辣椒疫霉(Phytophthora capsici)5个果胶甲基酯酶基因克隆及pcpme1的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辣椒疫病是一种世界性土传病害,严重影响我国及世界各国的辣椒生产,造成巨大的经济损失,该病由辣椒疫霉菌(Phytophthora capsici Leonian)引起。辣椒疫霉菌是一种土传卵菌,以卵孢子或厚垣孢子在土壤及病残体中越冬,可以存活数月甚至更长时间,感病品种的重复种植能够导致卵孢子在土壤中大量积累。该菌可以在任何生长季节侵染寄主植物引起种苗死亡、茎腐、枯萎、果实腐烂;寄主范围广,可以侵染辣椒、西葫芦、黄瓜、茄子番茄等9科20多种作物。
     目前,对于辣椒疫病的防治主要采用轮作、化学防治和培育抗病品种。但是农药残留容易对环境造成污染;辣椒疫霉生理小种的变化造成抗病品种效果不稳定。因此,寻找探索辣椒疫霉菌重要的致病因素来控制病害已经成为科学家研究的热点。研究表明植物病原菌与寄主互作过程中分泌的果胶酶是重要的致病酶,这些酶包括多聚半乳糖醛酸酶、果胶甲基酯酶、果胶裂解酶,它们产生于病原菌识别、定殖及与寄主建立寄生关系的过程中,降解或软化细胞壁的果胶、中胶层乃至破坏寄主的防御体系,增强病原菌对寄主的亲合力。因此,植物病原菌在侵染寄主过程中所分泌的细胞壁降解酶是一类重要的致病因子,其活性高低是界定植物病原菌侵染与否或致病力强弱的重要技术指标之一。
     其中,果胶甲基酯酶(PME)是许多植物病原菌的致病因子,在植物发病过程中起重要作用。本研究以辣椒疫霉为研究对象,筛选多聚半乳糖醛酸酶、果胶甲基酯酶、果胶裂解酶活性较高的辣椒疫霉菌株,并构建了其基因组DNA文库,应用Pool PCR方法分离和克隆了5个pme基因。构建了pcpme1基因真核表达载体,通过诱导表达获得重组蛋白,用Anti-His抗体通过Western Blot检测了其表达情况,用Ni-NTA树脂纯化了表达的PCPME1,并制备了特异性抗体,用Western Blot检测了pcpme1在辣椒体内的表达情况;用PNGase F对PCPME1进行去糖基化处理,研究了糖基化位点对其活性的影响;找到pcpme1的活性中心位点,对其进行定点突变,然后进行真核表达,获得纯蛋白;应用RT-PCR和Northern Blot方法分析了其在辣椒体内的表达情况;用表达的原始PCPME1、去糖基化的蛋白,定点突变后的蛋白分别接种辣椒叶片,透射电镜观察其对寄主细胞壁的破坏作用。主要研究内容如下:
     采用分光光度法测定辣椒疫霉菌SDPH-33的多聚半乳糖醛酸酶(PG)、果胶裂解酶的活性;滴定法测定了果胶甲基酯酶活性;结果发现,辣椒疫霉的致病性与其PGs、PELs、PMEs的活性密切相关。利用Pool PCR法筛选SDPH-33的基因组文库,从文库中共分离克隆了5个pme基因,并对其结构特征进行分析。对其序列和蛋白结构进行分析发现, 5个pme基因具有很高的同源性,所编码的蛋白具果胶甲基酯酶的保守序列和活性位点(GxYxE、QDTL、QAVAL、DFIFG和LGRPW),并具有不同数目的糖基化位点,其蛋白结构也具明显的相似性。根据比对不同来源的PME的氨基酸系列构建的进化树表明,辣椒疫霉的pme基因与卵菌的pme基因聚在一起,亲缘关系最近,明确了卵菌在自然界中的分类地位。
     用SDPH-33的游动孢子悬浮液接种4-6叶期辣椒叶片,提取发病叶片的总RNA,合成cDNA。根据pcpme的序列设计特异性引物,RT-PCR检测接种叶片内pcpme的表达情况。结果发现,接种后pcpme在发病辣椒体内均能表达,其表达量随着时间延长而加强,第7天表达量最高,而在健康辣椒组织中则没有发现任何pcpme的表达。结合RT-PCR的结果及基因的糖基化位点数目确定pcpme1为关键的致病基因,根据pcpme1的序列设计引物,PCR扩增片段以制备探针,Northern Blot结果表明,pcpme1基因在接种辣椒叶片内得到表达,结果于RT-PCR相似。
     根据已经克隆的pcpme1基因的序列,设计特异性引物,PCR扩增其成熟肽片断。重组至酵母分泌型表达载体pPIC9K,构建成重组表达载体pPIC9K-pcpme1,转化至大肠杆菌JM109中,筛选得到阳性克隆。重组质粒线性化后转化毕赤酵母GS115感受态细胞,经过G418筛选和PCR扩增转化子基因组筛选,得到数株基因工程酵母菌。SDS-PAGE分析发现,目的蛋白分子量约为60KDa,比预期蛋白的分子量大,用anti-his抗体检测到pcpme1已经在毕赤酵母中获得了高效表达。通过Ni-NTA树胶纯化系统并透析后获得了表达的PCPME1融合蛋白,发现其对提取的辣椒细胞壁具有降解活性,通过将纯化的PCPME1蛋白免疫家兔,制备特异性抗体。Western Blot分析结果表明,pcpme1基因在发病的辣椒组织中获得了充分的表达,且随着发病程度的提高表达量逐渐增高。将纯化的PCPME1蛋白用PNGase F处理,获得了去糖基化的蛋白,分子量约为37Kda与预期蛋白的分子量相当,根据去糖基化前后蛋白的活性测定确定了糖基化对PMEs的活性不起决定性作用。根据前人报道的结果预测PCPME1的活性位点,并对其进行定点突变,将突变后的基因转化毕赤酵母,并诱导其表达,用Ni-NTA树胶纯化系统并通过透析获得了突变后的蛋白,突变前后蛋白的活性测定结果表明突变的氨基酸为该蛋白的活性位点。
     用纯化的野蛋白PCPME1、去糖基化的蛋白、突变后的蛋白分别接种4-6叶期的辣椒幼苗叶片,发现野蛋白和去糖基化的蛋白能够在叶片上引起病斑,且病斑的大小随接种时间的延长而增大;突变后的蛋白接种后则不能形成病斑;接种无菌水的对照叶片也没有表现症状。将接种后的辣椒用透射电镜观察其细胞壁的结构发现接种野蛋白和去糖基化的蛋白细胞壁被不同程度地降解,而接种突变蛋白和无菌水的辣椒其细胞壁基本保持完整。
     本实验的结果表明pcpme1是编码辣椒疫霉果胶甲基酯酶基因家族中起致病作用的关键基因之一。
Phytophthora blight of peppers is a worldwide soil-borne disease, and it has become a serious threat to the agricultural production of China and other countries in the world, and result in enormous economic loss. The disease was caused by phytophthora capsici Leonian. P. capsici is a soilborn oomycete, and it can survive in the soil as oospores or chlamydospore for several months even longer, repeated cultivation of susceptible hosts results in a high density of oospores in siol. P. capsici can attack the host plant at any growth stage and causes seedling death, crown rot, foliar blight, ang fruit rot; the pathogen can also cause several crop lossed in pepper, other cucurbits, eggplant, and tomato and so on.
