北京山区主要森林类型火行为与可燃物空间连续性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以北京市山区主要森林类型为研究对象,采用可燃物分类、野外林内空间单元可燃物种类负荷量调查、统计分析、模型计算等方法,通过研究不同树种、灌木、草本以及地表枯枝落叶等可燃物负荷量在空间上的分布规律,探讨不同森林空间单元上的可燃物属性、结构和潜在火行为特征。在对针叶林可燃物负荷量空间分布与树冠火发生关系分析的基础上,建立了可燃物连续性指数模型,对不同针叶林类型的树冠火发生和蔓延的危险性进行估测和分析,并提出了阻滞树冠火发生和蔓延的科学调控措施。本文在可燃物连续性模型及等级的建立、可燃物临界负荷量的确定、可燃物定量调控等方面具有创新性。本文得出如下主要结论:
     (1)通过对侧柏林、油松林、元宝枫林的组成树种和枝叶负荷量的研究,比较了不同森林类型及各层次之间可燃物负荷量的差异,分析了不同树种组成及可燃物负荷量的空间分布对树冠火发生与蔓延的影响。结果显示,侧柏林的可燃物负荷量最高,油松林居中,元宝枫林最低;三个森林类型灌木层负荷量差异显著,灌木层的负荷量集中在荆条、胡枝子和紫穗槐等少数几个种,占90%以上;森林中针叶树的存在和组成比例是树冠火发生与蔓延的基本条件。
     (2)通过不同树种和可燃物种类的理化性质分析和基于Rothermel火蔓延模型的火行为特征估测,比较了不同森林类型的地表可燃物的反应强度和蔓延速度,分析了可燃物负荷量、含水率、坡度、风速对反应强度和蔓延速度的影响。结果表明,可燃物负荷量与火反应强度正相关;侧柏林的火反应强度最高,其次是油松林,元宝枫林最低;相同含水率情况下的火反应强度,油松林>侧柏林>元宝枫林;在坡地上,油松林的火蔓延速度高于其他两个类型;相同风速下,油松林火蔓延速度最快,其次是元宝枫林,最慢的是侧柏林。
     (3)基于Byram火线强度和火焰长度模型,根据无风条件下火焰高度、可燃物层次和针叶树树冠下沿所在层次高度,建立了可燃物垂直连续指数(C)及等级;应用C对侧柏林和油松林的垂直连续性进行了评估;采用修枝、稀疏灌木、枯枝平铺等措施定量调控可燃物垂直连续性,.降低了针叶林树冠火发生的危险性。
     (4)根据北京地区防火季节月最大风速和火焰水平伸展距离以及样方面积,构建了可燃物水平连续指数(D);应用D评估了侧柏林和油松林的树冠可燃物的水平连续性;采用在坡度和风速影响下调整林分针叶树种组成比例等方法,初步对侧柏林的可燃物水平连续性进行了定量调控。
     (5)依据火焰高度等级,提出了可燃物连续性临界负荷量(WD)及计算公式,得出了侧柏林和油松林不同垂直连续性等级的临界负荷量,可作为针叶林可燃物连续性调控的基础。
This dissertation studied the fuel spatial distribution and characteristics and structure and potential fire behavior in forest space combustible units using fuel classification, fuel loading survey, statistics analysis, calculation model and other methods, through analyses of fuel loading distributions among tree, shrub, grass and litter/duff in major forests in the mountainous area of Beijing. The relation between the spatial distribution of fuel and crown fire was quantified by using the vertical and horizontal continuity indices and ratings. Based on the continuity models of forest fuel, the hazard of crown fire was evaluated and precautions to prevent the formation and spread of crown fires were proposed for major coniferous forests. The innovation of this paper was fuel continuity model and ratings, fuel loading threshold and fuel quantitative control. The major results are as follow:
     (1) By studying tree species composition and branches loadings of Pinus tabulaeformis, Platycladus orientalis, and Acer truncatum forests, the difference of fuel loadings for the various forest types and all levels were compared, and the influences of different species composition and fuel loading spatial distribution on the occurrence and spread of crown fire were analyzed. The results showed that fuel loading between forest types varied obviously, Platycladus orientalis forest (61.1t/hm2)> Pinus tabulaeformis forest (47.0t/hm2)> Acer truncatum forest (22.9 t/hm2); the differences of fuel loadings for shrub layer of three forest types were significant, and 90% of shrub layer loading was concentrated on several shrub species including Vitex negundo var. heterophylla, Lespedeza bicolor, Amorpha fruticosa and so on; the existence and the proportion of conifers in forest stands were basic conditions of the occurrence and spread of the crown fire.
