大丽轮枝菌基因敲除体系的建立及分泌蛋白初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大丽轮枝菌(Verticillium dahliae)是引起棉花黄萎病的病原菌,在世界范围内造成重大经济损失。已有研究表明大丽轮枝菌的分泌蛋白即毒素蛋白是造成棉花黄萎、落叶和减产的主要因素之一。因此构建大丽轮枝菌基因敲除体系(实验平台)和分泌蛋白预测体系(生物信息平台),并在此基础上对潜在的毒性分泌蛋白(secreted protein)和分泌系统蛋白(secretion system protein)的编码基因进行功能研究,将为揭示大丽轮枝菌致病机理,寻找防治黄萎病的生物学靶点提供思路。
     构建了高效的大丽轮枝菌基因敲除体系。具体从以下几方面进行了体系的优化:(1)融合PCR和Gateway技术相结合高效构建基因敲除载体;(2)利用农杆菌介导法转化大丽轮枝菌;(3)使用在T-DNA之间加入致死基因HSVtk的双元载体,使T-DNA随机插入转化子在添加5-氟脱氧尿苷的培养基上不能存活,从而通过“反向筛选”提高基因敲除的效率。使用上述平台对大丽轮枝菌腺嘌呤合成酶基因和几丁质合成酶基因进行基因敲除验证,基因敲除转化子在总转化子中的比例分别达到87%和44%。
     建立了预测大丽轮枝菌基因组范围内所有分泌蛋白的计算方法。利用已公布的大丽轮枝菌(V. dahliae VdLs.17)全基因组序列,组合使用生物信息学软件SignalP、TargetP、TMHMM、Big-pi和PROSITE进行计算,预测得到VdLs.17基因组内共有922个分泌蛋白。利用上述分泌蛋白的预测方法,在本实验室两株不同致病性生理型Vd114(弱毒性)和Vd991(强毒性)基因组全测序的基础上,进行比较分析后,得到6个强毒力菌株Vd991特有的分泌蛋白基因,推测它们可能在强致病性型Vd991的致病机制中发挥了重要作用。为验证其生物学功能,通过本文已建立的大丽轮枝菌基因敲除体系,分别得到了上述6个蛋白编码基因在Vd991中缺失的突变体菌株。但是表型分析发现,6个突变体菌株无论从生长速率,产孢量和致病性方面都与野生型菌株Vd991没有明显的变化。其原因可能是由于大丽轮枝菌分泌的诸多毒性蛋白可能共同参与了生物学毒性的产生,缺失一个在功能上冗余的分泌蛋白基因后,不会产生容易识别的表型改变。这一初步结果暗示,较难找到单一的分泌蛋白基因做为防治黄萎病的生物学靶点。
     LHS(Lumenal Hsp Seventy,内质网Hsp70家族成员)蛋白近年来被发现在稻瘟病菌蛋白分泌中扮演了重要的角色。本研究在Vd991中克隆了其同源基因VdLHS。缺失VdLHS的大丽轮枝菌突变体菌株△Lhs产生的分泌蛋白总量仅有野生型Vd991的24%,并且几乎丧失了对寄主植物军棉1号的侵染能力。因此分泌系统蛋白VdLHS可调控大丽轮枝菌多种蛋白的分泌,在大丽轮枝菌的致病性中起了重要作用。这一初步研究和发现,为防治棉花黄萎病提供了一个潜在的生物学靶点。
Verticillium dahliae is a soil-borne plant pathogen responsible forVerticillium wilt diseases in temperate and subtropical regions, collectively they affect over 200 hosts, including many economically important crops such as cotton. It is reported that V. dahliae produce secreted cell wall degrading enzymes and other extracellular phytotoxins molecules that induce host cell death. So, developing an efficient method of gene knockout system in Verticillium dahliae and perform functional analysis for potential secreted toxin encoding genes by knockout experiment would help clarify the infection mechanism of this fungal pathogen.
     By using fusion PCR, we constructed gene knockout vectors. By using Agrobacterium tumefaciens-mediated transformation and applying a herpes simplex virus thymidine kinase (HSVtk) gene in T-DNA as a conditional lethal gene to counter-select against ectopic transformants, we developed an efficient method to select gene knockout transformants. Gene knockout frequency for ADE4 and ChsV was 87% and 44%, respectively.
