争
    性对照模板PCR产物的量呈线性相关。利用光密度分析仪得到竞争性对
    照模板PCR产物和靶标PCR产物的相对量,并可以得到它们之间的比值。
    由它们之间的比值,我们绘制了竞争性对照模板的初始浓度与竞争性对
    照模板PCR产物和靶标PCR产物比值之间的标准曲线,并得到它们之间的
    线性方程为Y=1.032X-1.618,其中相关系数r2=0.975。
     本研究利用降低退火温度的方法得到了对赤拟谷盗热激蛋白70基因
    进行竞争PCR定量的内部竞争物,通过内部竞争物和目的基因共同竞争底
    物和引物,得到它们的PCR产物的比值,绘制它的标准曲线,建立了它的
    竞争定量PCR系统,为它的热激蛋白70基因定量提供了方便,并为研究
    热激蛋白在转录水平上的表达规律奠定了基础。同时,为在昆虫中构建
    竞争定量PCR系统的理论提供了依据。
Using the RT-PCR skills we build the system of competitor quantitative
    PCR of the heat shock protein70 gene of Tribolium castaneum. The way to get the
    competitive contraposition template is: according to the gene sequence published on
    GeneBank, using computer softwares to select primers. In the appropriate temperature, we
    can get the simple ribbon of the heat shock protein70 gene of Tribolium castaneum. Then
    lower the temperature, we can get several ribbons and select one except for the one of the
    heat shock70 gene of Tribolium castaneum, finally, we get the pure plasmid of the one
    selected. And the plasmid is the competitive contraposotion template of the system of
    competitor quantitative PCR of the heat shock protein70 gene of Tribolium castaneum. The
    plasmid and the the heat shock protein70 gene of Tribolium castaneum we get all have the
    primer sequence, but the molecular weight of their PCR offspring are different ,so we can
    divide them easily .In the competitive PCR, we put a series diluent plasmid and the same
    quantum Heat shock70 gene of Tribolium castaneum to the same tube. Because they need
    the same primer and the primer is limited, their quantum of PCR have interdependency.
    Using a kind of machine we can get the ratio of their PCR offspring, so we can draw the
    standard curve and get the equation betweem the original concentration and the ratio of
    their PCR offspring, and the equation is Y=1.032X-1.618,and r2=0.975。
     From the research we get the inside competitor and build the system of competitor
    quantitative PCR of the heat shock protein70 gene of Tribolium castaneum. So it is very
    convenient to study the quantum of the expression of heat shock70 gene of Tribolium
    castaneum, and it is the foundation to study the expression regularity of heat shock70 gene.
     51
    
    
    At the same time, it gives light to the theory of building the system of competitor
    quantitative PCR on insects.
引文
1. 鲍恩东, K R Sultan, B Nowak等. 运输应激猪骨骼中热应激蛋白HSP70和HAP90家族的表
     达(J). 南京农业大学学报,2001,24(1):81-84
    2. 曹宏.热激蛋白的研究进展. 甘肃高师学报(自然科学版). 1999,4(2):32-35
    3. 陈广生等. 热休克蛋白与凋亡 (J). 国外医学肿瘤学分册. 1998, 23(6):332-334
    4. 陈燃等.定量PCR的非同源对照模板的构建 遗传 2001,23(3):247-250
    5. 陈忠,苏维埃.豌豆中可与Gro EL抗体发生免疫学反应的热激诱导蛋白 植物学报
     1998,40(10):933-938
    6. 范石平等. 热应激对产蛋鸡及其后代机体组织过氧化损伤以及抗氧化微营养素的调控效应
     (J). 中国兽医学报, 2001,21(2):195-199
    7. 龚远英, 鲍恩东.热应激蛋白70(HSP70)研究进展 Animal Husbandry and Veterinary
     Medicine 2002 Vol.34 No.8
    8. 郭兴中, 徐仁宝.热休克反应中蛋白质合成抑制的机制(J).生命的化学1997,17(2):22-24
    9. 郭远林, 王瑞英. 热休克蛋白70与家兔颈总动脉球囊损伤后增殖细胞抗原表达关系 (J).