     At present, the phytophthora blight of peppers was controlled mainly by crop rotation, application of chemicals and breeding resisitant host. However, phytotoxicity and chemical residues may pose a serious threat to the environment, strong variability of physiological strains of P. capsici caused the instability of resistant host. So search the important pathogenic factors of P. capsici and tocontrol the phytophthora blight of peppers have become the focus of the phytopathologist. Many previous studies have shown that plant pathogens must breach cell walls before they can infect the hosts, in which plant pathogens can secrete an array of pectinases during plant-pathogen interactions. These enzymes, such as polygalacturonase, pectate lyase, and pectin methylesterase, appear to play a key role in pathogenicity in most pathogens for the decomposition of pectin, which is one of the main components in the plant cell wall, and make the host more susceptible to the pathogen. The pathogenicity of many plant pathogens is dependent upon the synthesis and secretion of numerous pectinases, and the maceration of the plant parenchymatous tissues result primarily from the enzymatic degradation of the pectic polysaccharides by pectinases in plant cell walls, which indicated that the pectinase activities were important factors in the maceration of the plant tissues, and pectinase activity is an important factor to determine the pathogenicity of microorganisms.
     Among these pectinases, pectin methylesterase is an important pathogenitic factor, and plays a major role in the pathogenisis of phytophthora blight. The study took the P. capsici as subject, analysis the polygalacturonase, pectate lyase, and pectin methylesterase activities of high pathogenic P. capsici SDPH-33. Five pme genes were obtained by screening genomic library of SDPH-33 through Pool PCR. Then PCPME1 fusion protein was acquired according to heterologous eukaryotic expression and purified by Ni-NTA resin, western blot was used to test whether the pcpme1 expressed in Pichia pastoris. purified PCPME1 was used to prepare antibodies in New Zealand white rabbits, then the antibody was used to tested the expression of pcpme1 in pepper. The effect of potential glycosylation site to the PCPME1 activity was analysised by deglycosylation through PNGase F. we predict the activity site of pcpme1 and analysis the function by site-directed mutagenesis, and got the purified mutational protein by eukaryotic expression and affinity chromatograph. At last, the expression level of pcpme1 in pepper tissues was investigated by RT-PCR and Northern Blot. The purified fusion protein, deglycosylated protein, and mutational protein were used to inoculate pepper leaves, PMEs activity varied in PMEC treated pepper leaves was consistent with symptom development in pepper leaves. transmission electron microscope was used to analysis the enzymatic degradation of the plant cell wall. Main researchs were as follows:
     The activities of PGs and PELs were determined with spectrophotometer, and PMEs activities were analysized by neutralization titration; the results indicated that there was a high correlation between activities of PGs, PMEs, and PELs and the pathogenicity of P. capsici. The genomic library of SDPH-33 was screened by Pool PCR, and 5 pcpmes were isolated from the library, and structural features of the 5 genes were analysized. Alignment of these amino acid sequences indicated that there were high similarities between the 5 pme genes, and the pcpmes contain 5 characteristic sequence segments and active sites(GxYxE、QDTL、QAVAL、DFIFG and LGRPW). All the amino acid sequences of the 5 pcpmes possess 3-8 potential N-linked glycosylation sites, and have a similar tertiary structure. The evolution tree based on the alignment of PME amino acid sequences with different sources showed that PMEs from oomycetes formed their own cluster.
     The leaves of peppers with 4-6 fully expanded leaves were inoculated with the zoospores suspension of SDPH-33 and then the total RNA of infected leaves was isolated and cDNA was synthesized. Specific primers were designed based on the sequences of 5 pcpmes and the expression of these pcpmes in pepper leaves was detected by RT-PCR. The results indicated that all these genes can express in infected peppers respectively and the expressed level became stronger with the time prolong after inoculation, and then reached the peak on 7th day, however, there was no expression of pcpmes in the healthy peppers. Based on the result of RT-PCR, the pcpme1 was determined to be the most important pathogenetic gene. The non-conservative fragment of pcpme1 was amplified with specific primers and then was used to synthesize probe and then the probe was used to determine the expression of pcpme1 in pepper leaves, the similar result to RT-PCR was obtained.
     Gene-specific primers were designed and synthesized to amplify the mature peptide of pcpme1according to known sequence. The amplified fragment was inserted into pPIC9K to construct expression plasmid pPIC9K/pcpme1, and then it was transformed into E. coli JM109 to obtain recombinated plasmid. The plasmid pPIC9K/pcpme1 was transformed into Pichia pastoris GS115 competent cell after linearized with restriction enzyme SacI. After screening by G418and PCR amplification of these transformants, several recombinant strains with pcpme1 inserted were obtained. The result of SDS-PAGE indicated that Heterologous expression of pcpme1 in Pichia pastoris produced a protein of 60 kDa that was not corresponded to the predicted mass of this protein. Western Blot with anti-His antibody showed that pcpme1 can express efficiently in Pichia pastoris. Expressed PCPME1 was purified through Ni-NTA system, and was used to prepare antibodies in New Zealand white rabbits, then the antibody was used to tested the expression of pcpme1 in pepper, the result indicated that pcpme1 can express in infected peppers and the expressed level became stronger with the time prolong after inoculation, and then reached the peak on 7th day, however, there was no expression of pcpmes in the healthy peppers. The purified N-linked wild type protein PCPME1 was treated with PNGase F, and the molecular mass of the deglycosylated PCPME1 was 37KDa, which was similar to the predicted mass of PCPME1. The activity of deglycosylated PCPME1 was similar to that of N-linked wild type PCPME1, which suggested that glycosylation does not play a major role in the activity of PCPME1. Site-directed mutagenesis of the activity sites of pcpme1 was carried out by over lap PCR amplification. Comparison of the activities between wild type and mutational PCPME1 showed our hypothesis was correct.
     The wild type, deglycosylated and mutational PCPME1 were used to inoculate the leaves of peppers with 4-6 fully expanded leaves, lesions appeared in wild type and deglycosylated PCPME1, and the lesions became larger with the time prolong after inoculation, while mutational PCPME1 and sterile water could not cause any lesion on the surface of pepper leaves. The cell walls of the leaves treated with wild type and deglycosylated PCPME1 were found degradated with different levels through transmission electron microscope, while those treated with mutational PCPME1 and sterile water kept almost integrity.
     The results of this study indicate that pcpme1 was one of the key pathogenetic genes that encode pectin methylesterase in the pathogenesis of P. capsici.
引文
1.陈偿.甲醇毕赤氏酵母表达体系.热带农业科学. 1999, 2: 36-43.
    2.代景泉,蔡耘,钱小红.蛋白质糖基化分析方法及其在蛋白质组学中的应用.生物技术通讯.2005, 16: 287-292.
    3.顾小勇,李强,曹竹安,等.毕赤酵母基因工程茵胞内AOX1酶的检测方法.生物工程报. 2001, 17(4) : 474-479.
    4.候温甫,杨文鸽.糖链及其蛋白质糖基化.生物技术通报.2005,3: 14-17.
    5.洪洄,王冬梅.应用酵母进行基因表达的研究进展.生物学通报. 1999, 34(7):12-14.
    6.贾菊生,等.新疆辣椒疫病及防治研究.植物病理学报. 1992, 22(3): 257-262.
    7.贾月,弓爱君,邱丽娜,等.果胶酶分离纯化及分析方法的研究进展.工业微生物, 2005, 35: 55-58.
    8.马辉刚.云南辣椒疫病菌种的鉴定.云南农业大学学报. 1988, 3(2): 125-132.