     The softwares SignalP, TargetP, TMHMM, Big-pi and PROSITE were combined to predict the sectetome of Verticillium dahliae VdLs.17. Finally, we identified 922 possible secreted proteins in Verticillium dahliae VdLs.17 secretome. This study carried out a detailed comparative analysis of genes encoding secreted proteins between Vd114 and Vd991 which show different virulence towards cotton to discover potential Lineage-Specific secreted protein coding genes in Vd991. Finally, we identified 6 possible Vd991 specific secreted proteins. We constructed mutants for each specific proteins in Vd991. But mutants showed similar phenotype with Vd991. One reason is that gene redundancy can mask the phenotype of singal loss-of-function mutant. So, we further analysis the secretion system protein in Vd991.
     A molecular chaperone of the lumenal hsp seventy gene (VdLHS), which plays a role in the first step of extracellular protein secretion by importing them into the endoplasmic reticulum (ER) and subsequent protein folding, was disrupted via Agrobacterium tumefaciens-mediated transformation in Vd991. The total amount of secreted extracellular phytotoxins is significantly reduced in the△Lhs culture filtrate when culturing the fungus in Czapek’s medium to imitate the phytotoxin secreting ability in planta. The mutants were severely impaired in virulence on cotton Junmian 1. Results of this study suggest that VdLHS plays important roles in protein secretion and may provide potential novel targets for controlling the devastating disease.
引文
1.陈旭升,陈永萱,棉花黄萎病菌致萎峰蛋白氨基酸组分及其有关生化特性分析.江苏农业学报, 2000, 16: 10-14.?
    2.陈继圣,郑士琴,郑武,周洁,鲁国东,王宗华,全基因组预测稻瘟菌的分泌蛋白.中国农业科学, 2006, 39(12): 2474-2482.
    3.储昭庆,贾军伟,周向军等,大丽轮枝菌分泌糖蛋白的分离及其致萎性研究.植物学报, 1999, 41: 972-976.
    4.吕金殿,甘莉,棉花黄萎病菌毒素的纯化与特性研究.植物病理学报,1991, 21: 129-133.
    5.林春花,郑服丛,稻瘟菌MgORP1基因敲除突变株的构建及其表型分析.微生物学报2008, 48(9): 1160-1167.
    6.钱思颖,刘桂玲,沈臣,许永才,颜若良,洪爱华,棉属野生种半野生种的繁殖技术.中国棉花, 1982, 2: 24-27.
    7.石磊岩,冯洁,王莉梅,北方棉区棉花黄萎病菌生理分化类型研究.棉花学报, 1997, 9: 273-280.
    8.唐雯,严明,里氏木霉分泌组的预测及分析.微生物学报, 2008, 48(4): 473-447.
    9.徐荣旗,汪佳妮,陈捷胤,戴小枫,棉花黄萎病菌T-DNA插入突变体表型特征和侧翼序列分析.中国农业科学, 2010, 43(3): 489-496.
    10.于钦亮,马莉,刘林,杨静,苏源,王云月,朱有勇,李成云,禾谷镰刀菌基因组中含寄主靶向模体分泌蛋白功能的初步分析.生物技术通报, 2008, 1: 160-165.
    11.杨静,李成云,王云月,朱有勇,李进斌,何霞红,刘林,业艳芬,周晓罡,唐萍,酿酒酵母分泌蛋白组的计算机分析.中国农业科学, 2005, 38(3): 516-522.
    12.章元寿,王建新,方中达,大丽轮枝菌毒素致萎活性成分的研究.真菌学报, 1990, 9: 69-72.
    13. Adachi K., Nelson G.H., Peoples K.A., Efficient gene identification and targeted gene disruption in the wheat blotch fungus Mycosphaerella graminicola using TAGKO. Current Genetics 2002, 42(2):123-127.
    14. Attikum H., Hooykaas P.J., Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Acids Research 2003, 31: 826-832.
    15. Baldi P., Brunak S., Frasconi P., Soda G. Pollastri G., Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 1999, 15: 937-946.