     (2) Through the analysis of physical and chemical properties of different species and fuel categories and the estimates of fire behavior characteristics based on the Rothermel model of fire spread, the reaction intensities and spread speeds for different forest types were compared, and the impacts of fuel loading, moisture content, slope, wind speed on the reaction intensity and spread speed of fires were analyzed. The results indicated that fire reaction intensity was positively correlated with fuel loading; the reaction intensity in Platycladus orientalis forest was highest, Pinus tabulaeformis forest was mediate, and Acer truncatum forest was lowest; under the same moisture content, the order of fire reaction intensities (from high to low) was Pinus tabulaeformis> Platycladus orientalis> Acer truncatum; on the slope, fire spread speed of Pinus tabulaeformis forest faster than that of Acer truncatum and Platycladus orientalis forests; under the same wind speed, the rate of fire spread took the order (from high to low) of Pinus tabulaeformis> Acer truncatum> Platycladus orientalis.
     (3) Based on Byram's fireline intensity and flame height models, vertical fuel continuity index (C) and the rating system were established based on the flame height under calm condition, the levels of fuel and the height of the base of coniferous crown. The fuel vertical continuities of Platycladus orientalis and Pinus tabulaeformis forests were evaluated using C. The measures of pruning, thinning shrub, scattering dead wood and branches can control fuel vertical continuity and decrease the risk of crown fire occurrence in the coniferous forests.
     (4) Fuel horizontal continuity index (D) and the rating system were founded according to sampling area, flame horizontal length and the monthly maximum windspeed in fire seasons of Beijing; D was used to evaluate the fuel horizontal continuity of Platycladus orientalis and Pinus tabulaeformis forests. Fuel horizontal continuity in Platycladus orientalis forest was quantitatively primary regulated using the methods such as adjusting the composition proportion of conifers under the influence of the slope and the wind speed.
     (5) A new concept of the loading threshold (WD) for fuel continuity was proposed and formulated mathematically on the basis of flame height ratings. WD of fuel vertical continuity rating for Platycladus orientalis and Pinus tabulaeformis forests can be computed and used as the basis of fuel vertical continuity regulation in coniferous forests.
引文
[1]Albert, A.; Marc, G.; Javier, R, Fuel types and crown fire potential in Pinus halepensis forests [J]. Europe Journal Forest Research,2011, (4):1678-1682.
    [2]Albini, F.A. Spot fire distance from burning trees-a predictive model [R]. Ogden UT: Intermountain Forest and Range Experiment Station of USDA Forest Service,1979:1-80.
    [3]Alexander, M.E. Crown fire thresholds in exotic Pine Plantations of Australasia [D]. Canberra: Australia National University,1998:22.
    [4]Alexander, M.E.; Cruz, M. G. Evaluating a model for predicting active crown fire rate of spread using wildfire observations [J]. Canadian Journal of Forest Research,2006,36(11):3015-3028.
    [5]Anderson, H. Forest fuel ignitibility [J]. Fire Technology,1970,6 (4):312-319.
    [6]Andrews P.L. Behave fire behavior prediction & fuel rood-ellirlg systems BURN subsystem [R]. Ogden UT:Intermountain Forest and Range Experiment Station of USDA Forest Service,1988, (1):194-199.
    [7]Andrews, P.A.; Finney, M.; Fischetti, M. Predicting Wildfires [J]. Scientific American,2007, (7): 46-55.
    [8]Andrews, P.L. BEHAVE:fire behavior prediction and fuel modeling system--BURN subsystem [R]. Ogden UT: Intermountain Forest and Range Experiment Station of USDA Forest Service, 1986:20-24.
    [9]Andrews, P.L. BehavePlus fire modeling system: past, present, and future [C], American Meteorological Society, Proceedings of 7th Symposium on Fire and Forest Meteorology. Maine: Bar Harbor,2007, (10):23-25.
    [10]Andrews, P.L.; C.H. Chase. BEHAVE:fire behavior prediction and fuel modeling system BURN subsystem [R]. Ogden UT: Intermountain Forest and Range Experiment Station of USDA Forest Service,1989:1-134.
