斜卧青霉高效基因打靶系统的构建与转录调控因子CreA功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜卧青霉是一种丝状子囊真菌,可产生大量的植物细胞壁降解酶类。由于斜卧青霉能将可再生的纤维素生物质转化为可发酵的糖类,因此在木质纤维素物质水解和转化方面具有重要的应用价值,近年来已经被作为工业生产菌株用于生产纤维素、半纤维素酶类。为了提高纤维酶的产量,经典的诱变策略及培养条件的优化已应用于斜卧青霉菌株改造,如通过对斜卧青霉114-2菌株进行紫外线诱变筛选得到抗代谢物阻遏突变株JU-A10。尽管斜卧青霉菌株改良已经取得了明显的进展并克隆得到了部分与纤维素和半纤维素水解相关的基因,但斜卧青霉高产纤维素酶的分子机制还不清楚。最近,斜卧青霉基因组测序工作已基本完成。因此,开发与功能基因组学研究相关的工具为进一步开展斜卧青霉相关研究,具有重要的意义。
     丝状真菌木聚糖酶的产生均受葡萄糖阻遏(碳源代谢产物阻遏)控制,例如曲霉和木霉,其编码纤维素酶和半纤维素酶的基因受到碳源的统一调控。纤维素和其它一些碳源可诱导纤维素酶和半纤维素酶基因的表达,而葡萄糖可抑制这些基因的表达。到目前为止,已分离获得了一些编码纤维素酶、半纤维素酶基因表达调控因子的基因,包括介导代谢产物阻遏的CREA基因。研究表明,纤维素酶和半纤维素酶编码基因的调控机制呈现出明显的相似性,但也具有许多不同之处。在相关研究最为深入的两种菌黑曲霉和瑞氏木霉中,这些基因的调控也表现出很多不一致的方面,但在分子水平对斜卧青霉纤维素酶基因表达调控尚没有报道。
     本论文克隆了斜卧青霉与人的异源整合途径关键蛋白KU70同源的基因pku70,敲除斜卧青霉pku70基因获得了△pku70菌株,构建了斜卧青霉高效基因敲除平台,并在此基础上对斜卧青霉CreA调控因子的功能和纤维素酶调控机理进行了初步的分析。论文实验结果为进行斜卧青霉基因功能高通量分析以及菌株的定向改造奠定了良好的基础。
     本论文的主要研究结果如下:
     1斜卧青霉pku70基因的克隆与分析
     根据已公布的ku70基因序列,设计简并引物,以斜卧青霉114-2染色体为模板进行扩增,获得了长1.36-kb的序列。将扩增得到的序列测序,发现与曲霉属ku70基因具有较高的同源性,初步认定为斜卧青霉ku70基因序列并命名为pku70。根据已扩增的pku70基因部分序列设计引物,采用SELF-PCR技术分别扩增,获得了长3.2-kb的上述pku70部分序列的5’端上游序列和长2.8-kb的3’端下游序列。将克隆得到的全长pku70基因序列提交NCBI进行核酸比对,分析结果表明斜卧青霉pku70基因编码区长2047-bp,含3个内含子,分别位于559-611、1459-1518和1623-1693位点之间。该pku70基因所编码蛋白质长620个氨基酸,分子量为68.9 kDa。BLASTP分析结果表明斜卧青霉PKU70蛋白质与Neosartoryn fischeri、A.clavatus、P.chrysogenum.A.sojae、A.terreus和A. nidulans的KU70蛋白分别具有72%、71%、70%、69%、68%和67%的相似度。将PKU70蛋白质序列进行保守结构域分析,分析结果表明PKU70蛋白质具有3个不同的结构域:KU70/KU80 N-末端结构域(第1-193位氨基酸),KU70核心结构域(第238-516位氨基酸)和C-末端结构域(第573-607位氨基酸)。
     2斜卧青霉高效同源重组系统的构建
     为了建立高效的基因打靶系统同时确定pku70在斜卧青霉NHEJ途径中的作用,进一步克隆了pku70上下游同源区序列。以ptrA为筛选标记,利用Double-jointPCR方法构建了pku70敲除盒。将获得的6.4-kb△pku70::ptrA敲除盒转化斜卧青霉菌株114-2原生质体,获得了pku70基因被敲除的△pku70突变株PKU70-42。
     由于KU蛋白(KU70/80)参与修补DNA双链断裂的NHEJ途径过程,因此对该基因的敲除是否影响△pku70菌株的营养生长、生孢率、对化学试剂的敏感性、渗透压耐受性以及纤维素酶产生等进行了检测。试验结果表明,△pku70突变株的生长速率、菌丝形态、分生孢子的产生以及孢子的萌发速率等均与出发菌株相同。△pku70突变株对生化试剂EMS、潮霉素B或者H2O2的敏感性与出发菌株114-2相比未表现出差别,对渗透压的敏感性与出发菌株1 14-2相比亦未出现明显的差异。
     为验证pku70的敲除对同源重组效率的影响,随机选取斜卧青霉creA和xlnR基因进行基因敲除试验。对斜卧青霉creA和xlnR基因功能的研究目前还未见文献报道,其中,xlnR基因序列还未克隆。本文首先克隆得到斜卧青霉xlnR基因全序列以及creA基因编码区侧翼序列。根据克隆得到的creA和xlnR基因序列,构建了△creA::hph和△xlnR::hph敲除盒,并和构建好的敲除盒分别转化斜卧青霉114-2菌株以及△pku70突变株PKU70-42。以PKU70-42菌株为受体所进行的creA和xlnR基因敲除试验结果表明,pku70基因的敲除可明显提高外源转化片段在斜卧青霉中的基因同源重组效率,△creA::hph以及△xlnR:hph敲除盒在△pku70突变株中的同源重组效率均达到100%。△pku70突变株的获得对于高通量分析斜卧青霉基因功能具有重要的作用,高效同源重组系统的建立有利于利用分子手段进行斜卧青霉菌株的遗传改良以及功能基因组学的研究。同时,creA和xlnR基因的敲除对进一步研究斜卧青霉的碳源代谢机制也有重要的意义。
     3斜卧青霉转化片段整合类型的分析
     为研究外源转化片段在斜卧青霉染色体中的整合类型,用△pku70::ptrA,△creA::hph以及△xlnR::hph敲除盒分别转化114-2野生型菌株和△pku70突变株PKU70-42,对筛选得到的转化子进行Southern blot分析。分析结果表明:在PKU70-42菌株中,pku70基因的敲除造成外源转化片段不能进行异源整合而只能以同源重组的形式整合到细胞染色体中。而在野生型菌株114-2中,外源片段同时发生异源整合和同源整合的情况占转化子总数的6.2%(5/81),只发生异源整合的情况占转化子总数的32.1%(26/81),只发生同源整合的转化子占转化子总数的61.7%(50/81),其中存在多拷贝异源整合片段的情况占转化子总数的19.8%(16/81)。
     4斜卧青霉△pku70突变株筛选标记的置换
     为扩展△pku70菌株的利用范围,构建了△pku70::hph基因敲除盒。△pku70::hph敲除盒与△pku70::ptrA敲除盒携带有相同的pku70两侧同源区。将构建好的△pku70::hph敲除盒转化斜卧青霉△pku 70::ptrA突变株,在潮霉素平板上筛选转化子。将筛选获得的转化子分生孢子分别点接于不含任何抗生素的MM平板,含抗硫胺素的平板以及含有潮霉素的平板。转化子在抗硫胺素平板上不生长,而在含有潮霉素的平板上可以正常生长。该结果表明在这些转化子中均发生了外源转化片段的同源双交换。△pku70::hph突变株的获得,不仅进一步验证了pku70的敲除可以明显提高斜卧青霉外源转化片段的同源重组效率,而且也扩展了△pku70突变株的适用范围,有利于利用△pku70突变株能进行高效基因打靶这一特点进行更加方便的遗传操作。