    16. Bannai H., Tamada Y., Maruyama O., Nakai K., Miyano S., Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 2002, 18: 298-305.
    17. Bendtsen J.D., Nielsen H., von Heijne G., Brunak S., Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology 2004, 340(4): 783-795.?
    18. Bhattacharjee S., Hiller N.L., Liolios K., Win J., Kanneganti T.D., Young C., Kamoun S., Haldar K., The malarial host-targeting signal is conserved in the Irish potato famine pathogen. PLoS Pathogen 2006, 2(5): 453-465.
    19. Bidochka M.J., Burke S., Ng L., Extracellular hydrolytic enzymes in the fungal genus Verticillium: adaptations for pathogenesis. Canadian Journal of Microbiology 1999,45: 856-864.
    20. Birch, P.R., Rehmany, A.P., Pritchard, L., Kamoun, S., Beynon J.L., Trafficking arms: Oomycete effectors enter host plant cells. Trends Microbiology 2006,14: 8-11.
    21. Bishop C.D., Cooper R.M., An ultrastructural study of root invasion in three vascular wilt diseases I. Colonization of susceptible cultivars. Physiological Plant Pathology 1983, 23: 323-343.
    22. Brodsky J.L., Goeckeler J., and Schekman R., BiP and Sec63p are required for both co- and posttranslational protein translocation into the yeast endoplasmic reticulum. Trends Microbiology 1995, 92: 9643-9646.
    23. Buchner V., Nachmias A., Burstein Y., Isolation and partial characterization of a phytotoxic glycopeptide from a proteinlipopolysaccharide complex produced by a potato isolate of Verticillium dahliae. FEBS Letters 1982, 138: 261-264.
    24. Bundock P., Mroczek K., Winkler A.A., Steensma H.Y., Hooykaas J.J., T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Molecular Genomics and Genetics 1999, 261: 115-121.
    25. Bundock P., Dulk A., Beijer A., et al., Trans-kingdom T-DNA transfer from Agrobaeterium tumefaciens to Saccharomyces cerevisiae. EMBO Journal 1995, 31: 3206-3214.
    26. Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V., Henrissat B., The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Research 2009, 37: 233-238.
    27. Chahi J.H., Hignett R.C., Swinburne T.R., Relationship between the virulence of hop isolates of Verticillium albo-atrum and their in vitro secretion of cell-wall degrading enzymes. FEBS Letters 1987, 31: 441-452.
    28. Choi J., Park J., Kim D., Fungal Secretome Database: integrated platform for annotation of fungal secretomes. BMC Genomics 2010, 11: 105-110.
    29. Chou K.C., Cai Y.D., Predicting protein localization in budding yeast. Bioinformatics 2005, 21: 944-950.
    30. Chakraborty B.N., Patterson N.A., Kapoor M., An electroporation-based system for high-efficiency transformation of germinated conidia of filamentous fungi. Canadian Journal of Microbiology 1991, 37(11): 858-863.
    31. Christen A.A., Peaden R.N., Harris G.P., et al., Virulence of North American and European isolates of Verticillium albo-atrum on alfalfa cultivars. Phytopathology 1983, 73:1051-1054.
    32. Combier J.P., Melayah D., Yer, C., Gay G., Marmeisse R., Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiology Letter 2003, 220: 141-148.
    33. Cooper R.M., Wood R.S., Induction of synthesis of extracellular cell-wall degrading enzymes in vascular wilt fungi. Nature 1973, 246: 309-311.
    34. Covert S.F., Kapoor P., Lee M., Briley A., Nairn C.J., Agrobacterium tumefaciens-mediatedtransformation of Fusarium circinatum. Mycology Research 2001,105: 259-264.
    35. Cox J.S., Walter P., A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 1996, 87: 391-404.
    36. Craven R.A., Egerton M., and Stirling C.J., A novel Hsp70 of the yeast ER lumen is required for the efficient translocation of a number of protein precursors. EMBO Journal 1996, 15: 2640-2650.
    37. Crooks G.E., Hon G., Chandonia J.M., Brenner S.E., WebLogo: a sequence logo generator. Genome Research 2004, 14(6): 1188-1190.