    [11]Andrews, P.L.; Rothermel, R.C. Charts for interpreting wildland fire behavior characteristics[R]. Ogden UT: Intermountain Forest and Range Experiment Station of USDA Forest Service,1982: 1-22.
    [12]Barrows, J.S. Fire behavior in Northern Rocky Mountain forests [R]. Missoula MT: Northern Rocky Mountain Forest and Range Experiment Station of USDA Forest Service,1951:1-134.
    [13]Blackmarr, W.H.; Flanner, W.B. Seasonal and diurnal variation in moisture content of six species of Poeos in Shrubs [M]. Ogden UT: USDA Forest Service Research PaP Se-33,1968:11.
    [14]Brown, J.K. Handbook for inventorying downed woody material[R]. Ogden UT: Intermountain Forest and Range Experiment Station of USDA Forest Service,1974:1-8.
    [15]Burgan, R.E. Concepts and interpreted examples in advanced fuel modeling[R]. Ogden UT: Intermountain Forest and Range Experiment Station of USDA Forest Service,1987:1-45.
    [16]Burgan, R.E.; Rothermel, R.C. BEHAVE:fire behavior prediction and fuel modeling system-FUEL subsystem[R]. Ogden UT: Intermountain Forest and Range Experiment Station of USDA Forest Service,1984:1-132.
    [17]Butler, B.W.; Finney, M.; Bradshaw, L.; Forthofer, J.; McHugh, C.; Stratton, R.; Jimenez, D. Wind Wizard:A new tool for fire management decision support[C], Andrews, PL; Butler, BW, Fuels management-how to measure success:conference proceedings. Fort Collins CO:USDA Forest Service,2006:787-796.
    [18]Butler, B.W.; Finney, M.A.; Andrews, P.L.; Albini, F.A. A radiation-driven model for crown fire spread [J]. Canadian Journal of Forest Research,2004,34(8):1588-1599.
    [19]Byram, G.M. Combustion of Forest Fuels [C], Davis, KP, Forest Fire: Control and Use, New York:McGraw-Hill Book Company,1959:77-84.
    [20]Byram, G.M. Evalution of a passive flame-height senser to estimate forest fire intensity [R]. Newtown Square PA: Pacific Northwest Forest and Range Experiment station of USD A Forest service,1981:13.
    [21]Byram, G.M. Some principles of combustion and the significance in forest fire behavior [J]. Fire Management Today,2004,64(1):37-44.
    [22]Chandler, C. C. et al. Fire in Forestry: Forest Fire Behavior and Effects [M]. Michidan: Wiley-Interscience publication,1983:3.
    [23]Chase, C.H. Spot fire distance equations for pocket calculators[R]. Ogden UT: Intermountain Forest and Range Experiment Station of USDA Forest Service,1981:1-24.
    [24]Chase, C.H. Spotting distance from wind-driven surface fires - extensions of equations for pocket calculators[R]. Ogden UT: Intermountain Forest and Range Experiment Station of USDA Forest Service,1984:1-23.
    [25]Chuvieco, E.; Aguado, I. Conversion of fuel moisture content values to ignition Potential for integrated fire danger assessment [J]. Canadian Journal of Forest Researeh,2004,34(11): 2284-2291.
    [26]Cruz, M.G.; J. Gould. Field-based fire behaviour research: past and future roles [C], Anderssen, RS, RD Braddock and LTH Newham, Interfacing Modelling and Simulation with Mathematical and Computational Sciences. Cairns Australia: 18th World IMACS/MODSIM Congress,2009: 247-253.
    [27]Cruz, M.G.; Alexander, M.E.; Wakimoto, R.H. Modeling the likelihood of crown fire occurrence in conifer forest stands [J]. Forest Science,2004,50(5):640-658.
    [28]Cruz, M.G.; Alexander, M. E.; Wakimoto, R. H. Development and testing of models for predicting crown fire rate of spread in conifer forest stands [J]. Canadian Journal of Forest Research,2005,35(7):1626-1639.
    [29]Deeming, J.E.; R.E. Burgan; J.D. Cohen. The National FIRE-Danger Rating System-1978 [R]. Ogden UT: Intermountain Forest and Range Experiment Station of USDA Forest Service,1977: 6-12,21.