     5斜卧青霉共转化的初步研究
     为了检测在同一转化实验操作中,两种不同基因的敲除盒是否可以同时在相应基因位点发生同源双交换,我们构建了△acel::dsRed2敲除盒,并将构建好的△acel::dsRed2敲除盒与△pku70::ptrA敲除盒以摩尔数1:1的比例共转化斜卧青霉1 14-2菌株。发现在获得的转化子中仅有7%的转化子发生了共转化。为了验证在高同源重组环境中是否有利于两种不同基因的共敲除,将△acel::dsRed2敲除盒与△pku70::ptrA敲除盒一起转化斜卧青霉△pku70::hph菌株,结果未发现有共转化现象发生。随机挑取在抗硫胺素平板上生长的9株转化子,提取染色体DNA,进行Southern blot验证分析。试验结果表明,在所有选取的转化子中,转化的△pku 70::ptrA敲除盒均在染色体pku70::hph位点发生同源双交换,而在染色体的其位点未发现△pku70::ptrA转化片段的异源重组情况。此结果初步表明,在斜卧青霉中,两种不同敲除盒线性片段的共转化效率很低,特别是在以△pku70突变株为受体菌时,难以进行两种敲除盒的共转化试验。因此我们认为在斜卧青霉中,很难或者不能用两种不同的基因敲除盒进行共敲除/共转化实验,其原因尚待探讨。
     6斜卧青霉114-2creA功能的分析
     为分析验证斜卧青霉creA基因的功能,在获得AcreA突变株后,进一步进行了基因回补试验。构建creA基因回补盒并将其转入AcreA突变株,筛选获得了creA回复菌株creA-4。通过对回补转化子creA-4,△creA突变株以及野生型菌株1 14-2进行分析发现creA的敲除很可能影响多条生长代谢途径从而使该突变株菌落的形态与野生型相比发生了明显的改变。CreA的缺失不仅导致纤维素酶相关基因葡萄糖阻遏效应的解除,而且使AcreA突变株在有葡萄糖存在的情况下仍具有较高的纤维素酶基因表达,进而在较大程度上提高了纤维素酶的产量,同时也说明CreA在斜卧青霉中对纤维素酶基因表达起负调控作用。以乳糖作为唯一碳源培养AcreA菌株的试验结果表明,creA基因的敲除不影响菌株对乳糖的利用,AcreA菌株在乳糖培养基上生长正常。在乳糖和纤维素底物共同存在的情况下首先利用乳糖。试验结果表明乳糖对纤维素酶基因表达没有诱导作用或者诱导作用不明显。在creA基因缺失的情况下,乳糖的存在不影响纤维素底物对纤维素酶的诱导作用。同时还发现,CreA的缺失对斜卧青霉术聚糖酶、内切葡聚糖酶以及滤纸酶活的提高均有明显的促进作用,但对外切葡聚糖纤维二糖水解酶和β-葡聚糖苷酶的产生影响不明显。
     7斜卧青霉JU-A10抗代谢物阻遏的分析
     斜卧青霉JU-A10是野生型菌株114-2经过多轮诱变得到的一株抗葡萄糖代谢阻遏的突变株。该菌在葡萄糖存在的情况下仍能高效地表达纤维素酶。经测序比对发现,在A10菌株creA基因的+1205位点缺失一碱基′C′,从而造成该基因的移码突变。为研究A10中突变的CreA调控因子的作用,分别对A10菌株的creA基因进行了敲除与基因回补纠错试验。研究结果表明,creA基因在+1205位点碱基“C”的缺失造成了CreA调控因子的部分功能失活,但该突变的调控因子仍具有一定的活性,因此所产生的对葡萄糖效应的解阻遏作用是不完全的。但在敲除了A10菌株的creA基因后所得到的A10△creA突变株中,葡萄糖阻遏效应被完全解除,其纤维素酶和半纤维素酶产量有所提高。在研究中我们发现,菌株JU-A10的乳糖代谢途径很可能发生了变化,这种变化非常明显地对该菌体的营养生长产生了抑制作用,并且很可能减少了乳糖代谢对CreA调控因子的依赖。
     以上研究结果对在转录水平了解斜卧青霉葡萄糖阻遏机制、纤维素酶系基因表达调控机理,以及进一步的纤维素酶系优化提供了理论支持,并为进一步进行斜卧青霉菌株定向遗传改造提供了实验数据和奠定了一定的基础。
Penicillium decumbens is a filamentous ascomycete fungus isolated from soil and has capacity to produce large amounts of cellulases and hemicellulases. Due to its high efficiency in enzymatic conversion of renewable cellulosic biomass to fermentable sugars, P. decumbens is becoming particularly attractive for the study of hydrolysis of lignocellulose. To improve the production of biomass-hydrolyzing enzymes, classical mutagenesis strategies and cultivation conditions optimization have been applied for P. decumbens. For example, the strain P. decumbens A10, as a catabolite repression-resistant mutant, was obtained from P. decumbens 114-2 by UV mutagenesis. Recently, genome shuffling was used to further enhance cellulase production by repeating protoplast fusions. Although the strain improvement in this fungus appears to be well established and several genes involved in cellulose and hemicellulose hydrolysis have been cloned (GenBank:EU239661.1; EU239662.1, etc.), the molecular mechanism for the enhancement of cellulase activity is not known. Especially, the P. decumbens genome sequencing project will be completed shortly, thus allowing the development of genome-wide knockouts. Therefore, to develop new molecular tools and novel technologies for functional genomic studies in P. decumbens is becoming increasingly urgent.