    38. Davis D.A., Lowb P.S., Heinstein P., Purification of a glycoprotein elicitor of phytoalexin formation from Verticillium dahliae. Physiological and Molecular Plant Pathology 1998, 52(4): 259-273.
    39. Davidson R.C., Blankenship J.R., Kraus P.R., Hull C.M., Souza C., Wang P., Heitman, J., A PCRbased strategy to generate integrative targeting alleles with large regions of homology. Microbiology 2002, 148: 2607-2615.
    40. Daroda L., Hahn K., Pashkoulov D., et al., Molecular characterization and in planta detection of Fusarium moniliforme endopolygalacturonase isoforms. Physiological Molecular Plant Pathology 2001, 59: 317-325.
    41. Dean R.A., Chakraborty B.N., Patterson N.A., Kapoor M., et al, The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 2005, 434: 980-986.
    42. Dobinson K.F., Grant S.J., Kang S., Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae. Current Genetics 2004, 45: 104-110.
    43. Durrandsa P.K., Keenea R.A., Coopera R.M., Garroa L.W., Clarkson J.M., Polygalacturonase isozyme profiles of Verticillium dahliae isolates races 1 and 2 from different geographical origins. Transactions of the British Mycological Society 1988, 91(3): 533-536.
    44. Eisenhaber F., Eisenhaber B., Kubina W., Maurer-Stroh S., Neuberger G., Schneider G., Wildpaner M., Prediction of lipid posttranslational modifications and localization signals from protein sequences: big-Pi, NMT and PTS1. Nucleic Acids Research 2003, 31(13): 3631-3634.
    45. Emanuelsson O., Brunak S., von Heijne G., Nielsen H., Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocol 2007, 2(4): 953-971.
    46. Emanuelsson O., Nielsen H., Brunak S., von Heijne G., Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology 2000, 300(4): 1005-1016.
    47. Evans G., Gleeson A.C., Observations on the origin and nature of Verticillium dahliae colonizing plant roots. Australian Journal of Biological Sciences, 1973, 26: 151-161.
    48. Flor, H., Current status of the gene-for-gene concept. Annual Review of Phytopathology 1971, 9: 275-296.
    49. Fradin E.F., Thomma B.P., Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology 2006, 7(2): 71-86.
    50. Fincham J.R., Transformation in fungi. Microbiology Reviews 1989, 53(1):1460-1470.
    51. Gao F., Zhou B.J., Li G.Y., Jia P.S., Li H., A Glutamic Acid-Rich Protein Identified in Verticillium dahliae from an Insertional Mutagenesis Affects. Public Library of Science One 2010, 5(12): 15319-15329.
    52. Gao Q., Jin K., Ying S.H., Zhang Y., Xiao G., Shang Y., et al., Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genetics 2011, 7(1): 1264-1282.
    53. Giaever G., Chu A.M., Ni L., Connelly C., Riles L., et al., Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002, 418(6896): 387-391.
    54. Gilbert M.J., Thornton C.R., Wakley G.E., et al., A P-type ATPase required for rice blast disease and induction of host resistance. Nature 2006, 440: 535-539.
    55. Godio R.P., Fouces R., Martin J., Agrobacterium tumefaciens-mediated transformation of the antitumor acid-producing basidiomycete Hypholoma sublateritium. Current Genetics 2004, 46:
    287-294.
    56. Goldman G.H., Montagu M., Transformation of Trichoderma harzianum by high-voltage pulse. Current Genetics 1990, 17(2): 169-174.
    57. Groot M.J., Bundock P., Hooykaas P.J., et al. Agrobaeterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology 1998, 16(9): 839-842.
    58. Gutierrez A.P., Devay J.E., Pullman G.S., Friebertshauser G.E. A model of Verticillium wilts in relation to cotton growth and development. Phytopathology 1983, 73: 89-95.
    59. Hall N., Keon J.P., Hargreaves J.A., A homologue of a gene implicated in the virulence of human fungal diseases is present in a plant fungal pathogen and is expressed during infection. Physiological Molecular Plant Pathology 1999, 55: 69-73.