    [30]Fahnestock, G.R. Two keys for appraising forest fire fuels[R]. Portland OR: Pacific Northwest Forest and Range Experiment Station of USDA Forest Service,1970:1-31,99.
    [31]Fernandes, P.M. CatehPole W.R. Shrubl and fire behavior modeling with microplot data [J]. Canadian Journal of Forest Research,2000,30(6):889-89.
    [32]Fernandes, P.M. Combining forest structure data and fuel modeling to classify fire hazard in Portugal [J]. Forest Science,2009,66 (4):411-419.
    [33]Finney, M.A. An overview of FlamMap fire modeling capabilities[C], Andrews, PL; Butler, BW Fuels management-how to measure success:conference proceedings. Fort Collins CO:Rocky Mountain Research Station of USDA Forest Service,2006:213-220.
    [34]Finney, M.A. FARSITE:Fire Area Simulator-model development and evaluation[R]. Fort Collins CO:Rocky Mountain Research Station of USDA Forest Service,2004:1-52.
    [35]Forestry Canada Fire Danger Group. Development and structure of the Canadian Forest Fire Behavior Prediction System [R]. Ottawa: Canadian Forest Service,1992:1-63.
    [36]Forthofer, J.; Shannon, K.; and Butler, B. Simulating diurnally driven slope winds with WindNinja [C], LR Donohue and RE Marin (eds), Proceedings of 8th Symposium on Fire and Forest Meteorological Society. Bethesda MD:Society of American Foresters,2009:1-13.
    [37]Forthofer, J.M. Modeling wind in complex terrain for use in fire spread prediction [D]. Fort Collins CO:Colorado State University,2007:1-5.
    [38]Gisborne, H.T. Fundamentals of fire behavior [J]. Fire Management Today,2004,64(1):15-23.
    [39]Golley, F.B. Caloric value of wet tropical forest vegetation [J]. Ecology,1969, (50):517-519.
    [40]Grishin, A.M.; Zelenskii, E.E. Aperiodic Instability of the Front of a Crown Forest Fire [J]. Combustion Explosion and Shock Waves,1998,34(5):502-508.
    [41]He, H.S.; Shang, Z.B.; Crow, T.R.; Gustafson, E.J.; Shifley, S.R. Simulating forest fuel and fire risk dynamics across landscapes-LANDIS fuel module design [J]. Ecological Modelling,2004, 180(1):135-151.
    [42]Hely, C.; Flannigan, M.; Bergeron, Y.; Mcrae, D. Role of vegetation and weather on fire behavior in the Canadian mixedwood boreal forest using two fire behavior prediction systems [J]. Canadian Journal of Forest Research,2011,31(3):430-441.
    [43]Jamison, D.A. Diurnal and seasonal fluctuation in moisture content of Pinyon Pine and Juniper[R]. Fort Collins CO: Rocky Mountain Research Station of USDA Forest Service,1966: 7.
    [44]Jones, J.L.; Webb, B.W.; Jimenez, D.; Reardon,J.; Butler, B. Development of an advanced one-dimensional stem heating model for application in surface fires [J]. Canadian Journal of Forest Research,2004,34 (1):20-30.
    [45]Jones, S.E.; Johnston, J. The Devil's Picnic [J]. National Geographic,1968, (1):100-127.
    [46]Jordan, D.F. Productivity of a tropical forest and its relation to a world pattern of energy storage [J]. Journal Ecology,1971,59(1):127-142.
    [47]Keeley, J.E. Seed-germination patterns in fire-prone Mediterranean climate regions [C], Arroyo, MT; Zedler, PH; Fox, MD (eds) Ecology and biogeography of Mediterranean ecosystems in Chile, California, and Australia. New York: Springer,1995:239-273.
    [48]Kilgore, B.M.; Sando, R.W. Crown fire potential in asequoia forest after Prescribed burning [J]. Forest Science,1975,21(1):83-87.
    [49]Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups (4th edition) [M]. Berlin:Springer-Verlag,2003:165-173.
    [50]Merrill, D.F.; Alexander, M.E. Glossary of forest fire management terms [M]. NRCC:Canadian Committee on Forest Fire Management,1987:1-91.
    [51]Molchanov, V.P. Conditional for the spread of crown fire in Pine forest [J]. Translated from Lesnoe Khozydystvo,1957, (10):50-63.
