植物诱抗蛋白HarpinN_(CSDS001)的基因克隆、表达和作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Harpin是一类由hrpN(hrpZ,hrpW)基因编码的能诱导植物产生系统抗性的重要致敏信号蛋白质,广泛存在于植物革兰氏阴性致病细菌和部分动物病原菌中,其基因不仅具有不同程度的同源性,更具有非常丰富的遗传多样性和差异性。本研究从分离携带hrpN基因的目的菌株Erwinia carotovora sp.carotovora CSDS001入手,研究了CSDS001菌株与hrpN基因表达产物相关的生物学特征,构建了CSDS001基因组文库,克隆到hrpN_(CSDS001)基因,实现HarpinN_(CSDS001)蛋白的高效表达,完成了对hrpN_(CSDS001)基因及其表达产物HarpinN_(CSDS001)蛋白的论证,采用多项控制性实验对HarpinN_(CSDS001)蛋白及HarpinN_(CSDS001)-Zn络合物的生物学活性和生物学效应进行了比较,通过对HarpinN_(CSDS001)蛋白及HarpinN_(CSDS001)-Zn络合物作用后的拟南芥全基因表达谱分析,探讨了HarpinN_(CSDS001)蛋白及HarpinN_(CSDS001)-Zn络合物诱导植物产生系统获得性抗性以及促进植物生长发育的可能机制。主要结果如下:
     1、从感染软腐病大白菜组织中分离纯化到携带hrpN基因的CSDS001菌株,CSDS001具有对大白菜和西芹具有强致病性,分泌高活性Pel、Peh、Cel、Prt等植物细胞壁降解酶类,将2×10~8个/mlCSDS001菌注射接种到非寄主烟草叶片上,能诱导产生过敏反应(Hypersensitive Response,HR)。
     2、将CSDS001基因组文库构建于质粒pLARF5,宿主菌为HB101,文库含有1000个菌落,每个菌落含20—30kb染色体DNA,从中筛选出的1.5—kb EcoRI片段含有CSDS001的hrpN_(CSDS001)基因。
     3、序列测试表明hrpN_(CSDS001)基因编码区含1071个核苷酸,注册Genebank号AY939927,编码产物HarpinN_(CSDS001)蛋白含356个氨基酸残基,理论分子量35.55kD,理论等电点5.5。
     4、将hrpN_(CSDS001)基因克隆到pET—28a(+)载体质粒T7启动子后,构建高效表达质粒pT7-hrpN_(CSDS001),,将pT7-hrpN_(CSDS001)转入大肠杆菌JM109,完成了基因工程菌的构建,用IPTG能诱导hrpN_(CSDS001)基因高效表达。
     5、Western杂交证明所克隆的hrpN_(CSDS001)基因表达产物为HarpinN_(CSDS001)蛋白;Northern杂交证明CSDS001菌株携带的hrpN_(CSDS001)基因表达受外界环境碳源、氮源和pH值等调控。
     6、对HarpinN_(CSDS001)蛋白的分离纯化表明,工程菌中高效表达的HarpinN_(CSDS001)蛋白是以包含体形式存在于细胞质中,能诱导烟草叶片产生过敏反应,证明以包含体形式存在的HarpinN_(CSDS001)蛋白具有生物学活性。
     7、一定条件下,HarpinN_(CSDS001)蛋白与锌离子发生络合反应,形成的HarpinN_(CSDS001)—Zn络合物与HarpinN_(CSDS001)蛋白具有同样的生物学活性,能诱导烟草叶片产生过敏反应。
     8、分别将30mg/L浓度的HarpinN_(CSDS001)—Zn络合物和HarpinN_(CSDS001)蛋白施用到辣椒、茄子、黄瓜、马铃薯和西红柿,进行田间控制性药效试验。结果显示,施用HarpinN_(CSDS001)-Zn络合物使几种蔬菜产量分别增加13.69%、16.52%、18.86%、11.55%、11.64%;施用HarpinN_(CSDS001)蛋白增产分别为11.73%、13.27%、16.3%、8.26%、10.25%。经过对参试作物病虫害、株高、生育期等的调查分析,增产主要原因是HarpinN_(CSDS001)-Zn和HarpinN_(CSDS001)蛋白诱导作物系统抗性,减少作物因病虫害造成的损失,此外,在一定程度上还能促进作物生长发育、增加生物量、诱导提前开花结果、延长结果期,促进增加作物产量。表明HarpinN_(CSDS001)—Zn比HarpinN_(CSDS001)蛋白具有更强的生物学功效。
     9、用Cluster 3.0,TreeView 1.60软件聚类分析HarpinN_(CSDS001)蛋白处理后的拟南芥全基因谱,显示在分别处理后第3h、12h、24h、36h和48h,有52个基因(聚为5类)的表达变化与HarpinN_(CSDS001)蛋白作用持续相关,其中第4类和第5类基因功能与植物抗逆性和生长发育相关。
     10、对HarpinN_(CSDS001)蛋白诱导拟南芥发生显著表达差异的基因数量分析表明,在作用后第3h、12h、24h、36h和48h时发生显著表达变化(log ratio≥1或≤-1)的基因数分别为912、1787、2393、1833和1755。表明,HarpinN_(CSDS001)作用后的一个时期内,与若干生理过程相关的基因发生显著表达差异,且发生显著表达差异的基因数量逐步上升,在作用后第24h左右诱导发生显著表达差异的基因数量最高,同时,诱导发生显著表达差异的基因数具有时间上的持续性。
     11、对被诱导发生显著表达差异的转录因子家族基因分析表明,有13个转录因子家族:ZIM、BES1、TCP、C2C2、AP2/EREBP、WRKY、bHLH、bZIP、GARP、MYB、NAC、HB、C2H2与HarpinN_(CSDS001)蛋白作用相关。这些转录因子主要参与调控植物抗性反应、光合作用、生长发育、开花等生理反应。
     12、利用http://www.genome.ad.jp/提供的KEGG2分析工具,对HarpinN_(CSDS001)蛋白作用后类黄酮合成相关基因表达分析,揭示了查尔酮合成酶和黄烷酮—3—羟基化酶基因表达上调,从转录水平证明HarpinN_(CSDS001)蛋白诱导类黄酮合成。