    60. Helenius A., Aebi M., Roles of N-linked glycans in the endoplasmic reticulum. Annual Review Biochemistry 2004, 73: 1019-1049.
    61. Hooykaas P., Roobol C., Schilperoort R., Regulation of the transfer of Ti plasmids of Agrobacterium tumefaciens. Microbiology 1979, 110 (1): 99-109.
    62. Horn M.A., Heinstein P.F., Low P.S., Receptor-mediated endocytosis in plant cells. Plant Cell, 1989, 1: 1003-1009.
    63. Hua S., Sun Z., Support vector machine approach for protein subcellular localization prediction. Bioinformatics 2001, 17: 721-728.
    64. Huang L.,Mahoney R.R., Purification and characterization of an endo-polygalacturonase from Verticillium albo-atrum. Journal of Applied Micriobiology 1999, 86: 145-156.
    65. Hulo N., Sigrist C.J., Le Saux V., Langendijk-Genevaux P.S., Bordoli L., Gattiker A., De Castro E., Bucher P., Bairoch A., Recent improvements to the PROSITE database. Nucleic Acids Research 2004, 32: 134-137.
    66. Jiang J., Fan L.W., Wu W.H., Evidences for involvement of endogenous cAMP in Arabidopsis defense responses to Verticillium toxins. Cell Research 2005, 6: 85-592.
    67. Kamoun S., A catalogue of the effector secretome of plant pathogenic oomycetes. Annual Review Phytopathology 2006, 44: 41-60.
    68. Kamoun S., Groovy times: Filamentous pathogen effectors revealed. Current Opinion of Plant Biology 2007, 10: 358-365.
    69. Kall L., Krogh A., Sonnhammer E.L., A combined transmembrane topology and signal peptide prediction method. Journal of Molecular Biology 2004, 338(5): 1027-1036.
    70. K?mper J., et al., Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 2006, 444: 97-101.
    71. Kamper J., A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Molecular Genetics and Genomics 2004, 271: 103-110.
    72. Kaufman R.J., Orchestrating the unfolded protein response in health and disease. Journal Clinical Investment 2002, 110: 1389-1398.
    73. Khang C.H., Park S.Y., Lee Y.H., Kang S., A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genetics and Biology 2005, 42 (6):
    483-492.
    74. Kim S., Ahn I.P., Rho H.S., Lee Y.H., MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Molecular Microbiology 2005, 57(5): 1224-1237.
    75. Klee E.W., Ellis L.B., Evaluating eukaryotic secreted protein prediction. BMC Bioinformatics 2005,
    6:256.
    76. Klein T.M., Wolf E.D., Wu R., et al., High-velocity micro-project for delivering nucleic acids into living cells. Nature 1987, 327(617): 70-73.
    77. Klosterman S.J., Atallah Z.K., Vallad G.E., Subbarao K.V., Diversity, pathogenicity, and management of Verticillium species. Annual Review of Phytopathology 2009, 47: 39-62.
    78. Klimes A., Dobinson K.F., A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen Verticillium dahliae. Fungal Genetics and Biology 2006, 43 (4): 283-294.
    79. Kolkman J.A., Stemmer P.C., Directed evolution of proteins by exon shuffling. Nature Biotechnology 2001, 19: 423-428.
    80. Koning T.F., Gilson P.R., Boddey J.A., Rug M., Smith B.J., Papenfuss A.T., Sanders P.R., Lundie R.J., Maier A.G., Cowman A.F., Crabb B.S., A newly discovered protein export machine in malaria parasites. Nature 2009, 459(7249): 945-949.
    81. Krogh A., Larsson B., von Heijne G., Sonnhammer E.L., Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology 2001, 305(3): 567-580.
    82. Kumar S., Tamura K., Nei M., MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformation 2004, 5: 150-163.
    83. Kyte J., Doolittle R.F., A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 1982, 157(1): 105-132.
    84. Lehtinen U., Plant cell wall degrading enzymes of Septoria nodorum. Physiolgical Molecular Plant Pathology 1993, 43: 121-134.