    9.彭相儒,等.乌鲁木齐地区辣椒疫霉病发病因素及防治技术.新疆农业科学. 1991, (5):213-215.
    10.彭毅,杨希才,康良仪.影响甲醇酵母外源蛋白表达的因素.生物技术通报. 2000, 4:
    33-36.
    11.秦虎强,等.霜疫必克(SYBK)防治辣椒疫病药效试验.陕西农业科学. 1995, (2):
    25-26.
    12.任光驰,等.甘肃辣椒疫病的发生与防治研究.植物保护. 1990, (5): 16-17.
    13.沈崇尧,王有琪,田林,等.甘肃省辣椒疫病病原菌鉴定及生物学特性研究.云南农业大学学报. 1990, 5(2): 72-78.
    14.王金生.分子植物病理学.北京:中国农业出版社. 1998: 33-36.
    15.王利国,李玲,彭永宏.植物真菌致病基因的研究进展华南师范大学学报. 2003,1: 135-142.
    16.王述彬,等. 5~6月份青椒突发性死秧原因分析.江苏农业科学. 1993, (2): 53-54.
    17.王璋,食品酶学.北京:中国轻工业出版社. 1990. 169-170.
    18.王志田,等.新疆辣椒疫病菌鉴定及生物学特性研究.新疆农业科学. 1993, (4):164-167.
    19.许强,王克夷.异源表达系统中蛋白质糖基化.生物化学与生物物理学报. 1999,31(2): 111-115.
    20.张超冲,等.广西辣椒疫病的发生与防治.中国蔬菜. 1995, (6): 28-29.
    21.张海燕,吴天祥.微生物果胶酶研究进展。酿酒科技,2006, 9: 82-85.
    22.赵蕾,张天宇.植物病原菌产生的降解酶及其作用.微生物学通报. 2002, 29: 89-93.
    23.周启明,等.辣椒疫病的调查研究.中国蔬菜. 1984, (1): 40-43.
    24.朱宗源,等.用生物制剂防治青椒疫病.上海农业学报. 1995, 11(1):64-68.
    25. Akimitsu, K., Isshiki, A., Prusky, D. Sugar and pH: a clue to the regulation of fungal cell wall-degrading enzymes in plants. Physiol Mol Plant Pathol. 2004, 65: 271-275.
    26. Alan, C., Keen, N T. The role of pectic enzymes in plant pathogenesis. Ann. Rev. phytopathol. 1996, 24: 383-409.
    27. Andro, T., Chambost, J P., Kotoujansky, A., Cattaneo, J. Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase. J. Bacteriol. 1984, 1199-1203.
    28. Arenas-Ocampo, M L., Evangelista-Lozano, S., Arana-Errasquin, R., Jimenez-Aparicio, A., Davila-Ortiz, G. Softening and biochemical changes of sapote mamey fruit (Pouteria sapota) at different development and ripening stages. J Food Chem. 2003, 27: 91-95.
    29. Arias, C., Burns, J. A pectinmethylesterase gene associated with a heatstable extract from citrus. J Agric Food Chem. 2002, 50: 3465-3472.
    30. Assis, S A., Fernandes, P., Ferreira, B S., Trevisan, H C., Cabral, J M S., Oliveira, O M M F. Screening of supports for the immobilization of pectin-methylesterase from acerola (Malpighia glabra L.). J Chem Technol Biotechnol. 2004, 79: 277-280.
    31. Baileya, Mueller E., Bowyer P. Ornithine decarboxylase of Stagonospora (Septoria) nodorum is required for virulence toward wheat. J Biol Chem. 2000, 275: 14242-14247.
    32. Balhadère, P V., Foster, A J., Talbot, N J. Identification of pathogenicity mutants of the rice blast fungus Magna2 porthe grisea by insertional mutagenesis. Mol Plant Microbe Interact. 1999, 12: 129-142.
    33. Barker, K R., Walker, J C. relationship of pectolytic and cellulytic enzyme production by strains of Pellicularia filamentosa to their pathogenicity. J. Phytopathology. 1962, 52: 1119-1125.
    34. Bathust, I C. Protein expression in yeast as approach to prAuction of recombinant malaria antigens. Am J Trop Med Hyg. 1994, 50(4): 20-26.
    35. Beaulieu, C., Boccara, M., Van Gijsegem, F. Pathogenic behavior of pectinase-defectiveErwinia chrysanthemi mutants on different plants. Mol Plant Microbe Interact. 1993, 6: 197-202.
    36. Beekman, J M., Cooney, A J., Elliston, J F., Tsai, S Y., Tsai, M J. A rapid one-step method to purify baculovirus-expressed human estrogen receptor to be used in the analysis of the oxytocin promoter. Gene. 1994, 146: 285-289.
    37. Blanar, M A., Rutter, W J. Interaction cloning: identification of a helix-loop-helix zipper protein that interacts with c-fos. Science. 1992, 256: 1014-1018.
    38. Boccara, M., Chatain, V. Regulation and role in pathogenicity of Erwinia chrysanthemi 3937 pectin methylesterase. J Bacteriol. 1989, 171 (7): 4085-4087.
    39. Borsing, L., Berger, E G., Malissard, M. Expression and purification of His-tagged beta-1,4 galactosyltransferase in yeast and in COS cells. Biochem Biophys Res Commun. 1997, 240: 586-590.
    40. Bordenave, M., Goidberg, R. Immobilized and free apoolastic pectin methylesterases in mung bean hypocotyls. Plant Physiol.1994, 106: 1151-1156.
    41. Bucher, M H., Evdokimov, A G., Waugh, D S. Differential effects of short affinity tags on the crystallization of Pyrococcus furiosus maltodextrin-binding protein. Biol Cryst. 2002, 58: 392-397.
    42. Bunkenborg, J., Pilch, B J. Podtelejnikov, A V. Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics. 2004, 4: 454-161.
    43. Bussink, H J D., Buxton, F P., Eraaye, B A. The polygalacturonases of Aspergillus niger are encoded bu a family of diverged genes. Eur. J. Biochem. 1992, 208: 83-90.
    44. Cam, B., Lebreton, L., Massiot, P. Production of cell-wall polysaccharide degrading enzymes in carrot root tissues infected by Mycocentrospora acerina. Plant Pathology. 1997, 46: 276-281.
    45. Campion, C., Massiot, P., Rouxel, F. Aggressiveness and production of cell wall-degrading enzymes by Pythium violae, Pythium sulcatum and Pythium ultimum, responsible for cavity spot on carrots. Eur J Plant Pathol. 1997, 103: 725-735.
    46. Castillejo, C., de la Fuente, J I., Iannetta, P., Botella, M A. Pectin esterase gene family in strawberry fruit: study of FaPE1, a ripening-specific isoform. Journal of Experimental Botany. 2004, 55: 909-918.
    47. Centis, S., Guillas, I., Sejalon, N., Esquerre-Tugaye, M T. Endopolygalacturonase genes from Colletotrichum lindemuthianum: cloning of CLPG2 and comparison of its expression to that of CLPG1 during saprophytic and parasitic growth of the fungus. Mol Microbe Interact 1997, 10: 769-775.
    48. Chaga, G., Hopp, J., Nelson, P. Immobilized metal ion affinity chromatography on Co2+-carboxymethylaspartate-agarose superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast. Biotechnol Appl Biochem. 1999a, 29: 19-24.
    49. Charlwood, J., Skehel, J M., Camilleri, P. Analysis of N-linked oligosaccharides released from glycoproteins separated by two-dimensional gel electrophoresis. Anal Biochem. 2002, 284: 49-59.