     13、HarpinN_(CSDS001)—Zn作用于拟南芥后第24h,诱导发生显著表达变化基因数达到2741,更有35个转录因子家族基因的表达变化与HarpinN_(CSDS001)—Zn的作用相关,且查尔酮合成酶和黄烷酮—3—羟基化酶基因表达也上调。这些结果表明,可能HarpinN_(CSDS001)—Zn诱导的与若干生理过程相关基因的显著表达差异是更为复杂的过程,较之HarpinN_(CSDS001)蛋白,明显具有更强生物学功效,这与田间控制性试验结果相一致。
Harpins are a class of proteins which is ecoded by hrpN (hrpZ,hrpW) andproduced in nature by certain plant Gram-negative bacteria and some animalpathogens. They cause hypersensitive response (HR) of plants and elicit a complexnatural defense mechanism. There are homolog and wide diversity among the hrpgenes. This work began with the isolation and characterization of wild type bacteriaErwinia carotovora subsp.carotovora strains CSDS001, then the genomic libraries ofthe CSDS001 was constructed and the hrpN_(CSDS001) gene was cloned. HarpinN_(CSDS001)protein was overproduced in E.coli JM109. The biological activities andmultifunctionality of HarpinN_(CSDS001) and HarpinN_(CSDS001)-Zn were tested and analyzedby series controlled experiments. Potential mechanism of inducing systemic acquiredresistance (SAR) and promoting plant growth by HarpinN_(CSDS001) andHarpinN_(CSDS001)-Zn was explored by analyzing Arabidopsis treated by the two proteinsby Genechip. The main results are:
     1、CSDS001 was isolated from soft-rotting Chinese cabbage. It caused soft rot inChinese cabbage and celery, and produced exoenzymes such as Pel、Peh、Cel、Prt. 2×10~8 cfu/ml CSDS001 inoculated into tobacco leaves causing HR.
     2、CSDS001 genomic library was constructed in vector pLARF5, harbored in E.colistrain HB101 and contained 1000 colonies. Each colony possessed 20—30kb ofchromosomal DNA. Southern blot revealed 1.5-kb EcoRI segments containinghrpN_(CSDS001).
     3、The hrpN_(CSDS001) nucleotide sequence is 1071bp. Registered number is AY939927.HarpinN_(CSDS001) contains 556 amino acids and its molecular weight is 35.55kD andpI is 5.5.
     4、pT7-hrpN_(CSDS001), in protein over expression vector, was constructed by cloninghrpN_(CSDS001) into pET—28a (+). Then the pT7-hrpN_(CSDS001) was transferred intoE.coli strain JM109. IPTG induced hrpN_(CSDS001) to over express.
     5、The over expressed protein was identified as HarpinN_(CSDS001) by Western blot.Northern blot analysis showed the expression of hrpN_(CSDS001) were influenced by pH、carbon and nitrogen source.
     6、Over expressed HarpinN_(CSDS001) formed as inclusion body and can elicit HR intobacco leaves. It means this protein in inclusion body form also had biologicalactivity.
     7、In some conditions, HarpinN_(CSDS001) chelated with Zn~(2+) and formedHarpinN_(CSDS001)-Zn, which had the same biological activity-eliciting HR intobacco leaves.