    85. Li M., Gong X., Zheng J., et al. Transformation of Coniothyrium minitans, a parasite of Sclerotinia sclerotiorum, with Agrobacterium tumefaciens. FEMS Microbiology Letters 2005, 243: 323-329.
    86. Lippincott-Schwartz J., Roberts T.H., Hirschberg K., Secretory protein trafficking and organelle dynamics in living cells. Annual Review of Cell Development Biology 2000, 16: 557-589.
    87. Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-⊿⊿ct method. Methods 2001, 25: 404-408.?
    88. Lu Z., et al., Predicting subcellular localization of proteins using machine-learned classifiers. Bioinformatics 2004, 20: 547-556.?
    89. Ma L.J., Does H.C., Borkovich K.A., Coleman J.J., Daboussi M.J., Di Pietro A., et al., Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 2010, 464(7287): 367-373.
    90. Malonek S., Meinhardt F., Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii. Current Genetics 2001, 40: 152-155.
    91. Martin F., Aerts A., Ahren D., Brun A., Danchin E.G., Duchaussoy F., Gibon J., et al., The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 2008, 452(7183): 88-92.
    92. Martelli P.L., Fariselli P., Krogh A., Casadio R., A sequence-profile-based HMM for predicting and discriminating barrel membrane proteins. Bioinformatics 2002, 18: S46-S53.
    93. Martínez I.M., Chrispeels M.J., Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell 2003, 15: 561-576.
    94. Menne K., Hermjakob H., Apweiler, R., A comparison of signal sequence prediction methods using a test set of signal peptides. Bioinformatics 2000, 16: 741-742 .
    95. Meyer R., Dubery I.A., High-affinity binding of a protein-lipopolysaccharide phytotoxin from Verticillium dahliae to cotton membranes. European Biochemistry 1993, 335: 203-206.
    96. Meyer R., Slater V., Dubery I.A., A phytotoxic protein-lipopolysaccharide complex produced by Verticillium dahliae. Phytochemistry, 1994, 35: 1449-1453.
    97. Michielse C.B., Hooykaas P.J., Hondel C.A., Ram A.F., Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics 2005,48:1-17.
    98. Mott R., Schultz J., Bork P., Ponting C.P., Predicting protein cellular localization using a domain projection method. Genome Research 2002, 12: 1168-1174.
    99. Mullins E.D., Chen X., Romaine P., et al., Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 2001, 91:173-180.
    100. Mueller O., Kahmann R., Aguilar G., Trejo-Aguilar B., Wu A., The secretome of the maize pathogen Ustilago maydis. Fungal Genetics and Biology 2008, 45: 63-70.
    101. Munro S., Pelham H.R., A C-terminal signal prevents secretion of luminal ER proteins. Cell 1987, 48: 899-907.
    102. Mussel H.W., Strause B., Characterization of two polygalacturonases produced by Verticillium albo-atrum. Canadian Journal Soil Science 1972, 50: 625-632.
    103. Nachmias A., Buchner V., Tsror L., Burstein Y., Keen N., Differential phytotoxicity of peptides from culture fluids of Verticillium dahliae race 1 and 2 and their relationship to pathogenicity of the fungi on tomato. Phytopathology 1987, 77: 506-510.
    104. Nadia K., Encarnacion, P., Jose B. A., Dolores R. J., Jaacov K., Talma K., Rafael, M.J.D., Comparative study of genetic diversity and pathogenicity among populations of Verticillium dahliae from cotton in Spain and Israel. European Journal of Plant Pathology, 2001, 107: 443-456.
    105. Nair R., Rost B., Inferring sub-cellular localization through automated lexical analysis. Bioinformatics 2002, 18: S78–S86.
    106. Ong S.E., Blagoev B., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Proteomics 2002, 1: 376-386.
    107. Palva T.K., Hurtig M., Saindrenan P., et al., Salicylic acid induced resistance to Erwinia carotovora in tobacco. Molecular Plant Microbe Interaction 1994, 7:356-363.
    108. Park K.J., Kanehisa M., Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics 2003, 19: 1656-1663.
    109. Park J., Hooykaas P.J., Hondel C.A., Ram A.F., et al., CFGP: A web-based, comparative fungal genomics platform. Nucleic Acids Research 2008, 36: D562–D571.