     Gene targeting is one of the most important approaches for comprehensive understanding of gene function. Using this strategy, target gene can be displaced with its deletion cassette, and a preexisting genomic mutation can also be corrected to wild-type with its endogenous allele. Unfortunately, the high frequency of illegitimate integration of transforming DNA has hampered gene targeting approaches in most filamentous fungi. In eukaryotes, the repair of DNA double-strand breaks (DSB) works through two main recombination pathways. One is the homologous recombination (HR) pathway, which involves interactions between homologous DNA sequences. Another is the nonhomologous end-joining (NHEJ) pathway, which involves direct ligation of DNA ends independent of sequence homology. The NHEJ pathway has been described as consisting of several components, including Ku heterodimer (Ku70/Ku80), DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Xrcc4-DNA ligase IV complex. The model organism Saccharomyces cerevisiae preferentially utilizes the HR pathway in DSB repair although having NHEJ pathway. In contrast to S. cerevisiae, filamentous fungi mainly utilize the NHEJ pathway of DSB repair and exogenous DNA can be integrated anywhere in the genome. Inhibition of the NHEJ pathway in these fungi is hypothesized to force the transforming DNA to integrate into the genome via HR. Therefore, disruption of Ku70 homologue in P. decumbens is postulated to enhance the gene targeting efficiency and facilitate functional genomic studies.
     The transcriptional repressor CreA is the main regulatory element that has been proposed to participate in cellulase and xylanase gene expression. CreA is a negatively acting protein that mediates carbon catabolite repression in Aspergilli and Trichoderma. Despite the fact that there is a similar repression mechanism in the Aspergilli and Trichoderma, some distinct modes of CreA regulation exit in cellulose and xylan degradation.
     In this study, the pku70 gene homologous to A. nidulans ku70 was cloned and identified. The pku70 targeting cassette was obtained by PCR-based fusion technique, and the ability to undergo HR was assessed in pku70-defective strain compared to the wild-type parental strain at two independent loci. Subsequently, Functional analysis of CreA in wild-type strain 114-2 and derepression phenotype in mutant A10 were performed in P. decumbens.
     1 Isolation and analysis of putative pku 70 gene
     A 1.36-kb sequence with similarity to A. nidulans ku70 gene was amplified in P. decumbens, on the basis of the three different ortholog sequences of human Ku70 from Aspergillus. Based on the obtained partial sequence, the 3.2-kb and 2.8-kb up- and downstream regions of this sequence were obtained by SEFA PCR. BLAST analysis of these amplified sequences revealed that they contain a full-length open reading frame (ORF) consisting of a 2047-bp. This predicated ku 70 gene, named pku70, has three introns which are located at nucleotides 559 to 611,1459 to 1518 and 1623 to
     The P. decumbens pku70 gene encodes a protein of 620 amino acids (aa) with a predicated molecular mass of 68.9 kDa. BLASTP analysis showed that the Pku70 protein shares 72,71,70,69,68 and 67% identity with the respective Ku70 proteins of Neosartorya fischeri, A. clavatus, P. chrysogenum, A. sojae, A. terreus and A. nidulans. The predicted Pku70 protein sequence was submitted to the Conserved Domain Search service. The analysis revealed that Pku70 protein containes three distinct domains: Ku70/Ku80 N-terminal (vWA-ku) domain (aa 1 to 193), Ku70-core domain (aa 238 to 516) and SAP-domain (aa 573 to 607). The N-terminal domain is not involved in DNA binding but may very likely mediate Ku heterodimer interactions with other proteins involved in DSB repair process. The Ku70-core domain is constructed from a core of sevenβ-strands arranged in an antiparallel fashion, and it provides an relatively flat surface for DNA binding. The SAP-domain is a putative DNA-binding motif involved in chromosomal organization.
     2 Development of a highly efficient gene targeting system in Penicillium decumbens To establish highly efficient gene targeting system and confirm the function of pku70 involved in NHEJ pathway in P. decumbens,pku70 targeting cassette was constructed with a pyrithiamine resistance gene ptrA as selectable marker. The 6.4-kb△pku70::ptrA targeting cassette was transformed into P. decumbens wild-type strain 114-2. The coding sequence of the pku 70 locus was removed from the genome of the strain PKU70-42. We therefore concluded that a single gene replacement occurred at the resident pku70 locus, indicating that the pku70 gene had been disrupted in the strain PKU70-42.
     Since Ku proteins (Ku70/80) are involved in NHEJ repair of DSBs in eukaryotes, the△pku70 strain was examined for phenotypic characterization with respect to vegetative growth, germination rate, sensitivity to mutagen toxicity and osmotic stress, as well as cellulose hydrolysis. Plate assay showed that the growth rate of the△pku70 strain PKU70-42 was identical to that of the wild-type strain on MM. No irregularities in mycelial morphology and vegetative growth were observed in the strain PKU70-42, and the sporulation and spore germination rates of the△pku70 strain were not affected. The sensitivity to mutagen toxicity was determined with plate assay using MM plates independently supplemented with different amounts of EMS, hygromycin B and H2O2. The strain PKU70-42 showed no sensitivity differences in comparison with the wild-type strain. Sensitivity to osmotic stress was examined with spot tests using conidiospore suspension. In all cases, sensitivities to osmotic stress were not significantly different between the wild-type strain and the△pku70 strain PKU70-42. Additionally, in order to effectively utilize△pku70 background for creating deletions in genes regarding cellulose hydrolysis, cellulase activity was assayed and no significant differences were detected between△pku70 and wild-type genetic backgrounds of P. decumbens. These results indicated that the Apku70 strain is a suitable host for gene function analysis.
     The effect of the disruption of pku70 on homologous gene targeting was evaluated by the deletion of two randomly selected genes (creA and xlnR) in a Apku70 strain. The functions of both genes have not been elucidated in P. decumbens. The homolog of creA gene in A. nidulans encodes a negatively-acting protein, which mediates carbon catabolite repression, and the homolog of xlnR gene in Hypocrea jecorina encodes a transcriptional activator that governs cellulolytic and xylanolytic gene expression. Disruption of creA and xlnR genes by gene targeting may facilitate further study of the important regulatory machinery of carbon metabolism in P. decumbens.
     The△creA::hph cassette contained 3.5-kb 5'and 3.0-kb 3'of the target creA gene and the△xlnR::hph cassette harbored 1.8-kb and 1.9-kb up- and downstream genomic sequences of xlnR. Deletion of the pku70 gene in P. decumbens clearly increased gene targeting frequencies. The frequency of gene targeting was 100% when flanking regions longer than 1.8-kb were used. In the parental strain, however, gene targeting frequencies were 33% (3/9) and 91% (32/35) at creA and xlnR loci, respectively. These results suggested that gene targeting in△pku 70 was effective at various loci.
     3 Analysis of integration patterns P. decumbens
     Previous studies have shown that ectopic integration events are usually more frequent than homologous integration when foreign DNA is integrated into the fungal genome. In the three independent gene-targeting experiments in P. decumbens wild-type strain, relatively high frequencies of homologous integration were found at xlnR, creA and pku70 loci. Possible factors influencing the homologous integration include the conformation of transforming DNA, length of homology and the recipent strain. Conformation of transforming DNA (circular or linear) can significantly affect gene targeting and transformation frequency. In addition, we discovered that complex integration patterns were existed only in a minority of the transformants, in which homologous integration of targeting cassette was accompanied by additional ectopic integration events. In most transformants foreign DNA was either ectopically or homologously integrated into the genome. Thus it seemed to be a strong incompatibility or competition between two main classes of recombination mechanisms for transforming DNA. On average, approximately 61.5% (16/26) of nontargeted cells incorporated two or multiple copies of targeting cassette integrated randomly into the genome, compared with 9.4% (5/53) of the targeted cells incorporated more than one copy of transforming DNA due to ectopic integration. These results indicated that the nontargeted cells were more likely to incorporate a second fragment by ectopic integration than were targeted cells in P. decumbens.