     8、30mg/L HarpinN_(CSDS001)-Zn and 30mg/L HarpinN_(CSDS001) were applied oncapsicum、aubergine、cucumber、potato、and tomato respectively. The resultsshowed that the yields increased by HarpinN_(CSDS001)—Zn were 13.69%、16.52%、18.86%、11.55%、11.64% respectively and by HarpinN_(CSDS001) were 11.73%、13.27%、16.3%、8.26%、10.25%. Statistical analysis of the plant disease、growthand development showed that both HarpinN_(CSDS001)—Zn and HarpinN_(CSDS001) mayinduce plant defense, boost growth and promote development, moreoverHarpinN_(CSDS001)-Zn had more powerful biological functions than HarpinN_(CSDS001).
     9、Based on the cluster analysis of mRNA level tested by Genechip of Arabidopsistreated by HarpinN_(CSDS001), 52 genes (clustered into five groups) were regulated in3h、12h、24h、36h and 48h, and the fourth and fifth group genes related to thefunctions of plant defense、growth and development.
     10、Analysis of genes which expression changed significantly (log ratio≤1 or≥1) showed that after treatment with HarpinN_(CSDS001) at 3h、12h、24h、36h and 48h,there were 912、1787、2393、1833 and 1755 genes correlatively changedsignificantly. The results revealed that the level of mRNA regulation byHarpinN_(CSDS001) increased gradually, most of the reaction happened at 24h andcontinual physiological responses also were drawn out.
     11、Analysis of transcription factors (TF) families showed that 13 TF familiesresponded to HarpinN_(CSDS001). They were ZIM、BES1、TCP、C2C2、AP2/EREBP、WRKY、bHLH、bZIP、GARP、MYB、NAC、HB、C2H2. The families mainlyregulate reactions about plant defense, photosynthesis, growth, development andflowering.
     12、Used KEGG2, provided by http://www.genome.ad.jp/ to analyze theflavonoid biosynthesis pathway revealing that chalcone synthase (CHS) gene andflavanone 3-hydroxylase (F3H) gene expression increased.
     13、24h after treatment by HarpinN_(CSDS001)-Zn to Arabidopsis, there were 2741genes regulated significantly, 35 TF families responding to HarpinN_(CSDS001)-Zn andthe chalcone synthase gene and flavanone 3-hydroxylase gene expression alsoincreased. The results indicated that HarpinN_(CSDS001)-Zn had more powerfulbiological function than HarpinN_(CSDS001). It was consistent with the results ofcontrolled experiments in the fields.
引文
方中达。植病研究方法.中国农业出版社
    方中达.1996年,中国农业植物病害,中国农业出版社
    董汉松.植物诱导抗病性原理和研究[M].北京:科学出版社,1995
    J.萨姆布鲁克,D.W.拉塞尔,《分子克隆实验指南》第三版
    李美如等.植物细胞中的抗寒物质及其与植物抗冷性的关系.植物生理学通讯1995,31(5):328—334
    马德华、庞金安、李淑菊、霍振荣.温度逆境锻炼对高温下黄瓜幼苗生理的影响,园艺学报,1998,25(4):350—355
    秦小琼,贾士荣.植物抗氧化逆境的基因工程[J].农业生物技术学报,1997,5(1):14—21.
    任欣正.植物病原细菌的分类和鉴定.北京:中国农业出版社,1992
    孙艳,崔鸿文,胡荣.水杨酸对黄瓜幼苗壮苗的形成及抗低温胁迫能力的生理效应[J].西北植物学报,2000,20(4):616—620.
    陶宗娅,程水源.水杨酸在小麦幼苗渗透胁迫中的作用[J].西北植物学报,1999,19(2):296—302.
    吴乃虎.基因工程原理,第二版,北京:科学出版社,2002
    许明丽,孙晓艳,文江祁.水杨酸对水分胁迫下小麦幼苗叶片膜损伤的保护作用。植物生理学通讯,2000,36:35~36
    姚桢.Harpin促进植物生长和诱导抗旱的信号传导解析以及作用定位的初步研究,2004,硕士论文
    余叔文,汤章城植物生理与分子生物学(第二版)科学出版社,北京,2001,p770
    张士功,高吉寅.水杨酸和阿斯匹林对小麦盐害的缓解作用[J].植物生理学报,1999,25(2):159—164.
    周洁,陈伟,叶明志,等.1997.水稻感染细菌性条斑病后叶片中酚类物质的变化.福建农业大学学报,26(2):250~255
    Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) Function as Transcriptional Activators in Abscisic Acid Signaling.Plant Cell, 2003,15(1): 63-78
    Andrew C, Luis A.J.Mur, Robert M, et al. Harpin modulates the accumulation of salicylic acid by Arabidopsis cells via apoplastic alkalization. Journal of Experimental Botany, Vol.56, No.422, pp.3129-3136.