     中国病理生理杂志, 1999,13(10):880-883
    10. 韩俊英,曾瑞萍.荧光定量PCR技术及其应用 国外医学遗传学分册 2000年,第23卷 第3期
    11. 黄东东,王庆华,吕振岳,周达民.转基因食品的定量PCR检测方法 食品科技, 2001年第5期
     63
    12. 黄祥富,黄上志,傅家瑞.植物热激蛋白的功能以及基因表达的调控 植物学通报 1999,16
     (5):530-536
    13. 李成琼,雷建军. 热激蛋白与植物抗热性研究进展 北方园艺 1999.4
    14. 林孔湘. 植物病理学报 1959,2(1):1-42
    15. 林玲.定量PCR技术的研究进展 国外医学遗传学分册 1999,第22卷 第3期
    16. 刘箭,庄野真理子.番茄线粒体和内质网小分子热激蛋白基因的分子克隆 植物学报
     2001,43(2):138-145
     41
    
    
    17. 刘箭,庄野真理子. 小分子热激蛋白基因在番茄花药中的转录 园艺学报 2001, 28 (5):
     403-408
    18. 潘宁, HBV DNA定量检测方法研究进展 国外医学病毒学分册 2000 第7卷 第2期
    19. 邱德有 朱微, 植物生理学通讯 , 1994, 30(2):139-142
    20. 孙卫忠,李斌,王彦文,柴春利,鲁成. 热激蛋白研究进展 蚕学通讯 2003,23(1):21-27
    21. 陶生策,张治平,张先恩.PCR 技术研究进展 生物工程进展 2001,第21卷 第4期
    22. 田亚南,柯穗,柯冲.应用多聚酶链式反应(PCR)技术检测和定量分析柑橘黄龙病病原 植
     物病理学报 1996,26(3):243-250
    23. 王彦波,周绪霞等 热应激蛋白70的研究进展 免疫学杂志 2003,19(3):79-82
    24. 吴扬,张伟,徐代根等. 热应激蛋白的诱导、定位与再分布研究[J].同济医科大学学
     报,1995,24(6):419~421
    25. 阎小君,肖乐义等.HBV DNA定量PCR方法的建立 第四军医大学学报 1997,18(2)
    26. 杨国正. 热激蛋白研究概况 中国农学通报 1997,13(5):47-49
    27. 杨景峰 乔治.斯尔特 植物对热刺激的反应, 植物学报. 1991 33(4):292-296
    28. 殷长传,颜学恒,郑佐华等.FD-TRT耐热逆转录酶的特性分析[J] 复旦学报(自然科学版),
     1998,37(2):225-228
    29. 赵志远,徐刚. 热应激蛋白70与热应激反应 第一军医大学分校学报 2003,26(2):151-152
    30. 张永亮,吴家驭,吴梅筠. 热休克蛋白的分类、基因调控及其功能[J].法医学杂
     志,1999,15(4):239~242
    31. 朱玉贤. 现代分子生物学 (M). 高等教育出版社, 1998:289-304
    32. 宗晖等. 水稻热激蛋白基因(HSP70)的PCR法快速分析 复旦学报(自然科学版),第35
     卷 第6期 1996年12月 649-655
    33. Ahmadi A, Stevens A. Reproductive responses of heat-tolerance tomatoes to high temperatures.
     J Amer Soc Hort Sci. 1979,104:686-691
    34. Agell N, Ryan C, Schlesinger MJ. Partial purification and substrate specificity of a ubiquitin
     42
    
    
    hydrolase from Saccharomyces cerevisiae[J]. Biochem J. 1991, 273(3):615-620
    35. Alejandro C Tozzini et al. Electronic journal of Biotechnology 2003 3(2)
    36. Anderson RL. Postranscriptional regulation of HSP70 extression in human cells: effects of heat
     shock, inhibition of protein synthesis and adenovirus infection on translation and mRNA stability.