     4 Marker exchanging in the△pku70::ptrA strain
     To adequately validate the△pku70 genetic background, the P. decumbens△pku70::hph strain was constructed by exchanging selectable markers in Apku70::ptrA strain with hph expression cassettes. The△pku70::hph targeting cassette was created and transformed into the P. decumbens△pku70::ptrA strain PKU70-42 as recipient. Sixteen randomly selected transformants were subjected to PCR analysis and plate assay. All transformants obtained ultimately became resistant to hygromycin B and sensitive to pyrithiamine. These results indicated that allelic exchange between the two pku70 targeting cassettes successfully occurred at the pku70::ptrA locus by homologous integration in strain PKU70-42.
     5 Analysis of cotransformation in P. decumbens
     To determine whether two loci could be independently targeted within a single transformation experiment by using mixtures of two different targeting cassettes, the△pku70::ptrA and△ace1::dsRed2 cassettes were constructed and cotransformed into the wild-type and Apku70::hph strains, respectively. In the first case, cotransformants were found at a frequency of approximately one per thirteen PyrR transformants, and the△ace1::dsRed2 cassette was integrated ectopically at unknown sites in the genome of wild-type strain. The remainder of PyrR transformants showed no cotransforming△ace1::dsRed2 cassette anywhere. In parallel experiments with the same targeting cassettes, thirty-eight PyrR transformants were obtained using the△pku70::hph strain as recipient. However, all of them did not contain cotransforming△ace1::dsRed2 fragment. The analysis confirmed that the hph marker in△pku70::hph strain was replaced by the ptrA expression cassette without additional integration of△pku70::ptrA fragment into genome. Collectively, these data demonstrated that cotransformation with two linear targeting cassettes occurred at a relatively low frequency in P. decumbens, especially in△pku70 strain as recipient. We therefore concluded that simultaneous targeting of independent genes is not a frequent occurrence during cotransformation of two different targeting cassettes.
     6 Functional analysis of CreA in P. decumbens
     In order to analyze the function of the CreA protein, we produced total deletion of creA produced by using in vitro techniques and△creA strain was complemented by another creA allele. In P. decumbens strain 114-2, deletions of the creA gene lead to derepression of cellulase and xylanase production even in the medium containing the D-glucose. The results showed that the regulator CreA, as a carbon catabolite repressor, mediates the repression of genes encoding cellulase and hemicellulase. Our results also indicated that lactose has no obvious effect on induction of cellulase production.
     7 Analysis of derepression phenotype in P. decumbens A10
     The known mutation in creA confers a derepressed phenotype in P. decumbens A10. A mutant was constructed in which a total deletion of creA produced by using in vitro techniques in P. decumbens A10. We also produced a strain the creA was corrected by another creA allele cloned from wild-type strain 114-2. In the rectified strain, the phenotype for catabolite repression can be rescued by transformation with the wild-type creA allele. Information from plate analysis of creA mutants, combined with information derived from analysis of rectified strain, allow us to determine that CreA lead to partial derepression and retain some activity in P.decumbens A10, since a total deletion has much more derepression phenotype in medium containing glucose.
引文
Adachi N, Suzuki H, Iiizumi S, Koyama H (2003) Hypersensitivity of nonhomologous DNA end-joining mutants to VP-16 and ICRF-193:implications for the repair of topoisomerase Ⅱ-mediated DNA damage. J Biol Chem 278:35897-35902
    Ahnesorg P, Smith P, Jackson SP (2006) XLF interacts with the XRCC4-DNA ligase Ⅳ complex to promote DNA nonhomologous end-joining. Cell 124:301-313
    Alcocer MJ, Furniss CS, Kroon PA, Campbell M, Archer DB (2003) Comparison of modular and non-modular xylanases as carrier proteins for the efficient secretion of heterologous proteins from Penicillium funiculosum. Appl Microbiol Biotechnol 60:726-732
    Andres SN, Modesti M, Tsai CJ, Chu G, Junop MS (2007) Crystal structure of human XLF:a twist in nonhomologous DNA end-joining. Mol Cell 28:1093-1101
    Aro N, Ilmen M, Saloheimo A, Penttila M (2003) ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl Environ Microbiol 69:56-65
    Arst HN, Jr., Tollervey D, Dowzer CE, Kelly JM (1990) An inversion truncating the creA gene of Aspergillus nidulans results in carbon catabolite derepression. Mol Microbiol 4:851-854 doi:
    Asch DK, Frederick G, Kinsey JA, Perkins DD (1992) Analysis of junction sequences resulting from integration at nonhomologous loci in Neurospora crassa. Genetics 130:737-748
    Bailey SM, Murnane JP (2006) Telomeres, chromosome instability and cancer. Nucleic Acids Res 34: 2408-2417
    Bakkenist CJ, Kastan MB (2004) Initiating cellular stress responses. Cell 118:9-17
    Belancic A, Scarpa J, Peirano A, Diaz R, Steiner J, Eyzaguirre J (1995) Penicillium purpurogenum produces several xylanases:purification and properties of two of the enzymes. J Biotechnol 41: 71-79
    Bertolini LR, Bertolini M, Maga EA, Madden KR, Murray JD (2009) Increased gene targeting in Ku70 and Xrcc4 transiently deficient human somatic cells. Mol Biotechnol 41:106-114
    Bradner JR, Sidhu RK, Gillings M, Nevalainen KM (1999) Hemicellulase activity of antarctic microfungi. J Appl Microbiol 87:366-370
    Brakhage AA, Andrianopoulos A, Kato M, Steidl S, Davis MA, Tsukagoshi N, Hynes MJ (1999) HAP-Like CCAAT-binding complexes in filamentous fungi:implications for biotechnology. Fungal Genet Biol 27:243-252
    Buck D, Malivert L, de Chasseval R, Barraud A, Fondaneche MC, Sanal O, Plebani A, Stephan JL, Hufnagel M, le Deist F, Fischer A, Durandy A, de Villartay JP, Revy P (2006) Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124:287-299
    Bussink HJ, Brouwer KB, de Graaff LH, Kester HC, Visser J (1991) Identification and characterization of a second polygalacturonase gene of Aspergillus niger. Curr Genet 20:301-307
    Carle-Urioste JC, Escobar-Vera J, El-Gogary S, Henrique-Silva F, Torigoi E, Crivellaro O, Herrera-Estrella A, El-Dorry H (1997) Cellulase induction in Trichoderma reesei by cellulose requires its own basal expression. J Biol Chem 272:10169-10174
    Carter GL, Allison D, Rey MW, Dunn-Coleman NS (1992) Chromosomal and genetic analysis of the electrophoretic karyotype of Trichoderma reesei:mapping of the cellulase and xylanase genes. Mol Microbiol 6:2167-2174