    Alexieva V, Sergiev I. Mapellis, et al. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat [J]. Plant Cell and Eviron,2001,24(12): 1337-1344
    Agrawal A.A., S. Tuzun, and E.Bent Induced plant defenses against pathogens and hebivora, APS PRESS, 1999, sT. Paul, MN
    Aptep V, Laloraga M M. Inhibitory action of phenolic compounds on abscisic acid induced abscission [J]. J Exp Bot, 1982,33:826—829.
    A.Rantakari, O.Virtaharju, S. Vahamiko,S.et al.Type Ⅲ Secretion Contributes to the Pathogenesis of the Soft-Rot Pathogen Erwinia carotovara: Partial Characterization of the hrp Gene Cluster. MPMI Vol. 14,No. 8, 2001, pp.962-968.
    Ballesteros ML,Bolle C,Lois LM, et al. LAF1, a MYB transcription activator for phytochrome A signaling. Genes Dev, 2001,15(19): 2613-2625
    Bauer DW, Z -M Wei, S V Beer, et al.Erwinia chrysanthemi harpin_(Ech): an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol. Plant-Microbe Interact, 1995, 8:484-491
    Bauer,D.W., Bogdanove, A.J., Beer, S.V. et al. Erwinia chrysanthemi hrp genes and their involvement in soft rot pathogenesis and elicitation of the hypersenstitive response. Molecular Plant-Microbe Interactions, 1994, 7:573-581.
    Beck CJ, Orlandi EW, Mock NM et al. Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol, 1994, 102
    Bogdanove, A.J., Beer, S.V., Bonas,U., et al. Unified nomenclature fo broadly conserved hrp genes of phytopathogenic bacteria. Molecular Microbiology, 1996a, 20,681-683
    Bogdanove, A.J., Kim,J.E., Wei,Z., et al. Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato. Proceedings of the National Academy of Sciences fo the United States fo America,1998b,95:1325-1330
    Carre IA, Kim JY.MYB transcription factors in the Arabidopsis circadian clock.J Exp Bot.,2002, 374:1551-7
    Chatterjee, A.K., C.K. Dumenyo, Y. Liu, et al.Erwinia: genetics of pathogenicity factors, p. 236-260.In Lederberg J. (ed.), Encyclopedia of microbiology, 2nd ed., vol. 2. Academic Press, 2000, New York
    Clough, S. J.,Fengler, K. A.,Yu, I. et al. The Arabidopsis dndl 'defense, no death' gene encodes a mutated cyclic nucleotide-gated ion channel。PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, Volume 97(16).pp 9323
    Claire E.H., Joseph J. K. Cytokinin Signaling in Arabidopsis. The Plant Cell, 2002, S47-S59
    Cubas P, Lauter N, Doebley J, Coen E,The TCP domain: a motif found in proteins regulating plant growth and development. Plant J., 1999, 18(2):215-22.
    Cheong Y H, Chang H S, Gupta R et al. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology,2002, 129:661
    C. Jacyn Baker, Elizabeth W. Orlandi, and Norton M.Moch, Harpin, An Elicitor of the Hypersensitive Response in Tobacco Caused by Erwinia amylovora, Elicits Active Oxygen Production in Suspension Cells. Plant Physiol, 1993, 102:1341-1344
    Coplin,D.L., Frederick,R.D.,Majerczak,D.R. et al. Characterization of a gene cluster that specifies pathogenicity in Erwinian stewartii. Molecular Plant-Microbe Interactions, 1992, 5,81-88.
    Cui,Y., L,Madi, A. Mukherjee,C.K. Dumenyo et al. The RsmA~- mutants of Erwinia carotovora subsp, carotovora strain Ecc71 overexpress hrpN_(Ecc) and elicit a hypersensitive reaction-like response in tobacco leaves. Mol. Plant-Microbe Interact.,1996, 9:565-573
    Cui, Y., A.Chatterjee, Y.Liu, et al.Identification of a global repressor gene, rsmA, of Erwinia carotovora subsp, carotovora that controls extracellular enzymes, N-(3-oxohexanoyl)-L-homoserinse lactone, and pathogenicity in soft-rotting Erwinia spp. J.Bacterial,1995, 177:5108-5115
    Delaney T, Ukness S et al. A control role of salicylic acid in plant disease resistence [J], Science, 1994,266(5188):1274—1250
    Dong H, Delaney TP, Bauer DW et al. Harpin induces disease resistance in Arabidapsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J,1994,20:207-215
    D'Souza, S.E.,Ginsberg,M.H.andPlow, E.F. Arginyl-glycyl-aspartic acid (RGD): A cell adhesion motif. Trends Biochem. Sci., 1991,16:246-250
    Ecker J R, The ethylene signal transduction pathway in plants. Science,1995,268:667~675
    El-Maarouf H, Bamy MA, Rona JP, et al. Harpin, a hypersensitive response elicitor from Erwinia amylovora, regulates ion channel activities in Arabidopsis thaliana suspension cells. FEBS Lett, 2001, 25:82-84
    Eulgem T, Rushton PJ, Robatzek S, et al.The WRKY superfamily of plant transcription factors.Trends Plant Sci.,2000,5(5): 199-206.