    110. Park B.H., Karpinets T.V., Syed M.H., Leuze M.R., Uberbacher E.C., CAZymes Analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology 2010, 20(12): 1574-1584.
    111. Pegg G.F., Phytotoxin production by Verticillium albo-atrum. Nature 1965, 208: 1228-1229.
    112. Pegg G.F., Cronshaw D.K., Relationship of in vitro to in vivo ethylene production in Pseudomonas solanacearum infection of tomato. Physiological Plant Pathology 1976, 9:145-154.
    113. Pelham H., Lewis M., Lindquist S., Expression of a Drosophila heat shock protein in mammalian cells: transient association with nucleoli after heat shock. Nucleic Acids Research 1984, 307:301-307.
    114. Punt P.J., van Gemeren I.A., Drint-Kuijvenhoven J., et al., Analysis of the role of the gene bipA, encoding the major endoplasmic reticulum chaperone protein in the secretion of homologous and heterologous proteins in Aspergilli. Applied Microbiological Biotechnology 1998, 50: 447-454.
    115. Pullman G.S., Devay J.E., Effect of Soil Flooding and Paddy Rice Culture on the Survival of Verticillium dahliae and Incidence of Verticillium Wilt in Cotton. Phytopathology 1981, 71(12): 1285-1289.
    116. Ramsay J.R., Multani D.S., Lyon B.R. RAPD-PCR identification of Verticllium dahliae isolates with differential pathogenicity on cotton. Agricultural Research 1996, 47: 628-693.
    117. Rauyaree P., Ospina-Giraldo M. D., Kang S., Bhat R. G., Subbarao K. V., Sandra J., et al., Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation andpathogenicity in Verticillium dahliae. Current Genetics, 2005, 48(2):109-116.
    118. Rho H.S., Kang S., Lee Y.H., Agrobacterium tumefaciens mediated transformation of the plant pathogenic fungus Magnaporthe grisea. Molecular and Cell 2001, 12: 407-411.
    119. Rose M.D., Misra L.M., Vogel J.P., KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 1989, 57: 1211-1221.
    120. Rogers C.W., Challen M.P., Green J.R., Whipps J.M., Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus Coniothyrium minitans. FEMS Microbiology Letters 2004, 241:207-214.
    121. Rios P., Ben-Zvi A., Slutsky O., et al., Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. PNAS 2006, 103: 6166-6171.?
    122. Riaan M., Vernon S., Ian A. D., Phytotoxic protein-lipopolysaccharide complex produced by Verticillium dahliae. Phytochematr, 1994, 35(6):1449-1453.?
    123. Sesma, A., & Osbourn, E. A. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 2004, 431(7008): 582-586?
    124. Sebastian V., Ramsay J.R., Multani D.S., et al., Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 2006, 1: 376-386.
    125. Shi F.M., Li Y.Z., Verticillium dahliae toxins-induced nitric oxide production in Arabidopsis is major dependent on nitrate reductase. BMB Reports 2008, 41(1): 79-85.
    126. Shevchuk N.A., Bryskin A.V., Nusinovich Y.A., Cabello F.C., Sutherland M., Ladisch S., Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Research 2004, 32: e19.
    127. Sidrauski C., Walter P., The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 1997, 90: 1031-1039.
    128. Soulie M.C., Perino C., Piffeteau A., Choquer M., Malfatti P., Cimerman A., Kunz C., Boccara M., Vidal-Cros A., Botrytis cinerea virulence is drastically reduced after disruption of chitin synthase class III gene (Bcchs3a). Cellular Microbiology 2006, 8 (8): 1310-1321.
    129. Sprenger J., Fink J.L., Teasdale R.D., Evaluation and comparison of mammalian subcellular localization prediction methods. BMC Bioinformatics 2006, 7:S3.
    130. Steel G.J., Fullerton D.M., Tyson J.R., Ramsay J.R., Multani D.S., et al., Coordinated activation of Hsp70 chaperones. Science 2004, 303: 98-101.