     Mol Cell Biol. 1989,9:3509-3516
    37. Andrie A et al. Virus Genes 1995 10:45
    38. Angelidis CE, Lazaridis I, Pagoulatos GN. Constitutive expression of heat-shock protein70 in
     mammalian cells confers thermoresistance [J]. Eur J Biochem ,1991, 199(1):35-39
    39. Atkinson B C, Raizada M,Bouchard R A, et al. The independent stage-specific expression of the
     18kD heat shock protein genes during microsporogenesis in Zea mays L. Developmental Genetics,
     1993, 14:15-26
    40. Baler RW, Welch WJ, Voellmy R. Heat shock gene regulation by nascent polypeptide and
     denatured proteins: HSP70 as a potential autoregulatory factor. J Cell Biol. 1992, 117: 1151-1159
    41. Becker-Andre M Hahlbrock K. Absolute mRNA quantification using the polymerase chain
     reaction (PCR).Anovel approach by a PCR aided transcript titration assay(PATTY)[J].Nucleic
     A cids Res 1989 17:9437-9446.
    42. Bergh S, Arking R. Development profile of the heat shock response in early embryos
     of Drosophila. J Exp Zool 1984,231(3):379-391
    43. Bieche I.et al. Journal of Cancer 1998 78(5): 661-666
    44. Brodl MR, Physiologia Plantarum, 1989,75:439-443
    45. Burdon RH, Cutmore CM. Human heat shock gene expression and the modulation of plasma
     membrane Na+, K+, ATPase activity [J]. FEBS Lett. 1982,140(1):45-48
    46. Carbajal ME, Valet JP, Charest PM, et al. Purification of drosophila HSP83 and immunoelection
     microscopic location. Eur J Cell Biol,1990,52:147-156
    47. Chen S et al. Journal of Food Microbiology 1997 35(3):239-250
     43
    
    
    48. Clementi M et al. PCR Methods and Applications 1993 2:191
    49. Clifford SC, et al. Br J Cancer, 1994,69:680
    50. Craig E.A and K. Jacobsen. Mutations of the heat inducible 70 kilodalton genes of yeast confer
     temperature sensitive growth.Cell,1984 38:841-849
    51. Deborah A. Raynes et al. Inhibition of HSP20 ATPase activity and protein renaturation by
     a novel HSP20-binding protein (J). The Journal of Biological Chemistry 1998 273
     49:32883-32888
    52. Deng H X et al. Progress in Natinonal Science 1996,6:692
    53. DiDomenico B.J. G.E. Bugaisky and S.L. Lindquist.The heat shock response is regulated
     at both the transcriptional and post-transcriptional levels. Cell 1982 31:593-603
    54. Diviacco S, Norio P, Zentilin L, et al. Gene,1992,122(2):313-320
    55. F Souaze A, et al. Biotechniques,1996,21:290
    56. Fandrey J Bunn H F. In vivo and in vitro regulation of erythropoietin mRNA: measurement
     by competitive polymerase chain reaction[J].Blood 1993 81: 617-623.
    57. Ferre F et al. PCR Methods and Application 1992 2:1
    58. Gabai VL, Meriin AB, Mosser DD. HSP70 prevents activation of stress kinases. A novel
     pathway of cellular thermotolerance[J]. J Biol Chem. 1997, 272(29): 18033-18037
    59. Gagliardi D, Breyton C, Chaboud A, Vergne P, Dumas C. Expression of heat shock factor
     and heat shock protein70 genes during maize pollen development. Plant Mol Biol.