    Fan Zhang, Antonio Gonzalez, Mingzhe Zhao, et al. A network of redundant bHLH proteins functions in all TG1-dependent pathways of Arabidopsis.Development, 2003, 130, 4859-4869
    Felton GW, Korth KL, Bi JL, et al.Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Curr Biol, 1999, 9:317-320
    Fitter DW, Martin DJ, Copley MJ, et al (2002) GLK gene pairs regulate chloroplast development in diverse plant species. Plant J. 31(6):713-27.
    Frederick,R.D., Majerczak, D.R. and Coplin, D.L. Erwinia stewarti WtsA, a positive regulator of pathogencity fene expression,is similar to Pseudomonas syringae pv. phaseolicola HrpS. Molecular Microbiology, 1993, 9:477-485
    Fukazawa J, Sakai T, Ishida S, et al. REPRESSION OF SHOOT GROWTH, a bZIP Transcriptional Activator, Regulates Cell Elongation by Controlling the Level of Gibberellins. Plant Cell, 2000, Jun; 12(6): 901-916.
    Furihata T, Maruyama K, Fujita Y, et al. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1, 2006
    Gaffney T Friedrich L et al.Requirement of salicylic acid for the induction of systemic acquired resistence [J]. Science, 1993, 261 (5122): 754~756
    Gaudriault, S., Malandrin,L., Paulin,J-P. et al. DspA, an essential pathogenicity factor of Ewinia amylovora showing homology with AvrE of Pseudornonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Molecular Microbilogy, 1997,26:1057-1069
    Gualberti G, Papi M, Bellucci L, et al. Mutations in the Dof Zinc Finger Genes DAG2 and DAG1 Influence with Opposite Effects the Germination of Arabidopsis Seeds. Plant Cell, 2002,14(6): 1253-1263.
    Griffiths S, Dunford RP, Coupland G, et al. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol, 2003, 131 (4): 1855-67
    Guard J. Guard cells: transcription factors regulate stomatal movement. Curr Biol., 2005, 15(15): pp 593-5
    Hara K, Yagi M, Kusano T, et al. (2000) Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol Gen Genet 263:30-37
    He Z, Wang ZY, Li J, et al. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1, Science, 2000,288:2360-2363
    HE J X, WEN J Q, CHONG K, et al. Changes in transcript levels of chloroplast psbA and pabD genes during water stress in wheat leaves [J]. Phsiol Plant, 1998,102:49—54
    He S Y, Huang H C, Collmer A.Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell,1993, 73(7): 1255—1266
    Hideki Goda, Shinichiro Sawa, Tadao Asami, et al (2004) Comprehensive Comparion of Auxin-Regulated and Brassinosteroid-Regulated Genes in Arabidopsis. Plant Physiology, Vol.134, pp, 1555-1573.
    Hiroe Sakai, Takashi Honma, Takashi Aoyama, et al. ARR1, a Transcription Factor for Genes Immediately Responsive to Cytokinins Science, 2001, Vol 294, Issue 5546, 1519-1521
    Hong-Ping Dong, Jianling Peng, Zhilong Bao, et al. Downstream Divergence of the Ethylene Signaling Pathway for Harpin-Stimulated Arabidopsis Growth and Insect Defense. Plant Physiology, 2004, Vol. 136, pp. 3628-3638.