    50. Cheng, Y Q., Walton, J. A eukaryotic alanine race mase gene involved in cyclic peptide biosynthesis. J Biol. Chem. 2000, 275: 4906-4911.
    51. Choquer, M., Boccara, M., Vidal-Cros, A. A semi-quantivitative RT-PCR method to readily compare expression levels within Botrytis cinerea multigenic families in vitro and in planta. Cur Genet. 2003, 43: 303-309.
    52. Christgau, S., Kofod, L V., Halkier, T., Andersen, L N. Pectin methylesterase from Aspergillus aculeatus: expression cloning in yeast and characterization of the recombinant enzyme. Biochem. J. 1996, 319: 705-712.
    53. Clare, J J., Rayment, F B., Ballantine, S P. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multipule tandem integrations of the gene. Bio/Technology. 1991, (9): 455-460.
    54. Clare, J J., Romanos, M A., Rayment, F B. PrAuction of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene. 1991, 105: 205-212.
    55. Clergeot, P H., Latorse, M P., Laurans, F., Pépin, R., Tharreau, D., Notteghem, J L., Lebrun, M H. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. PNAS. 2001: 6963-6968.
    56. Cole, A. L. J. Pectic enzyme activity from phytophthora infestans. Phytochem. 1970, 9: 337-340.
    57. Collmer, A., Schoedel, C., Roeder, D L., Ried, J L., Rissler, J F. Molecular cloning in Escherichia coli of Erwinia chrysanthemi genes encoding multiple forms of pectate lyase. J Bacteriol. 1985, 161: 913-920.
    58. Cooper, R. M. The mechanisms and significance of enzymic degradation of host cell walls by parasites. In Biochemical plant pathol (Ed.) Callow, J. A. 1983, pp.101-137. Wiley: Chichester.
    59. Cornick, N A., Jensen, N S., Stahl, D A., Hartman, P A., Allison, M J. Lachnospira pectinoschiza sp. nov., an anaerobic pectinophile from the pig intestine. Int J Syst Bacteriol. 1994, 44: 87-93.
    60. Corredig, M., Kerr, W., Wicker, L. Separation of thermostable pectinmethylesterase from marsh grapefruit pulp. J Agric Food Chem. 2000, 48: 4918-23.
    61. Covert, S., Enkerlij, F., Mlao, V P W. A gene for maackiain detoxification from a dispensable chromo2 some of Nectria aematococca. Mol Gen Genet, 1996, 251: 397-406.
    62. Cregg, J M., Vedvick, T S., Raschke, W C .Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology, 1993, 11: 905-910.
    63. Cregg, J M., Tschopp, J F., Stillman, C. High-lecel expression and efficient assembly of hepatitis B suiface antigen in the methylotrophic yeast Pichia Pastoris. Bio/Technology. 1987, 5: 479-485.
    64. Cregg, J M.,Barringer, K J.,Hessler, A Y. Pichia pastoris as a host system for transformations. Molecular cellular biology. 1985, 5(12): 3376-3385.
    65. DeBary, A. Ueber einige Sclerotinien and Sclerotien-Krankheiten. Bot Zeit. 1886, 44: 376-480.
    66. Ding, J L C., Hsu, J S F., Wang, M M C. Purification and glycosylation analysis of an acid pectin methylesterase in jelly fig(Ficus awkeotasang) achenes. J. Agric. Food Chem. 2002, 50: 2920-2925.
    67. D’Ovidio, R., Mattei, B., Roberti, S., Bellincampi, D. Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions. Biochim Biophys Acta. 2004, 1696: 237-244.
    68. Einhauer, A., Jungbauer, A. Kinetics and thermodynamical properties of the monoclonal antibody M1 directed against the FLAG peptide. 20th International symposium on theseparation of proteins, peptides, and polynucleotides (ISPPP). Lublijana, Slovenia, November 5-8, 2000.
    69. Esquerre-tugaye, M T., Boudart, G., Dumas, B. Cell wall degrading enzymes, inhibitory proteins and oligosaccarides participate in the molecular dialogue between plants and pathogens. Plant Physiol. Biochem. 2000, 38: 157-163.
    70. Fayyaz, A., Asbi, B A., Ghazali, H M., Che Man, T B., Jinap, S. Pectinesterase extraction from papaya. Food Chem. 1993, 47: 183–5.
    71. Fischer, R L., Benett, A B. Role of cell wall hydrolyses in fruit ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42: 675-703.
    72. Forster, H. Pectinesterase from Phytophthora infestans. Methods Enzymol. 1988, 161: 355–357.
    73. Forster, H., Coffey, M D. Sequence analysis of the small submit ribosomal RNAs of three zoosporic fungi and implications for fungal evplution. Mycologia. 1990, 82: 306-312.
    74. Frangioni, J V., Neel, B G. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem. 1993, 210: 179-187.
    75. Gaffe, J. Tiznado, M E. Handa, A K. Characterization and functional expression of a ubiquitously expressed tomato pectin methylesterase. Plant Physiol. 1997, 114: 1547-1556.
    76. Gainvors, A., Frezier, V., Lemaresquier, H., Lequart, C., Aigle, M., Belarbi, A. Detection of polygalacturonase, pectin lyase and pectinesterase activities in Saccharomyces cerevisiae strain. Yeast. 1994, 10: 1311–1319.
    77. Gao, S., Chol, G H., Shain, L. Cloning and targeted disruption of enpg-1, encoding the major in vitro extracellular endopolygalacturonase of the chestnut blight fungus, Cryphonectna parasitica. Appl Environ Micronol. 1996, 62: 1984-1990.
    78. Giovane, A., Servillo, L., Balestrieri, C., Quagliuolo, L., La Ratta, B., Liudice, R., Castaldo, D. Purification and characterization of three forms of pectin methylesterase from tomato fruit. Food Biochem. 1994, l7: 339-341.
    79. Giuseppin, M L F., van Eijk, H M J., Bes, B C M. Molecular regulation of methanol oxidase activity in continuous cultures of Hansenula polymorpha. Biotechnol Bioeng. 1988, 32: 577-583.
    80. Gognies, S., Gainvors, A., Aigle, M. Cloning, sequence analysis and overexpression of a Saccharomyces cerevisiae endopolygalacturonase encoding gene(PGL1). Yeast, 1999,15: 11-22.
    81. G?tesson, A., Marshall, J. S., Jones, D. A., Hardham, A. R. Characterization and evolutionary analysis of a large polygalacturonase gene family in the Oomycete plant pathogen Phytophthora cinnamomi. Mol Plant Microbe Interact. 2002, 15, 907-921.
    82. Guevara, M A.,Gonzlez-Jaen, M T.,Estesvez, P. Multiple forms of pectic lyases and polygalacturonase from Fusarisan oxysporum f.sp. radicis lycopersici: regulation of their synthesis by galacturonic acid. Can J of Micr. 1997, 43(3): 245-253.
    83. Hadfield, K A. Bennett, A. B. Polygalacturonases: many genes in search of a function. Plant Physiol. 1998, 117: 337-343.
    84. Hadj-Taieb, N., Ayadi, M., Trigui, S., Bouabdollah, F., Gargouri, A. Hyper production of pectinase activities by fully constitutive mutant (CT 1) of Penicillium occitanis. Enzyme Microbial Technol. 2002, 30: 662–666.
    85. Hakansson, K., Broder, D., Wang, A H., Miller, C G. Crystallization of peptidase T from Salmonella typhimurium. Acta Crystallogr D Biol Crystallogr. 2000, 56: 924–926.