     1995,29:841-856
    60. Garbajal ME, Valct JP, Charest PM. Purification of drosophila HSP83 and immunoelectron
     microscopic location [J]. Eur J Cell Biol. 1990,52(3):147-156
    61. Georgopoulos C, Welch WJ. Role of the major heat stress proteins as molecular chaperones
     [J]. Annu Rev Cell Biol. 1993,9(1): 601-634
    62. Gray CC, Amrani M, Yacoub MH. Heat stress proteins and myocardial protection: experimental
     44
    
    
    model or protential clinical tool [J]. Int J Biochem Cell Biol. 1999,31(2): 559-573
    63. Gurly WB, Key JL. Biochemistry 1991,30:1-12
    64. Hamoui S Benedetto JP Garret M et al. PCR Methods Application 1994 4(3):160-166
    65. Herox Jaand Szczepanik AM. PCR Methods Application 1995 4(6):327-330
    66. Hirayama Y et al. Blood 1998 92(1): 46-52
    67. Holland PM, Abramson RD, Watson R, et al. Proc Natl Acad Sci USA, 1991,88(15):7276-7280
    68. Johnston R. N. and B.L. Kucey. Competitive inhibition of HSP70 gene expression causes
     thermosensitivity. Science 1988 242:1551-1554
    69. Juliana H. Feder Janice M. Rossi Jonathan Solomon Noah Solomon and Susan Lindquist
     The consequences of expressing HSP70 in Drosophila cells at normal temperatures Genes and
     Development 1992 6:1402-1413
    70. Kang J Harders J Riesner D et al. TGGE in quantitative PCR of DNA and RNA[J].Methods
     Mol Biol 1994 31:229-235
    71. Klaus Z et al. Biotechniques 1996, 21:268
    72. Kobayashi Y, Kobayashi E, Sato S, et al. Characterization of cDNAs induced in meiotic
     prophase in lily microsporocytes. DNA Reasearch, 1994, 1:15-26
    73. Krobitsch S, Lindquist S. Aggregation of huntingtin in yeast varies with the length of the
     polyglutamine expansion and the expression of chaperone proteins [J].Proc Natl Acad Sci USA.
     2000,97(4): 1589-1594
    74. LaFayette P R, Nagap R T, O’Grady K, Vierling E, Key J L. Molecular characterization
     of cDNAs encoding low-molecular-weight heat shock proteins of soybean. Plant Mol
     Biol.1996,30 : 159-169
    75. Lanzillo JJ, Kong XJ Fanburg BL. PCR Methods Application 1994 4(3):167-171
    76. Law rence AH. PCR Methods and Applications 1994 3:332
    77. Lee G J, Pokala N, Vierling E. Structure and in vitro molecular chaperone activity of cytosolic
     45
    
    
    small heat shock protein from pea. J. Biol. Chem., 1995, 270:10432-10438
    78. Lenne C, Block M A, Garin J, Douce R. Sequence and expression of the mRNA encoding
     HSP22, the mitochondrial small heat-shock protein in pea leaves. Biochem J.1995,311:
     805-813
    79. Lewis MJ, Pelham HR. Involvement of ATP in the nuclear and nucleolar functions of the 70kd
     heat shock protein [J]. EMBO J. 1985,4(12): 3137-3143
    80. Li G. C. and A. Laszlo. Thermotolerance in mammalian cells: A possible role for heat shock
     proteins. Changes in eukaryotic gene expression in response to environmental stress
     (ed.B.G.Atkinson and D.B.Walden) 1985 pp.227-254.Academic Press Orlando FL.
    81. Li G.C. L.Li Y. Liu J.Y. Mak L. Chen and W.M. F. Li. Thermal response of rat fibroblasts
     stably transfected with the human 70-kDa heat shock protein-encoding
     gene.Proc.Natl.Acad.Sci.1991 88:1681-1685
    82. Li LG. Thormal protein denaturation and protein aggregation in cells made thermotolerant by
     various chemicals: role of heat shock protein. Experimental Cell Research. 1995,217:460-466
    83. Liberek K, Wall D, Georgopoulos C. The Dnaj chaperone catalytically activates the Dnak chaperan
     to preferentiarry bind δ32 heat shock transcription regulational regulator [J]. Proc
     Natl Acad Sci USA,1995,92(4):6224-6228
    84. Lindquist S. The heat-shock respones. Annu Kev Biochem 1986 55:1151-1191
    85. Lindquist S. Craig EA. The heat shock proteins. Annu Rev Genet.1988 22:631-677
    86. Liu Jian, Shono M. Molecular cloning of mitochondria and endoplasmic reticulum localized
     small heat shock protein from tomato. Acta Botanica Sinica, 2001, 2:138-145
    87. Livak KJ et al. PCR Methods Application 1995 4(6): 357-362
    88. M, Gagnon J, Triantahylides C. Accumulation of small heat shock proteins, including
     mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant
     J.1998,13:519-527
     46
    
    
    89. M Hardegger et al. European Food Techonology 1999.209
    90. Marc Vaitilingom et al. Journal of Agriculture Food Chemistry 1999.47
    91. Mathias G. Interference between HSP46 and HSP60, which bind to different domains of the
     molecular chaperone HSP70/HSC70 [J]. Mol Cell Biol. 1998, 18(17): 6238-6244
    92. Mc Culloch PK Choong CS Hurley SM. PCR Methods Application 1995 4(4): 219-226
    93. McGarry T.J. Inhibition of heat shock protein synthesis by heatinducible antisense
     RNA.Proc.Natl.Acad.Sci.1986 83:399-403
    94. McGarry T.J. “Genetic analysis of heat shock protein synthesis.” Ph.D. thesis. University
     of Chicago Chicago IL.