    131. Stergiopoulos I., Wit P.J., Fungal effector proteins. Annual Reviews Phytopathology 2009, 47: 233-263.
    132. Tamura K., Dudley J., Nei M., Ramsay J.R., Multani D.S., et al., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biological Evolution 2007, 24: 1596-1599.
    133. Talboys P.W., A Concept of the Host-Parasite Relationship in Verticillium Wilt Diseases. Nature 1964, 202: 361-364.
    134. Thompson J.D., Higgins D.G., Gibson T.J., CLUSTAL W: improving the sensitivity of progressivemultiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 1994, 22: 4673-4680.
    135. Thompson J.D, Gibson T.J., Plewniak F., Jeanmougin F., Higgins, D.G., The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Reearch 1997, 25: 4876-4882.
    136. Travers K.J., Patil C.K., Wodicka L., et al., Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 2000, 101:249-258.
    137. Trembley M.L., Ringli C., Honegger R., Hydrophobins DGH1, DGH2, and DGH3 in the lichen-forming basidiomycete Dictyonema glabratum. Fungal Genetics and Biology 2002, 35(3): 247-259.
    138. Tyson J.R., Stirling C.J., LHS1 and SIL1 provide a luminal function that is essential for protein translocation into the endoplasmic reticulum. EMBO Journal 2000, 19: 6440-6452.
    139. Tzima A., Paplomatas E.J., Rauyaree P., Thompson J.D., Higgins D.G., et al., Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen Verticillium dahliae. Fungal Genetics and Biology 2010, 47(5): 406-415.
    140. Vasquez K.M., Marburger K., Intody Z., Wilson J.H., Manipulating the mammalian genome by homologous recombination. Proceedings of the National Academy of Sciences, 2001, 98 (15): 8403-8410.
    141. Veronese P., Narasimhan M.L., Stevenson R.A., Zhu J.K., Weller S.C., Subbarao K.V., Bressan R.A., Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. Plant Journal 2003, 35: 574-587.
    142. Walton F.J., Idnurm A., Heitman J., Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Molecular Microbiology 2005, 57:1381-1396.
    143. Wang H., Xu Z., Gao L., Thompson J.D., Higgins D.G., et al., A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evolutionary Biology 2009, 9: 195-205.
    144. Wang J.Y., Cai Y., Gou J.Y., Tzima A., Paplomatas E.J., et al., VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Applied Environmental Microbiology 2004, 70: 4989-4995.
    145. Wang M.C., Keen N.T., Purification and characterization of endopolygalacturonase from Verticillium albo-atrum. Applied Microbiological Biotechnology 1970, 141: 749-757.
    146. Winnenburg R., Baldwin T.K., Urban M., Rawlings C., Kohler J., Hammond K.E., PHI-base: a new database for pathogen host interactions. Nucleic Acids Research 2006, 34: 459-464.
    147. Xu D., Brandan C.P., Evaluation of high efficiency gene knockout strategies for Trypanosoma cruzi. BMC Microbiology 2009, 9: 99-103.
    148. Xu D., Brandan C.P., Evaluation of high efficiency gene knockout strategies for Trypanosoma cruzi. BMC Microbiology 2009, 9: 99-103.
    149. Yi M., Chi M.H., Khang C.H., Tzima A., Paplomatas E.J., et al., The ER chaperone LHS1 isinvolved in asexual development and rice infection by the blast fungus Magnaporthe oryzae. Plant Cell 2009, 21: 681-695.
    150. Yoshida K., Saitoh H., Fujisawa S., Kanzaki H., Matsumura H., Yoshida K., Tosa Y., Chuma I., Takano Y., Win J., Kamoun S., Terauchi R., Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 2009, 21(5): 1573-1591.
    151. Yu J.H., Hamari Z., Han K.H., Seo J.A., Reyes-Dominguez Y., Scazzocchio C., Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genetics and Biology 2004, 41 (11): 973-981.
    152. Yuan Z., Teasdale R.D., Prediction of Golgi type II membrane proteins based on their transmembrane domains. Bioinformatics 2002, 18: 1109-1115.
    153. Zwiers L.H., de Waard M.A., Efficient Agrobacterium tumefaciens mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Current Genetics 2001, 39: 388-393. ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700