    86. Halliwell, C M., Morgan, G., Ou, C P., Cass, A E. Introduction of a (poly)histidine tag in L-lactate dehydrogenase produces a mixture of active and inactive molecules. Anal Biochem. 2001, 295: 257-261.
    87. Hao-Zhi, Yan, Ruey-Len, Liou. Cloning and analysis of pppg1, an inducible endopolygalacturonase gene from the oomycete plant pathogen Phytophthora paraistica. Fungal genetics and biology. 2005, 42: 339-350.
    88. Hasunuma, T. Fukusaki, E. Kobayashi, A. Methanol production is enhanced by expression of an Aspergillus niger pectin methylesterase in tobacco cells. J. Biotechnol. 2003. 106: 45-52.
    89. Have, A ten, Tenberge, K B., Benen, J A E. The contribution of cell wall degrading enzymes to pathogenesis of fungal plant pathogens. In: Kempken F(ed) The Mycota, vol XI. Agricultural applications. Springer, Berlin Heidleberg New York, 2002, pp, 341-358.
    90. Hefti, M H., Caroline, J G., der Toorn ,V V., Dixon, R., Vervoort, J. A novel purificationmethod for histidine-tagged proteins containing a thrombin cleavage site. Anal Biochem. 2001, 295: 180-185.
    91. Heslot, H. Genetics and genic engineering of the industrial yeast Yarrowis lipolytica. Adv Biochem Eng Biotechnol. 1990, 43: 43-73.
    92. Heyer, W D., Sipiczki, M., Kholo J. Replicating plasmids in Schizosaccharomyces pombe: improvement of symmetric segregation by a new genetic element. Mol Cell Biol. 1986, 6: 80-89.
    93. Hochuli, E., Bannwarth, W., Dobeli, H., Gentz, R., Stober, D. Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Bio Technology. 1988, 6: 1321-1325.
    94. Hochuli, E., Dobeli, H., Schache,r A. New metal chelate adsorbent selective for proteins and peptide containing neighbouring histidine residues. J Chromatogr. 1987. 411: 177-184.
    95. Hope, T.P., Gallis, B., Prikett, K.S. Metal-binding properties of a calcium dependent monoclonal antibody. Mol Immunol. 1996, 33: 601-608.
    96. Hopp, T P., Pricket, K S., Price, V L., Libby, R T., March, C J., Ceretti, D P., Urdal, D L., Conlon, P J. A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio Technol. 1988, 6: 1204-1210.
    97. Hord, M J, Ristaino, J B. Effects of physical and chemical factors on the germination of oospores of Phytophthora capsici in vitro. Phytopathology. 1991, 81: 1541-1546.
    98. Huang, Q., Allen, C. Polygalacturonases are required for rapid colonization and full virulence of Ralstonia solanacearum on tomato plants. Physiol Mol Plant Pathol. 2000, 57: 77-83.
    99. Hugouvieux-Cotte-Pattat, N., Condemine, G., Nasser, W. and Reverchon, S. Regulation of pectinolysis in Erwinia chrysanthemi. Annu Rev Microbiol .1996, 50: 213-257.
    100. Hwang, B K, de Cock, A W A M, Bahnweg, G. Restriction fragment length polymorphisms of mitochondrial DNA among Phytophthora capsici isolates from pepper(Capsicum annuum). Syst. Appl. Microbiol. 1991, 14: 111-116.
    101. Innocenzo, M D., Lajalo, F M. Effect of gamma irradiation on softening changes and enzyme activities during ripening of papaya fruit. J Food Biochem. 2001, 25: 19-27.
    102. Janknecht, R., de Martynoff, G., Lou, J., Hipskind, R., Nordheim, A., Stunnenberg, H G. Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccina virus. Proc Natl Acad Sci USA. 1991, 88: 8972-8976.
    103. Janknecht, R., Nordheim, A. Affinity purification of histidine-tagged proteins transiently produced in HeLa cells. Gene. 1992, 121: 321-324.
    104. Jarvis, M C., Threlfall, D R., Frieng, J. Potato cell wall polysaccharides: Degradation with enzymes from Phytophthora infestans. J. Exp. Bot. 1981, 32: 1309-1319.
    105. Jenkins, J., Mayans, O., Smith, D., Worboys, K., Pickersgill, R W. Three-dimensional structure of Erwinia chrysanthemi pectin methylesterase reveals a novel esterase active site. J. Mol. Biol. 2001, 305: 951-960.
    106. Johanssona, K., El-Ahmad, M., Friemanna, R., Jornvallb, H., Markovic, O., Eklunda, H. Crystal structure of plant pectin methylesterase. FEBS letters. 2002, 514: 243-249.
    107. Johansson, M. Pectic enzyme activity of spruce (S) and pine (P) strains of Heterobasidion annosum (Fr) Bref. Physiol Mol Plant Pathol. 1988, 33: 333-349.
    108. Jong, J C, Mccormack, B J, Smirnoff, N. Glycerol generates tugor in rice blast. Nature. 1996, 389: 244-249.
    109. Kahmann, R, Basse, C. REMI (Restriction Enzyme Mediated Integration) and its impact on the isolation of pathogenicity genes in fungi attacking plants. Eur J Plant Pathol. 1999, 105: 221-229.
    110. Kamper, K., Meinhardt, F., Gunge, N. New recombinant linear DNA elements derived from Kluyveromyces lactis killer plasmids. Nucleic Acids Res. 1989, 17: 1781-1789.
    111. Kamoun, S., Hraber, P., Sobral, B. Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. Fung. Genet. Biol. 1999, 28: 94-106.
    112. Kang, Z., Buchenauer, H. Ultrastructural and cytochemical studies on cellulose, xylan and pectin degradation in wheat spikes infected by Fusarium cullmorum. J. Phytopathology. 2000, 148(5): 263-275.
    113. Kapat, A.,Zimand, G., EIad, Y. Biosynthesis of pathogenicity hydrolytic enzymes by Botrytis cinerea during infection of bean leaves and in vitro. Mycological Research. 1998, 102(8): 1017-1024.
    114. Karam, N E., Belarbi, A. Detection of polygalacturonase and pectinesterases in lactic acid bacteria. World J Microbiol Biotechnol. 1995, 11: 559–63.
    115. Kato, Y. Improvement of physicochemical and enzymatic properties of bovine trypsin by nonenzymatic glycation. J Biosci Biotech Biochem. 1993, 57(1): 1-5.
    116. Kawano, C Y., Chellegatti, M A S C., Said, S., Fonseca, M J V. Comparative study of intracellular and extracellular pectinases produced by Penicillium frequentans. Biotechnol Appl Biochem. 1999, 29: 133–40.
    117. Kazemi-Pour, N., Condemine, G., Hugouvieux-Cotte-Pattat, N. The secretome of the plant pathogenic bacterium Erwinia chrysanthemi. Proteomics. 2004, 4: 3177-3186.
    118. Keefe, A D., Wilson, D S., Seelig, B., Szostak, J W. One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr Purif. 2001, 23: 440-446.
    119. Kelemen, B R., Klink, T A., Behlke, M A., Eubanks, S R., Leland P, A., Raines, R T. Hypersensitive substrate for ribonucleases. Nucleic Acids Res. 1999, 27: 3696-3701.
    120. Kester, H C M. Benen, J A E. Visser, J. Esteban Warren, M. Orlando, R. Bergmann, C. Magaud, D. Danker, A. Tandem mass spectrometric analysis of Aspergillous niger pectin methylesterase: mode of action on fully methlesterified oligogalactrronates.Biochem. 2000, 346: 469-474.