    [52]Noble, I.R.; Barry, G.A.V.; and Gill, A.M. MacArthur's fire-danger meters expressed as equations [J]. Australian Journal of Ecology,1980,5(2):201-203.
    [53]Page, W.; Jenkins, M.J. Predicted Fire Behavior in Selected Mountain Pine Beetle-Infested Lodgepole Pine [J]. Forest Science,2007,53(6):662-674.
    [54]Philpot, C.W. Diurnal fluctuation in moisture content of Ponderosa Pine and whiteleaf Manzanita leaves [R]. Berkeley Califonia: Pacific southwest forest and range experiment station of USDA Forest Service,1965:7.
    [55]Pyne, S.J.; Andrews, P.L.; Laven, R.D. Introduction to wildland fire science [M]. New York: Wiley,1996:170-213.
    [56]Raymond, C.L.; Peterson, D.L. Fuel treatments alter the effects of wildfire in a mixed-evergreen forest, Oregon, USA [J]. Canadian Journal of Forest Research,2005,35(12):2981-2995.
    [57]Reinhardt, E.; Scott, J.; Gray, K.; Keane, R. Estimating canopy fuel characteristics in five conifer stands in the western United States using tree and stand measurements [J]. Canadian Journal of Forest Research,2006,36 (11):2803-2814.
    [58]Reinhardt, E.D.; Keane, R.E.; Calkin, D.E.; Cohen, J.D. Objectives and considerations for wildland fuel treatment in forested ecosystems of the interior western United States [J]. Forest Ecology Management,2008,256(12):1997-2006.
    [59]Riccardi, C.L.; Ottmar, R.D.; Sandberg, D.V.; Andreu, A.; Elman, E.; Kopper, K.; Long, J. The fuel bed: a key element of the fuel characteristic classification system [J]. Canadian Journal of Forest Research,2007,37(12):2394-2412.
    [60]Roff, A.; Goodwin, N.; Merton, R. Assessing fuel loads using remote sensing technical report summary [R]. New South Wales:Rural Fire Service,2005:27-30.
    [61]Rothermel, R.C.; Deeming J.E. Measuring and Interpreting Fire Behave for Correlation with Fire Effects [C]. Ogden UT: Intermountain Forest and Range Experiment Station of USDA Forest Service,1980:1-9.
    [62]Rothermel, R.C. Fire behavior consideration of aerial ignition[R]. Missoula MT:Intermountain Forest and Range Experiment Station of USDA Forest Service,1984:1-16.
    [63]Rothermel, R.C. How to predict the spread and intensity of forest and range fires [R]. Ogden UT: Intermountain Forest and Range Experiment Station of USDA Forest Service,1983:1-50.
    [64]Rothermel, R.C. A Mathematical Model for Prediting Fire Spread in Wildland Fuels [R]. Ogden UT: Intermountain Forest and Range Experiment Station of USDA Forest Service,1972:1-50.
    [65]Rothermel, R.C. Predicting behavior and size of crown fires in the Northern Rocky Mountains[R]. Ogden UT: Intermountain Forest and Range Experiment Station of USDA Forest Service,1991: 1-46.
    [66]Rothermel, R.C; Hartford, R.A.; Chase, C.H. Fire growth maps for the 1988 Greater Yellowstone Area fires [R]. Ogden UT: Intermountain Forest and Range Experiment Station of USDA Forest Service,1994:1-68.
    [67]Rothermel, R.C.; Rinehart, G.C. Field procedures for verification and adjustment of fire behavior predictions [J]. Ogden UT: Intermountain Forest and Range Experiment Station of USDA Forest Service,1983:1-28.
    [68]Sandberg, D.V.; Riccardi, C.L.; Schaaf, M.D. Fire potential rating for wildland fuel beds using the fuel characteristic classification system [J]. Canadian Journal of Forest Research,2007, 37(12):2456-2463.
    [69]Scott, J.H.; Burgan, R.E. Standard fire behavior fuel models:a comprehensive set for use with Rothermel's surface fire spread model [R]. Fort Collins CO:Rocky Mountain Research Station of USDA Forest Service,2005:1-80.
    [70]Scott, J.H.; Reinhardt, E.D. Stereo photo guide for estimating canopy fuel characteristics in conifer stands [R]. Fort Collins CO:Rocky Mountain Research Station of USDA Forest Service, 2005:1-56.