    Carvallo M, de Ioannes P, Navarro C, Chavez R, Peirano A, Bull P, Eyzaguirre J (2003) Characterization of an alpha-L-arabinofuranosidase gene (abfl) from Penicillium purpurogenum and its expression. Mycol Res 107:388-394
    Castanares A, Wood TM (1992) Purification and characterization of a feruloyl/p-coumaroyl esterase from solid-state cultures of the aerobic fungus Penicillium pinophilum. Biochem Soc Trans 20: 275S
    Chavez R, Bull P, Eyzaguirre J (2006) The xylanolytic enzyme system from the genus Penicillium. Journal of Biotechnology 123:413-433
    Chan DW, Chen BP, Prithivirajsingh S, Kurimasa A, Story MD, Qin J, Chen DJ (2002) Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev 16:2333-2338
    Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59: 527-605
    Chavez R, Almarza C, Schachter K, Peirano A, Bull P, Eyzaguirre J (2001a) Structure analysis of the endoxylanase A gene from Penicillium purpurogenum. Biol Res 34:217-226
    Chavez R, Fierro F, Gordillo F, Francisco Martin J, Eyzaguirre J (2001b) Electrophoretic karyotype of the filamentous fungus Penicillium purpurogenum and chromosomal location of several xylanolytic genes. FEMS Microbiol Lett 205:379-383
    Chavez R, Schachter K, Navarro C, Peirano A, Aguirre C, Bull P, Eyzaguirre J (2002) Differences in expression of two endoxylanase genes (xynA and xynB) from Penicillium purpurogenum. Gene 293:161-168
    Chavez R, Schachter K, Navarro C, Peirano A, Bull P, Eyzaguirre J (2004) The acetyl xylan esterase II gene from Penicillium purpurogenum is differentially expressed in several carbon sources, and tightly regulated by pH. Biol Res 37:107-113
    Cheng Y, Song X, Qin Y, Qu Y (2009) Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. J Appl Microbiol JAM4362
    Crepin VF, Faulds CB, Connerton IF (2004) Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol 63:647-652
    Critchlow SE, Bowater RP, Jackson SP (1997) Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol 7:588-598
    Cubero B, Scazzocchio C (1994) Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J 13:407-415
    Curotto E, Concha M, Campos V, Milagres AM, Duran N (1994) Production of extracellular xylanases by Penicillium janthinellum. Effect of selected growth conditions. Appl Biochem Biotechnol 48:107-116
    Dai Y, Kysela B, Hanakahi LA, Manolis K, Riballo E, Stumm M, Harville TO, West SC, Oettinger MA, Jeggo PA (2003) Nonhomologous end joining and V(D)J recombination require an additional factor. Proc Natl Acad Sci U S A 100:2462-2467
    Daley JM, Palmbos PL, Wu D, Wilson TE (2005) Nonhomologous end joining in yeast. Annu Rev Genet 39:431-451
    De Ioannes P, Peirano A, Steiner J. Eyzaguirre J (2000) An alpha-L-arabinofuranosidase from Penicillium purpurogenum:production, purification and properties. J Biotechnol 76:253-258
    de Vries RP, van den Broeck HC, Dekkers E, Manzanares P, de Graaff LH, Visser J (1999) Differential expression of three alpha-galactosidase genes and a single beta-galactosidase gene from Aspergillus niger. Appl Environ Microbiol 65:2453-2460
    de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497-522, table of contents
    Deleyn F, Claeyssens M, Van Beeumen J, De Bruyne CK (1978) Purification and properties of beta-xylosidase from Penicillium wortmanni. Can J Biochem 56:43-50
    Denison SH (2000) pH regulation of gene expression in fungi. Fungal Genet Biol 29:61-71
    Depiereux E, Feytmans E (1992) MATCH-BOX:a fundamentally new algorithm for the simultaneous alignment of several protein sequences. Comput Appl Biosci 8:501-509
    Dev K, Maheshwari R (2002) Transformation in heterokaryons of Neurospora crassa is nuclear rather than cellular phenomenon. Curr Microbiol 44:309-313
    Diaz R, Sapag A, Peirano A, Steiner J, Eyzaguirre J (1997) Cloning, sequencing and expression of the cDNA of endoxylanase B from Penicillium purpurogenum. Gene 187:247-251
    Diez B, Gutierrez S, Barredo JL, van Solingen P, van der Voort LH, Martin JF (1990) The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the alpha-aminoadipyl-cysteinyl-valine synthetase and linkage to the pcbC and penDE genes. J Biol Chem 265:16358-16365
    Ding Q, Reddy YV, Wang W, Woods T, Douglas P, Ramsden DA, Lees-Miller SP, Meek K (2003) Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair. Mol Cell Biol 23: 5836-5848
    Donaghy J, McKay AM (1997) Purification and characterization of a feruloyl esterase from the fungus Penicillium expansum. J Appl Microbiol 83:718-726
    Donaghy JA, McKay AM (1995) Production of feruloyl/rho-coumaroyl esterase activity by Penicillium expansum, Penicillium brevicompactum and Aspergillus niger. J Appl Bacteriol 79:657-662
    Downs JA, Jackson SP (2004) A means to a DNA end:the many roles of Ku. Nat Rev Mol Cell Biol 5: 367-378
    Dowzer CE, Kelly JM (1989) Cloning of the creA gene from Aspergillus nidulans:a gene involved in carbon catabolite repression. Curr Genet 15:457-459
    Dowzer CE, Kelly JM (1991) Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11:5701-5709
    Dynan WS, Yoo S (1998) Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 26:1551-1559
    Egana L, Gutierrez R, Caputo V, Peirano A, Steiner J, Eyzaguirre J (1996) Purification and characterization of two acetyl xylan esterases from Penicillium purpurogenum. Biotechnol Appl Biochem 24 (Pt 1):33-39
    Espeso EA, Penalva MA (1994) In vitro binding of the two-finger repressor CreA to several consensus and non-consensus sites at the ipnA upstream region is context dependent. FEBS Lett 342: 43-48
    Fadel M, Fouda MS (1993) Physiological studies on xylanase production by Penicillium funiculosum on some agricultural wastes. Zentralbl Mikrobiol 148:304-312
    Filho EX, Puls J, Coughlan MP (1996) Purification and characterization of two arabinofuranosidases from solid-state cultures of the fungus Penicillium capsulatum. Appl Environ Microbiol 62: 168-173
    Fillinger S, Felenbok B (1996) A newly identified gene cluster in Aspergillus nidulans comprises five novel genes localized in the alc region that are controlled both by the specific transactivator AlcR and the general carbon-catabolite repressor CreA. Mol Microbiol 20:475-488
    Fowler T, Brown RD, Jr. (1992) The bgll gene encoding extracellular beta-glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex. Mol Microbiol 6: 3225-3235
    Fox BA, Ristuccia JG, Gigley JP, Bzik DJ (2009) Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining. Eukaryot Cell 8:520-529