    121. Kobajaschi, T., Higoki, N. Characterization and expression of a genomic pectin methylesterase-encoding gene in Aspergillus niger. Gene. 1991, 106: 717-720.
    122. Kim, J S., Raines, R T. A misfolded but active dimer of bovine seminal ribonuclease. Eur J Biochem. 1994, 224: 109-114.
    123. Ko, W H. Hormonal heterothallism and homothallism in Phytophthora. Ann. Rev. Phytopathol. 1988, 26: 57-73.
    124. Krátká, J, Vesely, D. Activity of pectinases, amylases, and saccharase in Pythium spp. Zentralbl Bakteriol Naturwiss. 1979, 134(7): 627-632.
    125. Kunz, D., Gerad, N P., Gerad, C. The human leukocyte plateletactivating factor receptor. J Biol Chem. 1992, 267: 9101-9106.
    126. Kuster, B., Wheeler, S F., Hunter, A P. Sequencing of N-linked oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laserdesorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography. Anal Biochem. 1997, 250: 82-101.
    127. Lang, C, Domenburg, H. Perspectives in the biological function and the technological application of polygalacturonases. Appl Microbiol Biotechnol. 2000, 53: 366-375.
    128. Laurent, F., Kotoujansky, A., Bertheau, Y. Overproduction in Escherichia coli of the pectin methylesterase A from Erwinia chrysanthemi 3937: one-step purification, biochemical characterization, and production of polyclonal antibodies. Can J Microbiol. 2000, 46: 474–80.
    129. Laurent, F., Kotoujansky, A., Labesse, G., Bertheau, Y. Characterization and over expression of the pem gene encoding pectin methylesterase of Erwinia chrysanthemi strain3937. Gene. 1993, 131: 17-25.
    130. Lellouch, A C., Geremia, R A. Expression and study of recombinant ExoM, a beta1-4 glucosyltransferase involved in succinoglycan biosynthesis in Sinorhizobium meliloti. J Bacteriol. 1999, 181: 1141-1148.
    131. Leone, G., Schoffelmeer, E A M., Van den Heuvel, J. Purification and characterization of a constitutive polygalacturonase associated with the infection process of French bean leaves by Botrytis cinerea. Can. J. Bot. 1990, 68: 1921-1930.
    132. Li, C B., Gao, F., Zhong, Y W., Wei, C H., Li, Yi. Cloning and functioanl analysis of tobacco pectin methylesterase. Prog. Bio-chew. Biophys. 2004, 31(7): 643-649.
    133. Lin, T P. CLiu, C. Chen, S W. Wang, W Y. Purification and characterization of pectin methylesterase from Ficus awkeotsang makino achenes. Plant Physio1.1989, 91: 1445-1453.
    134. Lu, Q., Bauer, J C., Greener, A. Using Schizosaccharomyces pombe as host for expression and purification of eukaryotic proteins. Gene. 1997, 200:135-144.
    135. Macdonald, H C., Evans, R. Purification and properties of apple pectinesterase. J Sci Food Agric. 1996, 70: 321-326.
    136. Maldonado, M C., Antonia, N. and Callieri, D A S. Production of pectinases by Aspergillus species using differently pretreated lemon peel as the carbon source. Biotechnol Lett 1986, 8: 501-504.
    137. Maldonado, M C., Saad, A M S., Callieri, D A S. Purification and characterization ofpectinesterase produced by a strain of Aspergillus niger. Curr Microbiol. 1994, 24: 193-196.
    138. Maroux, S., Baratti, J., Desnuelle, P. Purification and specificity of procine enterokinase. J Biol Chem. 1971, 246: 5031-5039.
    142.Markovic, O. Janecek, S. Pectin methylesterases: sequence-structural features and phylogenetic relationships. Car. Res. 2004, 339: 2281-2295.
    143.Markovie, O., Jornvall, H. Pectinesterase. The primary structure of tomato enzyme. Eur. biochem. 1986, 158: 455-462.
    144.Markovie, O., Jornvall, H. Tomato and Aspergillus niger pectinesterases. Correlation of differences in existing reports lagre species variations. Protein Seq. and Data. 1990, 3: 513-515.
    145.Markovic, O., Jornvall, H. Disulfide bridges in tomato pectinesterase: Variations from pectinesterase of other species; conservation of possible active site segments.Protein Science. l992, 1: 1288-1292.
    146.Marsh, J., Rabinowitz, M L. Enzyme stabilization by covalent attachment of carbohydrate. J Arch Biochem Biophys. 1975, 167: 777-779.
    147.Marsh, J. Glycosylation of eseherichin colilasparaginase. J Biol Chem. 1977, 252: 7678-7684.
    148.Matteo, A D., Bonivento, D., Tsernoglou, D., Federici, L., Cervone, F. Polygalacturonase-inhibiting protein (PGIP) in plant defence: a structural view. Phytochemistry. 2006, 6: 528-533.
    149.Mayer, B J., Jackson, P K., Baltimore, D. The noncatalytic src homology 2 segment of abl tyrosine kinase binds to tyrosinephosphorylated cellular proteins with high affinity. Proc Natl Acad Sci USA. 1991, 88: 627-631.
    150.McTigue, M A., Williams, D R., Tainer, J A. Chrystal structures of a Schistosomal drug and vaccine target: glutathione Stransferase from Schistosoma japonica and its complex with the leading antischistosomal drug praziquantel. J Mol Biol. 1995, 246: 21-27.
    151.Mendgen, K, Hahn, M, Deising, H. Mechanisms and morphogenesis of penetration by plant pathogenic fungi. Annu Rev Phytopathol. 1996, 34: 367-386.
    152.Micheli, F. Pectin methylesterases: Cell wall enzymes with important roles in plantphysiology. Trends Plant Sci. 2001, 6: 414-419.
    153.Micheli, F., Sundberg, B., Goldberg, R., Richard, L. Radial distribution pattern of pectin methylesterases across the cambial region of hybrid aspen at activity and dormancy. Plant Physiol. 2000, 124: 191-199.
    154.Micheli, F., Holliger, C., Goldberg, R., Richard, L. Characterization of the pectin methylesterase-like gene AtPME3: a new member of a gene family comprising at least 12 genes in Arabidopsis thaliana. Gene. 1998, 220: 13-20.
    155.Movahedi, S., and Heale, J B. The roles of aspartic proteinase and endo-pectin lyase in the primary stages of infection and pathogenesis of various host tissue by different isolates of Botrytis cinerea Pers ex.Pers. Physiol. Plant Pathol. 1990, 36: 303-324.
    156.Murdoch, L., Corbel, J C., Resi, D., Bertheau, Y., Vian, B. Differential cell wall degradation by Erwinia chrysanthemi in petiole of saintpaulia ionantha. Protoplasma. 1999, 210: 59-74.
    157.Mwenje, E., Ride, J. P. Pectic enzymes in the characterization of tropical Armillaria. Plant Pathol. 1997, 46: 341-354.
    158.Nagai, K., Thogersen, H C. Synthesis and sequence specific proteolysis of hybrid proteins produced in Escherichia coli. Methods Enzymol 1987. 153: 461-481.
    159.Nairn, C J., Lewandowski, D J., Burns, J K. Genetics and expression of two pectinesterase genes in Valencia orange. Physiol. Plantarum. 1998, 102: 226-235.