    [71]Stocks, B.J.; Alexander, M.E.; Lanoville, R.A. Overview of the International Crown Fire Modelling Experiment (ICFME) [J]. Canadian Journal of Forest Research,2004,34(8): 1543-1547.
    [72]Stocks, B.J.; Alexander, M.E.; Wotton, B.M.; Stefner, C.N.; et al. Crown fire behaviour in a northern jack pine - black spruce forest [J]. Canadian Journal of Forest Research,2004,34(8): 1548-1560.
    [73]Sturtevant, B.R.; Scheller, R.M.; Miranda, B.R.; Shinneman, D.; Syphard, A. Simulating dynamic and mixed-severity fire regimes: A process-based fire extension for landis-ii [J]. Ecological Modelling,2009,220(23):3380-3393.
    [74]Trabaud, L. Post fire plant community dynamics in the Mediterranean Basin in:Moreno JM, Oechel WC (eds) The role of fire in Mediterranean type ecosystems [M]. New York: Springer, 1994:1-15.
    [75]Van Wagner, C.E. Conditions for the start and spread of crown fires [J]. Canada journal For Research,1977,7(1):23-34.
    [76]Wakimoto, R.H. Ignition of crown fuels above a spreading surface [D]. Miaaonla: Ph D Thesis in University of Montana,2004:20-2.
    [77]Wells, G. The Rothermel Fire-Spread Model:Still Running Like a Champ [M]. JFSP:Fire Science Digest 2,2008:1-12.
    [78]Whelan, R.J. The ecology of fire [M]. Cambridge:Cambridge University Press,1995:10-15.
    [79]Xanthopoufos, G. Development of wildlande crown fire einitiation model [D]. Miaaonla: University of Montana,1990:152.
    [80]蔡柄峰,彭世揆,佘光浑.西南林火计算机仿真系统的研究[C],赵宪文主编,森林火灾遥感监测评价.北京:中国林业出版社,1995:105-120.
    [81]成俊卿,杨家驹,刘鹏著.中国木材志[M].北京:中国林业出版社,1992:19-118.
    [82]邓湘雯,吕勇,潘晓杰,李卫兵.南方杉木人工林火行为预测专家系统的研究[J].中南林业调查规划,2002,(3):50-52.
    [83]邓湘雯,田大伦,康文星,邓裕,吴彬.杉木人工林生态系统可燃物空间分布规律研究[J].火灾科学,2007,17(1):21-25.
    [84]邓湘雯,文定元.山脊防火林带透风系数的确定[J].中南林学院学报,2002,22(2):62-65.
    [85]杜建华.黑龙江大兴安岭森林可燃物基础信息库及偃松林火行为研究[D].北京:中国林业科学研究院,2004:23-26.
    [86]高成德,田晓瑞,舒立福.重庆铁山坪森林可燃物类型划分及其燃烧性[J].森林防火,2005,(2):29-30.
    [87]高峰,张振威,朱启疆.GIS支持下的林火扩展模型研究[C],赵宪文主编,森林火灾遥感监测评价.北京:中国林业出版社,1995:121-127.
    [88]何忠秋等.森林可燃物含水量模型的研究[J].森林防火,1995,(2):15-16.
    [89]胡海清,牛树奎等.林火生态与管理[M].北京:中国林业出版社.2005,(8):31-32,72-81.
    [90]黄德峰,强化首都特色,科学谋划发展,努力提升森林火灾综合防控能力----关于“十二五”期问进一步提升首都森林火灾综合防控能力的调查与思考[R].北京:北京市园林绿化局,2010:5-16.
    [91]黄作维.基于GIS和RS的林火行为预测研究[J].西北林学院学报,2006,21(3):94-97.
    [92]金森.遥感估测森林可燃物负荷量的研究进展[J].林业科学,2006,42(12):63-67.
    [93]景文峰等.林火蔓延预测计算机图形显示系统[J].火灾科学,1993,(2):44-51.
    [94]李世友,刘会龙,张凯等.预防华山松树冠火的最低修枝高度探讨[J].华中农业大学学报,2009,28(3):361-363.
    [95]林承超.福州鼓山季风常绿阔叶林及其林缘几种植物叶热值和营养成分[J].生态学报,1999,19(6):832-836.