    Furniss CS, Belshaw NJ, Alcocer MJ, Williamson G, Elliott GO, Gebruers K, Haigh NP, Fish NM, Kroon PA (2002) A family 11 xylanase from Penicillium funiculosum is strongly inhibited by three wheat xylanase inhibitors. Biochim Biophys Acta 1598:24-29
    Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859-868
    Gennery AR (2006) Primary immunodeficiency syndromes associated with defective DNA double-strand break repair. Br Med Bull 77-78:71-85
    Gielkens MM, Dekkers E, Visser J, de Graaff LH (1999) Two cellobiohydrolase-encoding genes from Aspergillus niger require D-xylose and the xylanolytic transcriptional activator XlnR for their expression. Appl Environ Microbiol 65:4340-4345
    Gielkens MM, Visser J, de Graaff LH (1997) Arabinoxylan degradation by fungi:characterization of the arabinoxylan-arabinofuranohydrolase encoding genes from Aspergillus niger and Aspergillus tubingensis. Curr Genet 31:22-29
    Gottlieb TM, Jackson SP (1993) The DNA-dependent protein kinase:requirement for DNA ends and association with Ku antigen. Cell 72:131-142
    Grotelueschen J, Metzenberg RL (1995) Some property of the nucleus determines the competence of Neurospora crassa for transformation. Genetics 139:1545-1551
    Gu J, Lu H, Tippin B, Shimazaki N, Goodman MF, Lieber MR (2007a) XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps. EMBO J 26:1010-1023
    Gu J, Lu H, Tsai AG, Schwarz K, Lieber MR (2007b) Single-stranded DNA ligation and XLF-stimulated incompatible DNA end ligation by the XRCC4-DNA ligase IV complex: influence of terminal DNA sequence. Nucleic Acids Res 35:5755-5762
    Gutierrez R, Cederlund E, Hjelmqvist L, Peirano A, Herrera F, Ghosh D, Duax W, Jornvall H, Eyzaguirre J (1998) Acetyl xylan esterase Ⅱ from Penicillium purpurogenum is similar to an esterase from Trichoderma reesei but lacks a cellulose binding domain. FEBS Lett 423:35-38
    Haas H, Friedlin E, Stoffler G, Redl B (1993) Cloning and structural organization of a xylanase-encoding gene from penicillium chrysogenum. Gene 126:237-242
    Haber JE, Ira G, Malkova A, Sugawara N (2004) Repairing a double-strand chromosome break by homologous recombination:revisiting Robin Holliday's model. Philos Trans R Soc Lond B Biol Sci 359:79-86
    Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol-the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549-556
    Hasper AA, Trindade LM, van der Veen D, van Ooyen AJ, de Graaff LH (2004) Functional analysis of the transcriptional activator XlnR from Aspergillus niger. Microbiology 150:1367-1375
    Hasper AA, Visser J, de Graaff LH (2000) The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates D-xylose reductase gene expression. Mol Microbiol 36:193-200
    Hasty P, Rivera-Perez J, Bradley A (1991) The length of homology required for gene targeting in embryonic stem cells. Mol Cell Biol 11:5586-5591
    Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316 (Pt 2):695-696
    Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance:engineering plants and enzymes for biofuels production. Science 315:804-807
    Hintz WE, Lagosky PA (1993) A glucose-derepressed promoter for expression of heterologous products in the filamentous fungus Aspergillus nidulans. Biotechnology (N Y) 11:815-818
    Hoff B, Kamerewerd J, Sigl C, Zadra I, Kuck U (2010) Homologous recombination in the antibiotic producer Penicillium chrysogenum:strain DeltaPcku70 shows up-regulation of genes from the HOG pathway. Appl Microbiol Biotechnol 85:1081-1094
    Ilmen M, Onnela ML, Klemsdal S, Keranen S, Penttila M (1996) Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei. Mol Gen Genet 253:303-314
    Ilmen M, Saloheimo A, Onnela ML, Penttila ME (1997) Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl Environ Microbiol 63:1298-1306
    Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases: Specificity, synergism, and binding domain effects. Biotechnol Bioeng 42:1002-1013
    Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H (2006) Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci U S A 103:14871-14876
    Ito T, Yokoyama E, Sato H, Ujita M, Funaguma T, Furukawa K, Hara A (2003) Xylosidases associated with the cell surface of Penicillium herquei IFO 4674. J Biosci Bioeng 96:354-359
    Johnstone IL, McCabe PC, Greaves P, Gurr SJ, Cole GE, Brow MA, Unkles SE, Clutterbuck AJ, Kinghorn JR, Innis MA (1990) Isolation and characterisation of the crnA-niiA-niaD gene cluster for nitrate assimilation in Aspergillus nidulans. Gene 90:181-192
    Jorgensen H, Morkeberg A, Krogh KB, Olsson L (2004) Growth and enzyme production by three Penicillium species on monosaccharides. J Biotechnol 109:295-299
    Keller NP, Hohn TM (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21:17-29
    Kimura T, Ito J, Kawano A, Makino T, Kondo H, Karita S, Sakka K, Ohmiya K (2000) Purification, characterization, and molecular cloning of acidophilic xylanase from penicillium sp.40. Biosci Biotechnol Biochem 64:1230-1237
    Kooistra R, Hooykaas PJ, Steensma HY (2004) Efficient gene targeting in Kluyveromyces lactis. Yeast 21:781-792
    Kormelink FJ, Gruppen H, Vietor RJ, Voragen AG (1993) Mode of action of the xylan-degrading enzymes from Aspergillus awamori on alkali-extractable cereal arabinoxylans. Carbohydr Res 249:355-367
    KRAPPMANN S (2007) Gene targeting in filamentous fungi:the benefits of impaired repair. Fungal Biol Rev 21:25-29
    Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end- joining-deficient genetic background. Eukaryot Cell 5:212-215
    Krogh KB, Morkeberg A, Jorgensen H, Frisvad JC, Olsson L (2004) Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes. Appl Biochem Biotechnol 113-116: 389-401
    Kroon PA, Williamson G, Fish NM, Archer DB, Belshaw NJ (2000) A modular esterase from Penicillium funiculosum which releases ferulic acid from plant cell walls and binds crystalline cellulose contains a carbohydrate binding module. Eur J Biochem 267:6740-6752
    Kubodera T, Yamashita N, Nishimura A (2002) Transformation of Aspergillus sp. and Trichoderma reesei using the pyrithiamine resistance gene (ptrA) of Aspergillus oryzae. Biosci Biotechnol Biochem 66:404-406
    Kurzatkowski W, Torronen A, Filipek J, Mach RL, Herzog P, Sowka S, Kubicek CP (1996) Glucose-induced secretion of Trichoderma reesei xylanases. Appl Environ Microbiol 62: 2859-2865
    Lai L, O'Connor HM, Inge LJ, Chan DM, Lien YH (1997) Homologous recombination based gene therapy corrects carbonic anhydrase (CA) II mutation in renal tubular epithelial cells. American Journal of Human Genetics 61:2089
    Lai LW, Lien YHH (1999) Homologous recombination based gene therapy. Experimental Nephrology 7:11-14