    160.Nakamura S., Kato, A. Bifunctional lysozyme-gaLactomannan conjugate having excellent emulsifying properties and bactericidal effect. J Agric Food Chem. 1992, 40: 735-739.
    161.Nes, I F., Holo, H. ClassⅡantimicrobial peptides from lactic acid acteria. Biopolymers . 2000 , 55(1) : 50-61.
    162.Nock, S., Spudich, J A., Wagner, P. Reversible, site-specific immobilization of polyarginine-tagged fusion proteins on mica surfaces. FEBS Lett. 1997, 414: 233-238.
    163.Pelloux, J., Ruste, rucci C., Mellerowicz, E J. New insights into pectin methylesterase structure and function. Trends in Plant Science. 2007, 12: 267-277.
    164.Peng, Chi-chung, Hsiao, E S L. Ding, J L C. Functional expression in Pichia pastoris of an acidic pectin methylesterase from jelly fig(Ficus awkeotasang). J. Agric. Food Chem. 2005, 53: 5612-5616.
    165.Pérez, S., Rodriguez-Carvajal, M A., Doco T.A complex plant cell wall polysaccharide:rhamnogalacturonan IL A structure in quest of a function.Biochimle. 2003, 85: 109-121.
    166.Philippe, H., Germot, A., Moreira, D. The new phylogeny of eukaryotes. Curr. Opin. Genet. Dev. 2000, 10: 596-601.
    167.Pickersgill, R W., Jenkins, J A. Crystal structure of polygalacturonase and pectin methylesterase. In: Gilbert, H.J. Davies, G.J. Henrissat, B. Svensson, B. eds. Recent Anvances in Carbonhydrate Bioengineering. Cambridge: Royal Society of Chemistry, 1999: 144-149.
    168.Pilling, J., Willmitzer, L., Bucking, H., Fisahn, J. Inhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning. Planta. 2004, 219: 32-40.
    169.Pilling, J., Willmitzer, L., Fisahn, J. Expression of a Petunia inflata pectin methyl esterase in Solanum tuberosum L. enhances stem elongation and modifies cation distribution. Planta. 2000, 210:391-399.
    170.Pitkanen, K., Heikinheimo, R., Pakkanen, R. Purification and characterization of Erwinia chrysatnthemi B374 pectin methylesterase produced by Bacillus subtilis. Enzyme Microbial Technol. 1992, 14: 832-836.
    171.Polach, F J., Webster, P K. Identification of strains and inheritance of pathogenicity in Phytophthora capsici. Phytopathology. 1992, 62: 20-26.
    172.Porath, J., Carlsson, J., Olsson, I., Belfrage, G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature. 1975, 258: 598-599.
    173.Pressey, R., Woods, F M. Purification and properties of two pectinesterases from tomatoes. Phytochemistry. 1992, 31(4):1139-1142.
    174.Rank, K B., Mildner, A M., Leone, J W., Koeplinger, K A., Chou, K C., Tomasselli, A G., Heinrikson, R L., Sharma, S K. [W206R]-procaspase 3: an inactivateable substrate for caspase 8. Protein Expr Purif . 2001, 22: 258-266.
    175.Rasmussen, J B., Hanau, R M. Exogenous scytalone restores appressorial melanization andpathogenicity in albinomutants of Colletotrichum graminicola. Can J Plant Pathol. 1989, 11: 349-352.
    176.Redman, R S., Ranson, J., Rodriguez, R J. Conversion of the pathogenic fungusColletotrichum magna to a nonpathogenic, endophytic mutualist by gene disruption. Mol Plant-Microbe Interact. 1999, 12: 969-975.
    177.Reignault, P., Kunz, C., Delage, N., Moreau, E., Vedel, R., Hamada, W. Host and symptom-specific pectinase isozymes produced by wild-type strains and pathogenicity-altered transformants of Botrytis cinerea. Mycologi Res. 2000, 104: 421-428.
    178.Reignault, P., Mercier, M., Bompeix, G., Boccara, M. Pectin methylesterase from Botrytis cinerea: physiological, biochemical and immuno-chemical studies. Microbiology. 1994, 140: 3249-3255.
    179.Ricard, J. Noat, G. Electrostatic effects and the dynamics of enzyme reactions at the surface of paint cells.l.A theory of the ionic control of a complex multi-enzyme system, Eur. J. biochem. 1986, 57: 929-967.
    180.Richard, L., Qin, L X., Gadal, P., Goldberg, R. Molecular cloning and characterization of a putative pectin methylesterase cDNA in Arabidopsis thaliana. FEBS letters. 1994, 355: 135-139.
    181.Richard, L, Qin, L X, Goldberg, R. Clustered genes within the genome of Arabidopsis thaliana encoding pectin methylesterase like enzymes. Gene .1996, 170: 207-211
    182.Rogers, L M., Flaishman, M A., Kolattukudy P E. Cutinase gene disruption in Fusatium solani f. sp. Pisi decreses its virulence on pea. Plant Cell. 1994, 6: 935-945.
    183.Romanos, M A., Clare, J J., Beesley, K M. Recombinant Bordetella pertussis pertacrin(p69) form the yeast Pichia pastoris: high-level prAuction and immunnological properties. Vaccine. 1992, 9: 901-906.
    184.Rudert, F., Visser, E., Gradl, G., Grandison, P., Shemshedini, L., Wang Y., Grierson, A., Watson, J. pLEF, a novel vector for expression of glutathione S-transferase fusion proteins in mammalian cells. Gene. 1996, 169: 281-282.
    185.Sakai, T., Sakamoto, T., Hallaert, J., Vandamme, E J, Pectin, pectinase and protopectinase: production, properties, and applications. Adv. Appl. Microbiol. 1993, 39: 213-294.
    186.Sassenfeld, H M., Brewer, S J. A polypeptide fusion designed for purification of recombinant proteins. Bio Technol. 1984, 2: 76-81.
    187.Schell, M A., Denny, T P., Huang, J. Extracellular virulence factors of Pseudomonassolanacearum: role in disease and their regulation. In: Kado CI, Crosa JH, editors. Mol Mech Bacterial Virulence. The Netherlands: Kluwer Academic Press; 1994. p. 311–324.
    188.Schmidt, M., Tuominen, N., Johansson, T., Weiss, S A., Keinamen, K., Oker-Blom, C. aculovirus-mediated large-scale expression and purification of a polyhistidine-tagged Rubrella virus capsid protein. Protein Expr Purif. 1998, 12: 323-330.
    189.Schoonbeek, H., Del Sorbo, G D E., Waard, M A. The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol Plant Microbe Interact. 2001, 14: 562-571.
    190.Schuster, M., Wasserbauer, E., Einhauer, A., Ordner, C., Jungbauer, A., Hammerschmidt, F., Werner, G. Protein expression strategies for identification of novel target proteins. J Biomol Screen. 2000, 5: 89-97.
    191.Scorer, C A., Clare, J J., McCombie, W R. Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Bio/Technology. 1994, 12: 181-184.
    192.Scott-Craig, J S., Panaccione, D G., Cervone, F., Walton, J. D. Endopolygalacturonase is not requied for pathogenicity of Cochliobolus carbonum on maize. The Plant Cell. 1990, 2: 1191-1200.
    193.Semenova, M V., Grishutin, S G., Gusakov, A V., Okunev, O N., Sinitsyu, A P. Isolation and properties of pectinases from the fungus Aspergillus japonicus. Biochemistry. 2003, 68: 559-569.