    [96]林益明,林鹏,李振基.福建武夷山甜种群落能量的研究[J].植物学报,1996,38(12):989-994.
    [97]刘灿,李宏.四种杨属植物的热值及灰分含量的比较[J].中南林业科技大学学报,2010,30(10):24-28.
    [98]刘菲,胡海清.森林可燃物理化性质与燃烧性的研究综述[J].森林防火,2005(84)1:28-30.
    [99]刘世荣,蔡体久,柴一新.落叶松人工林群落能量积累、分配、固定和转化的研究[J].生态学杂志,1990,9(6):7-10.
    [100]刘自强,李晓峰,至相会.大兴安岭森林可燃物发热量的测量及其和含水率关系的研究[J].森林防火,1993,(2):3-7.
    [101]刘自强,王丽俊,王剑辉.大兴安岭森林可燃物含水率、燃点、灰分的测定及其对易燃性和燃烧性的影响[J].森林防火,1993,(4):9-12.
    [102]骆介禹.森林燃烧能量学[M].哈尔滨:东北林业大学出版社,1992:67-68.
    [103]马文生,王阿川.基于卫星影像的图像挖掘在林火行为分析中的应用[J].林业劳动安全,2008,(1):44-47.
    [104]彭世揆,佘光浑,封维忠.林火仿真系统模型[C],赵宪文主编,森林火灾遥感监测评价.北京:中国林业出版社,1995:102-104.
    [105]田大伦,康文星,文仁知.杉木林生态系统学[M].北京:科学出版社,2003:90-95.
    [106]王海晖,朱霁平,王清安,邵剑.林火行为预测预报专家系统[J].自然灾害学报·1994,(4):50-52.
    [107]王强.利用遥感图像估测林下可燃物负荷量的研究[D].哈尔滨:东北林业大学,2005:45-47.
    [108]王清安,寇晓军.林火上方浮力流动与火区及气象要素的数值模拟[J].火灾科学,1993,2(1):38-43.
    [109]王晓晶,张晓丽,黄华国.DEM在林火行为模拟中的应用[J].林业资源管理,2007,(1):99-101,37.
    [110]王晓丽,牛树奎,阚振国.北京地区主要树种理化性质研究及易燃性初步分析[J].林业资源管理,2008,(4):83-87.
    [111]王晓丽,牛树奎等.北京地区主要针叶林易燃可燃物垂直分布[J].北京林业大学学报,2009,31(2): 31-35.
    [112]王正非.山火韧始蔓延速度测算法[J].山地研究,1983,1(2):42-51·
    [113]肖化顺,张贵,蔡学理.基于模糊数据挖掘技术的林火行为预测研究[J].南京林业大学学报(自然科学版),2006,(4):97-100.
    [114]杨成源,张加研,李文政.滇中高原及干热河谷薪材树种热值研究[J].西南林学院学报,1996,16(4):294-302.
    [115]袁宏永,范维澄,王清安.由航空影像及DTM测量林火行为的数学模型与方法[J].火灾科学,1995,(2):31-37.
    [116]张景群.树冠火与林分层间可燃物分布关系研究[J].森林防火,1995,(4):5-9.
    [117]张景忠,肖非,廉明起.林火行为相关参数综合测报仪的研究[J].东北林业大学学报,2000,(6):112-115.
    [118]张思玉,兰海涛.针叶幼林树冠火发生的内在机制[J].东北林业大学学报,1998,26(5):77-80.
    [119]LY/T1268-1999.中华人民共和国林业行业标准,森林植物与森林枯枝落叶层粗灰分的测定[S].张万儒,杨光滢,屠星南,张萍.北京:中国标准出版社,1999:1-3.
    [120]赵凤君,王明玉,舒立福.森林火灾中的树冠火研究[J].世界林业研究,2010,(1):39-43.
    [121]郑焕能等.森林防火[M].哈尔滨:东北林业大学出版社,1992:43-50.
    [122]周建军,黄平,张昱春.有关林火行为的一些实验研究[J].火灾科学,1998,(2):2-7.
    [123]周群英,陈少雄,韩斐扬,陈文平.不同林龄巨尾桉的灰分含量和热值[J].广西植物,2011,31(1):75-80.
    [124]周宇峰,周国模,余树全,徐小军,金伟.木荷林分可燃物载量空间分布的研究[J].北京林业大学学报,2008,30(6):99-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700