    95. Min-Hsiun Hsieh. A class of soybean low molecular weight heat shock proteins plant physiol
     1992 99:1279-1284
    96. Morimoto RI. Heat shock: the role of transient inducible responses in cell damage,
     transformation and differentiation [J]. Cancer Cells. 1991,3(8): 295-301
    97. Morimoto RI. Cells in stress: transcriptional activation of heat shock genes [J]. Science.1993,
     259(9):1409-1410
    98. Mutimer D et al. Transplantation 1997 63:68
    99. Niederhauser C Gilgen M Meyer R Mitt. Gebiete Lebensm. Hyg 1996.87
    100.Nover L. Heat shock response. CRC Press, Boca Taton FL 1991
    101.O’Brien T. and J.T. Lis. RNApolymerase II pauses at the 5’end of the transcriptionally
     induced Drosophila HSP70 gene.Mol.Cell.Biol.1991 11: 5285-5290
    102. Palleros, D.R., W.J. Welch, and A.L. Fink. Interaction of HSP70 with unfolded proteins: Effects of
     temperature and nucleotides on the kinetics of binding.Proc.Natl.Acad.Sci.1991 88:5719-5723
    103.Parker C.S. and J. Topol. A Drosophila RNA polymerase II transcription factor binds to
     the regulatory site of an HSP70 gene.Cell.1984 37:273-283
    104.Pelham HRB. Speculations in the functions of the major heat shock and glucose-regulated
     47
    
    
    proteins. Cell. 1986 46:959-961
    105.Pelham HRB. Aregulatory upstream promoter element in the Drosophila HSP70 heat shock
     protein gene Cell 1982 30(2):517-528
    106.Petersen R. and S. Lindquist. The Drosophila HSP70 message is rapidly degraded at normal
     temperatures and stabilized by heat shock. Gene.1988 72:161-168
    107.Platzer C Richter G Uberla K et al. Analysis of cytokine mRNA levels in
     interleukin-4-transgenic mic by quantitative polymerase chain reaction[J].Eur J Immunol, 1992
     22:1179-1184
    108.Rabindran SK, Haroun RI, Clos J et al. Regulation of heat shock factor trimer formation:
     role of a conserved leucine zipper [J]. Science. 1993,259(2):230-234
    109.Richard V, Kaeffer N, Thuillez C. Delayed protection of the ischemic heart from
     pathophysiology to therapeutic applications. Fundam [J]. Clin Pharmacol. 1996,10(2):
     409-415
    110.S Lindguist A Craig. The heat shock proteins. Annu. Rev Genet. 1988 22:631-677
    111.Sabehat A, Weiss D, Lurie S. The correlation between heat-shock protein accumulation and
     persistence and chilling tolerance in tomato fruit. Plant Physiol. 1996,110:531-537
    112.Santoro N, Johansson N, Thiele D J. Heat shock element architecture is an important determinant
     in the temperature and transaction domain requirements for heat shock transcription factor. Mol
     Cell Biol. 1998,18:6340-6352
    113.Singh NP, et al. Exp Cell Res, 1988,175:184-191
    114.Solomon J. M. J. M. Rossi K. Golic T. Mc Garry and S. Lindquist. Changes in HSP70
     alter the acquisition of thermotolerance and the regulation of the heat shock response in Drosophila.