    194.Serge, P., Karim, M., Catherine, H. The three-dimensional structures of the pectic polysaccharides. Plant Physiol. Biochem. 2000, 38: 37-55.
    195.Shevchik, V E., Condemine, G., Hugouvieux-Cotte-Pattat, N. Characterization of pectin methylesterase B, an outer membrane JRobert-Baudouy. liprotein of Erwinia Chrysanthemi 3937.Mol Microbiol. 1993, 19: 455-466.
    196.Shieh, M I, Brown, R L., Whitehead, M P. Molecular genetic evidence for the involvement of a specific polygalacturonase, Pc2, in the invasion and spread of Aspergillus flavus in cotton bolls. Appl Environ Microbiol. 1997, 63: 3548-3552.
    197.Smith, D B., Johnson, K. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988, 67: 31-40.
    198.Spok, A., Stubenrauch, G., Schorgendorfer, K., Schwab, H J. Molecular cloning and sequencing of a pectinesterase gene from Pseudomonas solanacearum. Gen Microbio1. 1991, 137 (1): 131-140.
    199.Sreekrishina, K., Tschopp, J F., Fuke, M. Invertase gene(SUC2) of Saccharomyces cereviciae as a dominant marker for transformation of Pichia pastoris. Gene. 1987, 59: 115-125.
    200.Stahl, D J., Schafe, W. Cutinase is not required for fungal pathogenicity on pea. Plant Cell. 1992, 4: 621-629.
    201.Stephan, C., Lene, V K., Torben, H., Lene, N.A., Maria, H., Kurt, D., Henrik, D., Sakari, K. Pectin methyl esterase form Aspergillus aculeatus: expression cloing in yeast and characterization of the recombinant enzyme. Biochem, 1996, 319: 705-712.
    202.Sweigard, J A., Carroll, A M. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact.1998, 11: 404-412.
    203.Talkano, Y., Kikucki, T., Kubo, Y. The Colletotrichum lagenanum MAP kinase CMK1 regulates diverse aspects of fungal pathogenesis. Mol Plant-Microbe Interact. 2000, 13: 374-383.
    204.Tans-Kersren, J., Guan, Y., Allen, C. Ralstonia solanacearum pectin methylesterase is requied for growth on methylated pectin but not for bacterial wilt virulence. 1998, 64: 4918-4923.
    205.ten Have, A., Mulder, W., Visser, J., van Kan, J A L. The endopolygalacturonase gene Bcpg1 is requied for full virulence of Botrytis cinerea. Mol. Plant Microbe Interact. 1998, 11: 1009-1016.
    206.ten Have, A., Tenberge, K.B., Benen J.A.E., Tudzynski, P., Visser, J., and van Kan, J.A.L. The contribution of cell wall degrading enzymes to pathogenesisi of fungal plant pathogens. In F. Kempken (Ed.), The Mycota XI, agricultural applications. pp. 341-358. Berlin: Springer.
    207.Tieman, D M., Handa, A K. Reduction in pectin rnethylesterase activity modifies tissue integrity and cation levels in ripening tomato (Lycopersicon esculentum Mill) fruits. Plant Physiol. 1994, 106: 429-436.
    208.Tretter, V., Altmann, F., Marz, L. Peptide-N4-(N-acetyl-beta-glucosaminyl) asparagineamidase release glycans with fucose attached alapha 1-3 to the asparagine-linked N-acetylglucosamine residue.Eur J Biochem. 1991, 199: 647-652.
    209.Trimble, R B., Maley, F. Optimizing hydrolysis of N-linked high-mannose oligosaccharides by endo-beta-N-acetylglucosaminidase H. Anal Biochem. 1984, 141: 515-522.
    210.Urban, M., Bhargava, T., Hamerj, E. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J. 1999, 18: 512-521.
    211.Valette-Collet, O., Cimerman, A., Reignault, P., Levis, C. Boccara, M. Disruption of Botrytis cinerea pectin methylesterase Bcpme1 gene reduces virulence on several host plants. Mol Plant Microbe Interact. 2003, 16: 360-367.
    212.Vander Klei, I J., Harder, W., Veenhuis, M. Yeast. 1991, 7 (3): 195-209.
    213.Vaughan, I L H., Jakubczly, T., McMillan, J D., Higgins, T E., Dave, B A., Crampton, V M. Some pink yeasts associated with softening of olives. Appl Microbiol. 1969, 18: 771-775.
    214.Visser, J., Bussink, J., Witteveen, C. Gene expression in filamentous fungi: Expression of pectinases and glucose oxidase in Aspergillus niger. Bioprocess Technol. 1995, 22: 241-308.
    215.Wang, P., Sandrock, R W., Vanetten, H D. Disruption of the cyanide hydratase gene in Gloeocercospora sorghi increases its sensitivity to the phytoanticipin cyanide, but does not affect ts pathogenicity on the cyanogenic plant sorghum. Fungal Genet Biol. 1999, 28: 126-134.
    216.Warren, M E., Kester, H., Benen, J., Colangelo, J., Visser, J. Studies on the glycosylation of wild-type and mutant forms of Aspergillus niger pectin methylesterase. Carbohydrate Research. 2002, 337: 803-812.
    217.Warrilow, A G S., Turner, R J., Jones, M G. A novel form of pectinesterase in tomato. Phytochemistry. 1994, 35: 862-872.
    218.Wasmann, C C., Vanetten, H D. Transformation-mediated chromosome loss and disruption of a gene for pisatin demethylase decrease the virulence of Nectria haematococca on pea. Mol Plant Microbe Interact. 1995, 9: 793-803.
    219.Weerakoon, N D., Roberts, J K., Lehnen, L P. Isolation and characterization of thesingleβ-tubulin gene in Phytophthora cinnamomi. Mycologia. 1998, 90: 85-95.
    220.Wen, F S., Zhu, Y M., Hawes, M C. Effect of pectin methylesterase gene expression on pea root development. Plant Cell. 1999, 11: 1129-1140.
    221.Wilson, D S., Keefe, A D., Szostak, J W. The use of mRNA display to select high-affinity protein-binding peptides. PNAS. 2001, 98: 3750-3755.
    222.Wubben, J P., Mulder, W. Cloning and partial characterization of endopolygalacturonase genes from Botryris cinerea. Appl Environ Microbiol. 1999, 65: 1596-1602.
    223.Wu, J., Filutowicz, M. Hexahistidine (His6)-tag dependent protein dimerization: a cautionary tale. Acta Biochim Pol. 1999, 46: 591-599.
    224.Wwegner, E H. Biochemical conversions by yeast fermentation at high-cell dendities, US.Patent, 1983, 4: 329-414.
    225.Yakoby, N., Beno-Moualem, D., Keen, N. T., Dinoor, A., Pines, O., Prusky, D. Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit-fungus interaction. Mol Plant Microbe Interact. 2001, 14: 988-995.
    226.Yakoby, N., Freeman, S., Dinoor, A., Keen, N. T., Prusky, D. Expression of pectate lyase from Colletotrichum gloeosporioides in C. magna promotes pathogenicity. Mol Plant Microbe Interact. 2000, 13: 887-891.
    227.Yan, H. Zh., Liou, R F. Cloning and analysis of pppg1, an inducible endopolygalacturonase gene from the oomycete plant pathogen Phytophthora parasitica. Fungal Genet Biol. 2005, 42: 339-350.
    228.Yoshikawa, M., Tsukadaira, T., Masago, H., Minoura, S. A non-pectolytic protein from Phytophthora capsici that macerates plant tissue. Physiol. Plant Pathol. 1977, 11: 61-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700