    Hosoda K, Imamura A, Katoh E, et al. Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators, Plant Cell, 2002, 14 (9):2015-29. PMID: 12215502
    Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J et al. bZIP transcription factors in Arabidopsis.Trends Plant Sci.,2002, Mar;7(3):106-11. Review
    Jennifer L. Nemhauser, Todd C. Mochler, Joanne Chory. (2004) Interdependency of Brassinosteroid and Auxin Signaling in Arabidopsis.Plos Biology, Volume 2, Jin-A Kim, Ju Yun, Minsun Lee, et al.A Basic Helix-Loop-Helix Transcription Factor Regulates Cell Elongation and Seed Germination. Mol. Cells, Vol. 19, No. 3, pp. 334-341
    Jin H, Cominelli E, Bailey P, et al. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis.EMBO J.(2000) 19(22): 6150-6161
    Jong Cheol Kim, Sang Hyoung Lee, Yong Hwa Cheong, et al. A novel cold-inducible zinc (?)nger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.The Plant Journal, 2001, 25(3), 247-259
    Junga EH, Junga HW, Lee SC, et al. Identification of a novel pathogen-induced gene encoding a leucine-rich repeat protein expressed in phloem cells of Capsicum annuum. Biochim Biophys Acta, 2004, 1676:211-222
    Kamoun S, Young M, Glascock CB et al. Extracellular protein elicitor from phytophthora; host-specificity and induction of resistance to bacterial and fungal phytopathogens. Mol Plant-Microbe Interact, 1993, 6:15
    Keller H, Blein J P, Bonnet P et al. Physiological and molecular characteristics of elictin2induced systemic acquired resistance in tobacco [J]. Plant Physiol, 1996, 110 (2): 365—367
    Kim, J.E. and Beer, S.V.(1998) HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. Journal of Bacteriology 180, 5203-5210
    Kintake Sonoike, Photoinhibition of photosystem I:Its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol., 1996, 37 (3):239—247
    Klessig D F, Malamy J.The salicylic acid signal in plants. Plant Molecular Biology, 1994, 26:1439-1458
    Kreps JA, Wu Y, Chang HS, et al.Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress.PlantPhysiol, 2002, 130(4): 2129-2141
    Kreuzaler F, Hahlbrock K, et al. Coding and 3'non-coding nucleotide sequence of chalcone synthase mRNA and assignment of amino acid sequence of enzyme, Proc Natl Acad Sci USA, 1983, 80:2591-2593
    Lam-Son Phan Tran, Kazuo Nakashima, Yoh Sakuma, et al. Isolation and Functional Analysis of Arabidopsis Stress-Inducible NAC Transcription Factors That Bind to a Drought-Responsive cis-Element in the early responsive to dehydration stress 1 Promoter. The Plant Cell, 2004, Vol. 16:2481-2498
    Lars Hennig, Wilhelm Gruissem, Ueli Grossniklaus and Claudia Kohler. (2004) Transcriptional Programs of Early Reproductive Stages in Arabidopsis.Plant Physiology, Vol. 135, pp. 1765-1775
    Lee SC, Kima JY, Kima SH et al.Trapping and characterization of cold-responsive genes from T-DNA tagging lines in rice. Plant Sci, 2004, 166:69-79
    Li J, Brader G, Palva ET. (2004) The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense.Plant Cell. 16(2): 319-331
    Lijavetzky D, Carbonero P, Vicente-Carbajosa J.Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families:BMC Evol Biol, 2003, 3:17
    Lindgren P B, Peet R C, Panopoulos N J.Gene cluster of Pseudomonas s y ringae pv. "phaseolicola"cont rols pat hogenicity of bean plants and hypersensitivity on nonhost plant s. JB acteriol, 1986, 168:512~522
    Lindgren, P.B. The role of hrp genes during plant-bacterial interaction, Annual Review of Phytopathology, 1997, 35:129-152
    Liu PP, Koizuka N, Martin RC, Nonogaki H. The BME3 (Blue Micropylar End 3) GATA zinc finger transcription factor is a positive regulator of Arabidopsis seed germination.Plant J., 2005, 44(6):960-71.
    Lonetto, M.A., Brown, K.L., Rudd, K.E. et al. Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase σ factors involved in the regulation of extracytoplasmic functions. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7573-7577
    Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R. ETHYLENE RESPONSE FACTOR1 Integrates Signals from Ethylene and Jasmonate Pathways in Plant Defense.Plant Cell, 2003, 15 (1): 165-178
    Marten Denekamp and Sjef C. Smeekens (2003) Integration of Wounding and Osmotic Stress Signals Determines the Expression of the AtMYB102 Transcription Factor Gene. Plant Physiology, Vol. 132, pp. 1415-1423.
    Masahito Shikata, Miho Takemura, Akiho Yokota, et al.Arabidopsis ZIM, a Plant-specific GATA Factor, Can Function as a Transcriptional Activator. Biosci. Biotechnol. Biochem., 2003, 67(11), 2495-2497,
    Matthew A. Hannah, Arnd G Heyer, Dirk K. Hincha. A Global Survey of Gene Regulation during Cold Acclimation in Arabidopsis thaliana. PloS Genetics Volume 1,179-196
    Meister R J, Oldenhof H, Bowman JL, Gasser CS. Multiple protein regions contribute to differential activities of YABBY proteins in reproductive development.Plant Physiol. 137(2):651-62. Epub 2005 Jan 21
    Mena M, Cejudo F J, Isabel-Lamoneda I et al. A Role for the DOF Transcription Factor BPBF in the Regulation of Gibberellin-Responsive Genes in Barley Aleurone, Plant Physiol., 2002, 130(1): 111-119
    Macheix J J, Fleuriet A,Billot J.Fmit phenolics. Florida: CRCPress, 1990,251-25
    Michel H, Klaus K. The protective function of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants[J]. Plants 2001, 213:953-966.