     New Biologist 1991 3:1106-1220
    115.Sorger P K. Heat shock factor and the heat shock response (J). Cell.1991.65:363-367
    116.Soto A, Allona I, Collada C, Guevara M-A,Casad R, Rodriguez-Cerezo E, Aragoncillo C,
     48
    
    
    Gomez L. Heterologous expression of a plant small heat-shock protein enhances Escherichia
     coli viability under heat and cold stress. Plant Physiol.1999,120:521-528
    117.Stone D.E. and E.A. Craig. Self-regulation of 70-kilodalton heat shock proteins in
     Saccharomyces cerevisiae. Mol. Cell Biol. 1990 10:1622-1632
    118.Suzuki K, Sawa Y, aneda YK. In vivo gene transfection with heat shock protein70 enhances
     myocardial tolerance to ischemia-reperfusion injury in rat [J]. J Clin Invest, 1997,99(3):
     1645-1650
    119.Syhes, et al. Biotechniques, 1992,13:444
    120.Thomas J. MeGarry et al. The preferential translation of drosophila HSP70 mRNA requires
     sequences in the untranslated leader (J). Cell. 1985.42:311
    121.Tilly K N. McKittrick M. Zylicz and C. Georgopoulos. The DNAK proteins modulates the
     heat-shock response of Escherichia coli. Cell. 1983 34;641-646
    122.Tsai S-J, Wiltbank M C. Quantification of MRNA using competitive RT-PCR with
     standard-curve methodology [J]. Biotechniques 1996 21(5):862-866.
    123.Uberla K, Platzer C, Diamantstein T. Generation of competitor DNA fragments for quantitative
     PCR [J]. PCR Methods Application 1991 1(2):136-139
    124.Udo Reischl et al. Molecular Biotechnology 1995 3:55
    125.Velazquez J. M. S. Sonoda G. Bugaisky and S. Lindquist. Is the major Drosophila heat shock
     protein present in cells that have not been heat shocked? Cell Biol. 1983 96:286-290
    126.Velazquez J.M. S.Lindquist. HSP70: Nuclear concentration during environmental stress and
     cytoplasmic storage during recovery.Cell.1984 36:655-662
    127.Velazquez J., B.j. Di Domenico and S.L. Lindquist. Intracellular localization of heat shock
     proteins in Drosophila. Cell.1980 20:679-689
    128.Vierling E. The roles of heat shock proteins in plants. Annu Rev Plant physiology Plant Molbiol
     1991 42:579-620
     49
    
    
    129.Wang AM, Doyle MV, Mark DF, et al. Proc Natl Acad Sci USA, 1989,86(24):9717-9721
    130.Waters E R,Lee G J,Vierling E. Evolution, structure and function of the small heat shock
     proteins in plants. J. Exp. Bot.,1996,47:325-338
    131.Werner-Washburne M.D.E. Stone and E.A. Craig. Complex interactions among members of
     an essential subfamily of HSP70 genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 1987
     7:2568-2577
    132.Witham PK et al. Application Environmental Microbiology 1996 62(4): 1347-1353
    133.Yolanda SL et al. Current Opinion in Biotechnology 1998 9:43
    134.Yost H.J. and S. Lindquist. RNA splicing is interrupted by heat shock and is rescued by heat
     shock protein synthesis. Cell. 1986 45:185-193
    135.Yost H.J. and S. Lindquist. Translation of unspliced transcripts after heat shock. Science.
     1988 242:1544-1548
    136.Yow HK. Increased mRNA expression of a lamininbinding protein in human colon carcinoma:
     complete sequence of a full-length cDNA encoding the protein. Proc Natl Acad Sci USA
     1988,85:6394
    137.Zimarino V. and C. Wu. Induction of sequence-specific binding of Drosophila heat shock
     activator protein without protein synthesis. Nature 1987 327; 727-730
    138. Zimmerman J.L.W. Petri and M. Meselson. Accumulation of a specific subset of D. melanogaster
     heat shock mRNAs in normal development with heat shock. Cell. 1983 32:1161-1170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700