    Laich F, Fierro F, Martin JF (2002) Production of penicillin by fungi growing on food products: identification of a complete penicillin gene cluster in Penicillium griseofulvum and a truncated cluster in Penicillium verrucosum. Appl Environ Microbiol 68:1211-1219 doi:
    Lieber MR (2008) The mechanism of human nonhomologous DNA end joining. J Biol Chem 283:1-5
    Lieber MR, Karanjawala ZE (2004) Ageing, repetitive genomes and DNA damage. Nat Rev Mol Cell Biol 5:69-75
    Lieber MR, Ma Y, Pannicke U, Schwarz K (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4:712-720
    Mach-Aigner AR, Pucher ME, Steiger MG, Bauer GE, Preis SJ, Mach RL (2008) Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl Environ Microbiol 74:6554-6562
    Mach RL, Strauss J, Zeilinger S, Schindler M, Kubicek CP (1996) Carbon catabolite repression of xylanase I (xyn1) gene expression in Trichoderma reesei. Mol Microbiol 21:1273-1281
    MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of transcriptional regulators:the zinc cluster proteins. Microbiol Mol Biol Rev 70:583-604
    Mantyla AL, Rossi KH, Vanhanen SA, Penttila ME, Suominen PL, Nevalainen KM (1992) Electrophoretic karyotyping of wild-type and mutant Trichoderma longibrachiatum (reesei) strains. Curr Genet 21:471-477
    Mari PO, Florea BI, Persengiev SP, Verkaik NS, Bruggenwirth HT, Modesti M, Giglia-Mari G, Bezstarosti K, Demmers JA, Luider TM, Houtsmuller AB, van Gent DC (2006) Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc Natl Acad Sci U S A 103:18597-18602
    Marmorstein R, Harrison SC (1994) Crystal structure of a PPR1-DNA complex:DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Genes Dev 8:2504-2512
    Martin GM, Smith AC, Ketterer DJ, Ogburn CE, Disteche CM (1985) Increased chromosomal aberrations in first metaphases of cells isolated from the kidneys of aged mice. Isr J Med Sci 21:296-301
    Martin JF (2000) Molecular control of expression of penicillin biosynthesis genes in fungi:regulatory proteins interact with a bidirectional promoter region. J Bacteriol 182:2355-2362
    Maruyama J, Kitamoto K (2008) Multiple gene disruptions by marker recycling with highly efficient gene-targeting background (DeltaligD) in Aspergillus oryzae. Biotechnol Lett 30:1811-1817
    Mathieu M, Felenbok B (1994) The Aspergillus nidulans CREA protein mediates glucose repression of the ethanol regulon at various levels through competition with the ALCR-specific transactivator. EMBO J 13:4022-4027
    Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CA, Ram AF (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128: 770-775
    Miao VP, Rountree MR, Selker EU (1995) Ectopic integration of transforming DNA is rare among neurospora transformants selected for gene replacement. Genetics 139:1533-1544
    Mizutani O, Kudo Y, Saito A, Matsuura T, Inoue H, Abe K, Gomi K (2008) A defect of LigD (human Lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae. Fungal Genet Biol 45:878-889
    Moore JK, Haber JE (1996) Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 16: 2164-2173
    Moreau A, Roberge M, Manin C, Shareck F, Kluepfel D, Morosoli R (1994) Identification of two acidic residues involved in the catalysis of xylanase A from Streptomyces lividans. Biochem J 302 (Pt 1):291-295
    Narendja FM, Davis MA, Hynes MJ (1999) AnCF, the CCAAT binding complex of Aspergillus nidulans, is essential for the formation of a DNase Ⅰ-hypersensitive site in the 5' region of the amdS gene. Mol Cell Biol 19:6523-6531
    Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172: 1557-1566
    Nicolaisen M, Geisen R (1996) Transformation of Penicillium freii and a rapid PCR screening procedure for cotransformation events. Microbiol Res 151:281-284
    Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei:a new model for synergistic interaction. Biochem J 298 Pt 3:705-710
    Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101:12248-12253
    O'Driscoll M, Gennery AR, Seidel J, Concannon P, Jeggo PA (2004) An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel
    syndrome. DNA Repair (Amst) 3:1227-1235
    Orejas M, MacCabe AP, Perez Gonzalez JA, Kumar S, Ramon D (1999) Carbon catabolite repression of the Aspergillus nidulans xlnA gene. Mol Microbiol 31:177-184
    Pandit NN, Russo VE (1992) Reversible inactivation of a foreign gene, hph, during the asexual cycle in Neurospora crassa transformants. Mol Gen Genet 234:412-422
    Parenicova L, Benen JA, Kester HC, Visser J (2000) pgaA and pgaB encode two constitutively expressed endopolygalacturonases of Aspergillus niger. Biochem J 345 Pt 3:637-644
    Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d'Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wosten HA,Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25: 221-231
    Perkins DD, Kinsey JA, Asch DK, Frederick GD (1993) Chromosome rearrangements recovered following transformation of Neurospora crassa. Genetics 134:729-736
    Pitcher RS, Green AJ, Brzostek A, Korycka-Machala M, Dziadek J, Doherty AJ (2007) NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation. DNA Repair (Amst) 6:1271-1276
    Poggeler S, Kuck U (2006) Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene 378:1-10
    Prade RA (1996) Xylanases:from biology to biotechnology. Biotechnol Genet Eng Rev 13:101-131 doi:
    Qu YB, Zhao X, Gao PJ, Wang ZN (1991) Cellulase production from spent sulfite liquor and paper-mill waste fiber. Scientific note. Appl Biochem Biotechnol 28-29:363-368
    Rahman AK, Sugitani N, Hatsu M, Takamizawa K (2003) A role of xylanase, alpha-L-arabinofuranosidase, and xylosidase in xylan degradation. Can J Microbiol 49:58-64
    Rao M, Gaikwad S, Mishra C, Deshpande V (1988) Induction and catabolite repression of cellulase in Penicillium funiculosum. Appl Biochem Biotechnol 19:129-137
    Rauscher R, Wurleitner E, Wacenovsky C, Aro N, Stricker AR, Zeilinger S, Kubicek CP, Penttila M, Mach RL (2006) Transcriptional regulation of xynl, encoding xylanase I, in Hypocrea jecorina. Eukaryot Cell 5:447-456
    Reese ET, Maguire A, Parrish FW (1973) Production of beta-D-xylopyranosidases by fungi. Can J Microbiol 19:1065-1074
    Reid LH, Shesely EG, Kim HS, Smithies O (1991) Cotransformation and gene targeting in mouse embryonic stem cells. Mol Cell Biol 11:2769-2777
    Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ, Reis C, Dahm K, Fricke A, Krempler A, Parker AR, Jackson SP, Gennery A, Jeggo PA, Lobrich M (2004) A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 16:715-724
    Sakamoto T, Kawasaki H (2003) Purification and properties of two type-B alpha-L-arabinofuranosidases produced by Penicillium chrysogenum. Biochim Biophys Acta 1621:204-210