    Mishra A, Choudhuri MA. Effects of salicylic acid on heavy medal induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantrum, 1999,42:409-415
    Mukherjee A., Y Cui, Y Liu and A.K. Chatterjee. Molecular characterization and expression of the Erwinia carotovora hrpNEcc gene, which encodes an elicitor of the hypersensitive reaction. Mol. Plant-Microbe Interact., 1997, 10:462-471
    Nawrath, C.,Heck, S.,Parinthawong, N.,Metraux, J. E EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. THE PLANT CELL, 2002, volume 14:275
    Neil Olszewski, Tai-ping Sun,and Frank Gubler.Gibberellin Signaling: Biosynthesis, Catabolism, and Response Pathways.The Plant Cell, 2002, S61-S80
    Nishii A, Takemura M, Fujita H,et al.Chatacteriaztion of a novel gene encoding a putative single zinc-finger protein ZIM, Expressed during the reproductive phase in Arabidopsis thaliana. Biosci Biotechnol Biochem., 2000, 64(7): 1402-9
    Nizan,R., Barash,I., Valinsky,L.,et al (1997) The presence of hrp genes on the pathogenicity-associated plasmid of the tumorigenci bacterium Erwinia herbicola pv. gypsophilae. Molecular Plant-Microbe Interactions 10, 677-682.
    Nole-Wilson S,Tranby TL, Krizek BA. AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states.Plant Mol Biol., 2005, 57(5):613-28
    Odile Faivre-Rampant, Glenn J. Bryan, Alison GRoberts, et al. Regulated expression of a novel TCP domain transcription factor indicates an involvement in the control of meristem activation processed in Solanum tuberosum. Journal of Experimental Botany, 2004, Vol.55, No.398, pp. 951-953
    Oyama T, Shimura Y, Okada K.The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev., 1997, 11(22): 2983-2995
    Pavlokin J, Novacky A, et al. Menbrane potentiaf changes during bacteria-induced hypersensitive reaction. Physiol and Mol Pt Pathol, 1986, 28:125
    Pelletier, M. K., Murrell, J. R., Shirley, B.W. Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis, Further evidence for differential regulation of 'early' and 'late' genes.PLANT PHYSIOLOGY., 1997, 113 (4).pp 1437
    Pieterse CM, Van Loon LC. NPR1: the spider in the web of induced resistance signaling pathways.Curr Opin Plant Biol., 2004, 7(4):456-64. Review
    Pugsley, A.P. The complete general secretory pathway in Gram-negative bacteria, Microbiology Reviews, 1993, 57, 50-108.
    Reyes JC, Muro-Pastor MI and Florencio FJ. The GATA family of transcription factors in Arabidopsis and rice, Plant Physiol.,2004, 134(4): 1718-32.
    Reymond P, Farmer E E, Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol, 1998, 1:404~411
    Riechmann JL, Meyerowitz EM. The AP2/EREBP family of plant transcription factors.Biol Chem., 1998, 379(6):633-46. Review
    Robatzek S, Somssich IE. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev., 2002, 16(9): 1139-1149
    Ryder TB. Cramer CL, Bell JN, et al. Elicitor rapidly induces chalcone synthase
    mRNA in Phaseolus vulgaris cells at the onset of the phytoalexin defense response.Natl Acad Sci USA, 1984, 81:5724-5728
    Sakuma.Y, Liu Q, Dubouzet JG, Abe H, et al. DNA-Binding Specificity of the ERF.AP2 Domain of Arabidopsis DREBs, Transcription Factors Involved in Dehydration-and Cold-Inducible Gene Expression.Biochem Biophys Res Commun., 2002, 290(3):998-1009
    Schindler U, Beckmann H, Cashmore AR, TGA1 and G-box binding factors: two distinct classes of Arabidopsis leucine zipper proteins compete for the G-box-like element TGACGTGG. Plant Cell, 1992, 4(10): 1309-19
    Schindler U, Menkens AE, Beckmann H, et al. Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins.EMBO J., 1992, 11(4): 1261-1273.
    Sergei L. Mekhedov, Hans Kende.Submergence enhances expression of a gene encoding 1-aminorycy clopropane-1-carboxylate oxidase in deepwater rice. Plant Cell Physiol., 1996, 37 (4):531—537
    Sieber P, Petrascheck M, Barberis A, et al (2004) Organ polarity in Arabidopsis. NOZZLE physically interacts with members of the YABBY family.Plant Physiol. 135(4):2172-85.
    Siegfried KR, Eshed Y, Baum SF, et al. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development, 1999, 126(18):4117-28.
    Singh K., Foley R.C., Onate-Sanchez L.Transcription factors in plant defense and stress responses, Curt. Opin. Plant Biol., 2002, 5(5):430-436
    Susie B. Corley, Rosemary Carpenter, Lucy Copsey, et al.Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum.PNAS, 2005, vol.102:5068-5073
    Teakle GR, Manfield IW, Graham JF, et al. Arabidopsis thaliana GATA factors: organisation, expression and DNA-binding characteristics. Plant Mol Biol., 2002, 50(1):43-57.
    Toledo-Ortiz G; Huq E, Quail PH. The Arabidopsis basic/helix-loop-helix transcription factor family.Plant Cell, 2003, 15(8): 1749-70
    Torii KU, Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int Rev Cytol, 2004, 234:1-46
    Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA., 2000, 97(21): 11632-11637.
    Van Loon L C The Nomenclature of pathogenesis related proteins [J] Physiol.Mol.Plant.Pathol 1990 (37) 229~230
    Van Loon L C, Pierpoint W S and Boller T,et al. Recommendations for naming plant pathogenesis-related proteins [J].Plant Mole cular Biology Reporter, 1994,12 (3):245-26
    Viard MP, Martin F, Pugiu A et al. Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein. Plant Physiol., 1994, 104:1245
    Villalobos MA, Bartels D, Iturriaga G. Stress Tolerance and Glucose Insensitive Phenotypes in Arabidopsis Overexpressing the CpMYB 10 Transcription Factor Gene..Plant Physiol., 2004, 135(1): 309-324
    Wei ZM, Laby RJ, Zumoff CH et al. Harpin, elicitor of hypersensitive response produced by the plant pathogen Erwinia amylovora. Science, 1992, 257:85
    Wei ZM, Sneath, B.J. and Beer, S.V. Expression of Erwinia amylovora hrp genes in response to environmental stimuli. Journal of Bacteriology, 1992b, 174, 1875-1882
    Wei ZM, S.V. Beer. Harpin from Erwinia amylovora induces plant resistance. Acta Horticultural., 1996
    Wei, ZM. and Beer, S.V. hrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of a factors. Journal of Bacteriology, 1995, 177, 6201-6210
    Wei, Zhongrnin, Jihyun F. Kim, and Steven V. Beer, Regulation fo Hrp Genes and Type Ⅲ Protein Secretion in Erwinia arnylovora by HrpX/HrpY, a Novel Two-Component System, and HrpS, 2000
    Wenqiong J Chen, Sherman H Chang, Matthew E Hudson, et al. Contirbution of transcriptional regulation to natural variations in Arabidopsis.Genome Biology, 2005, Volume 6, Issue 4
    Willis, D.K., Rich, J.J. and Hrabak, E.M.hrp Genes of phytopathogenic bacteria. Molecular Plant-Microbe Interactions, 1991, 4:132-138
    Word HM.On the relations between host and parasite in the bromes and their brown rust Puccinia disperse(Eriks). Ann Bot, 1902, 18:233
    Wubben J P, Joosten Mhaj, Van Kan Jal et al. Subcellar localizazation of plant chitinases and 1,3—β—glucanase Cladosporium fulvum infected tomato leaves [J]. Physiol Mol Plant Pathol, 1992, (41): 23
    Xiao, Y., Heu, S., Yi, J.,et al.Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. Journal of Bacteriology, 1994, 176:1025-1036
    Xie Z, Zhang ZL, Zou X, et al. Annotations and Functional Analyses of the Rice WRKY Gene Superfamily Reveal Positive and Negative Regulators of Abscisic Acid Signaling in Aleurone Cells, Plant Physiol, 2005, 137(1): 176-189
    Xin-Jian He, Rui-Ling Mu, Wan-Hong Cao, et al.AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. The Plant Journal,2005, 44,903-916
    Yabuuchi,E., Kosako,Y., Hotta, H. et al. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii(Ralston, Palleroni and Doudoroff 1973)comb. Nov., Ralstonia solanacearum (1896) comb. Microbilogy and Immunology, 1995, 39, 897-904
    Yalpani N, Enyedi AJ, Leo J. Ultroviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta, 1994, 193:372-376
    Yin Y, Vafeados D, Tao Y, et al. A new class of transcription factors mediates brassinosteriod-regulated gene expression in Arabidopsis. Cell, 2005, 120(2):249-59
    Zhi Wu Sheng Li Yu Fen et al. Mechanisms of heavy metal cadmium tolerance in plants, 2006, 32(1): 1-8. Chinese
    Zhong-Min Wei, Ron J. Laby, Cathy H. Zumoff et al. Harpin, Elicitor of the Hypersensitive Response Produced by the Plant Pathogen Erwinia amylovora.SCIENCE, 1992, Vol.257,
    Zitter TA, Beer SV, Harpin for insect control, Phytopathology, 1998, 88: S104-S105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700