    Saloheimo A, Aro N, Ilmen M, Penttila M (2000) Isolation of the acel gene encoding a Cys(2)-His(2) transcription factor involved in regulation of activity of the cellulase promoter cbhl of Trichoderma reesei. J Biol Chem 275:5817-5825
    Saloheimo M, Kuja-Panula J, Ylosmaki E, Ward M, Penttila M (2002) Enzymatic properties and intracellular localization of the novel Trichoderma reesei beta-glucosidase BGLII (cellA). Appl Environ Microbiol 68:4546-4553
    San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229-257
    Schmidt A, Schlacher A, Steiner W, Schwab H, Kratky C (1998) Structure of the xylanase from Penicillium simplicissimum. Protein Sci 7:2081-2088
    Serebrianyi VA, Vavilova EA, Chulkin AM, Vinetskii Iu P (2002) Cloning of an endo-1,4-beta-xylanase gene from Penicillium canescens and construction of multicopy strains]. Prikl Biokhim Mikrobiol 38:495-501
    Shuman S, Glickman MS (2007) Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol 5:852-861
    Smith GC, Jackson SP (1999) The DNA-dependent protein kinase. Genes Dev 13:916-934
    Snoek IS, van der Krogt ZA, Touw H, Kerkman R, Pronk JT, Bovenberg RA, van den Berg MA, Daran JM (2009) Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genet Biol 46:418-426
    Soulas-Sprauel P, Rivera-Munoz P, Malivert L, Le Guyader G, Abramowski V, Revy P, de Villartay JP (2007) V(D)J and immunoglobulin class switch recombinations:a paradigm to study the regulation of DNA end-joining. Oncogene 26:7780-7791
    Sternberg D, Mandels GR (1979) Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J Bacteriol 139:761-769
    Stricker AR, Grosstessner-Hain K, Wurleitner E, Mach RL (2006) Xyrl (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 5:2128-2137
    Stricker AR, Steiger MG, Mach RL (2007) Xyrl receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina. FEBS Lett 581:3915-3920
    Stricker AR, Trefflinger P, Aro N, Penttila M, Mach RL (2008) Role of Ace2 (Activator of Cellulases 2) within the xyn2 transcriptosome of Hypocrea jecorina. Fungal Genet Biol 45:436-445
    Sun X, Qu Y, Liu Z (2007) Progress in research of lignocellulose-degrading enzymes from Penicillium. Chinese Journal of Applied and Environmental Biology 13:736-740
    Sung P, Klein H (2006) Mechanism of homologous recombination:mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7:739-750
    Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17: 39-67
    Takahashi T, Masuda T, Koyama Y (2006) Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics 275: 460-470
    Tamayo EN, Villanueva A, Hasper AA, de Graaff LH, Ramon D, Orejas M (2008) CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans. Fungal Genet Biol 45:984-993
    Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Penalva MA, Arst HN, Jr. (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14:779-790
    Uematsu N, Weterings E, Yano K, Morotomi-Yano K, Jakob B, Taucher-Scholz G, Mari PO, van Gent DC, Chen BP, Chen DJ (2007) Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. J Cell Biol 177:219-229
    van Peij NN, Brinkmann J, Vrsanska M, Visser J, de Graaff LH (1997) beta-Xylosidase activity, encoded by xlnD, is essential for complete hydrolysis of xylan by Aspergillus niger but not for induction of the xylanolytic enzyme spectrum. Eur J Biochem 245:164-173
    van Peij NN, Visser J, de Graaff LH (1998) Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol Microbiol 27: 131-142
    Villalba F, Collemare J, Landraud P, Lambou K, Brozek V, Cirer B, Morin D, Bruel C, Beffa R, Lebrun MH (2008) Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet Biol 45:68-75
    Walker JR, Corpina RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412:607-614
    Wang D, Hu Y, Zheng F, Zhou K, Kohlhaw GB (1997) Evidence that intramolecular interactions are involved in masking the activation domain of transcriptional activator Leu3p. J Biol Chem 272:19383-19392
    Wegener S, Ransom RF, Walton JD (1999) A unique eukaryotic beta-xylosidase gene from the phytopathogenic fungus Cochliobolus carbonum. Microbiology 145 (Pt 5):1089-1095 doi:
    Weidner G, Steidl S, Brakhage AA (2001) The Aspergillus nidulans homoaconitase gene lysF is negatively regulated by the multimeric CCAAT-binding complex AnCF and positively regulated by GAT A sites. Arch Microbiol 175:122-132
    Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ (2006) Approaches to functional genomics in filamentous fungi. Cell Res 16:31-44
    Wernars K, Goosen T,Wennekes BM, Swart K, van den Hondel CA, van den Broek HW (1987) Cotransformation of Aspergillus nidulans:a tool for replacing fungal genes. Mol Gen Genet 209:71-77
    Weterings E, Verkaik NS, Bruggenwirth HT, Hoeijmakers JH, van Gent DC (2003) The role of DNA dependent protein kinase in synapsis of DNA ends. Nucleic Acids Res 31:7238-7246
    Wurleitner E, Pera L, Wacenovsky C, Cziferszky A, Zeilinger S, Kubicek CP, Mach RL (2003) Transcriptional regulation of xyn2 in Hypocrea jecorina. Eukaryot Cell 2:150-158
    Xu J, Nogawa M, Okada H, Morikawa Y (2000) Regulation of xyn3 gene expression in Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 54:370-375
    Yaneva M, Kowalewski T, Lieber MR (1997) Interaction of DNA-dependent protein kinase with DNA and with Ku:biochemical and atomic-force microscopy studies. EMBO J 16:5098-5112
    Yano K, Chen DJ (2008) Live cell imaging of XLF and XRCC4 reveals a novel view of protein assembly in the non-homologous end-joining pathway. Cell Cycle 7:1321-1325
    Yano K, Morotomi-Yano K, Akiyama H (2009) Cernunnos/XLF:a new player in DNA double-strand break repair. Int J Biochem Cell Biol 41:1237-1240
    Yano K, Morotomi-Yano K, Wang SY, Uematsu N, Lee KJ, Asaithamby A, Weterings E, Chen DJ (2008) Ku recruits XLF to DNA double-strand breaks. EMBO Rep 9:91-96
    Yu Y, Mahaney BL, Yano K, Ye R, Fang S, Douglas P, Chen DJ, Lees-Miller SP (2008) DNA-PK and ATM phosphorylation sites in XLF/Cernunnos are not required for repair of DNA double strand breaks. DNA Repair (Amst) 7:1680-1692
    Zadra I, Abt B, Parson W, Haas H (2000) xylP promoter-based expression system and its use for antisense downregulation of the Penicillium chrysogenum nitrogen regulator NRE. Appl Environ Microbiol 66:4810-4816
    Zeilinger S, Mach RL, Schindler M, Herzog P, Kubicek CP (1996) Different inducibility of expression of the two xylanase genes xyn1 and xyn2 in Trichoderma reesei. J Biol Chem 271: 25624-25629
    Zeilinger S, Schmoll M, Pail M, Mach RL, Kubicek CP (2003) Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Mol Genet Genomics 270:46-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700