小麦水分利用效率对干旱、高温及真菌接种等环境的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从干旱、高温和真菌接种等几种不同环境着手,分析了小麦水分利用效率及其它相关性状应对不同环境的变化特征。其中,黄土塬区的研究内容基于两种试验条件下水分利用效率及茎流和其它气体交换指标的变化,两种试验条件分别为,(1)同一肥力水平下8种冬小麦品种对比试验;(2)同一品种“长武134号”条件下3种磷肥水平施加试验。加拿大的试验包括,(1)控制试验条件下,干旱高温对春小麦水分利用效率的影响及其与品质指标木聚糖之间的关系,干旱胁迫下菌根接种对氮、磷吸收和水分利用效率的影响;(2)加拿大Alberta省西部草原干旱区春小麦在不同菌类接种和磷肥处理下水分利用效率的变化特征。通过分析研究,了解了小麦水分利用效率应对相应试验环境下的变化,同时结合小麦的产量等指标进行综合分析,为小麦品种的筛选、推广种植和栽培模式的选择提供实验依据与技术支撑。其主要结果如下:
     1.品种对比和磷肥差别供应田间试验(F0,F1和F2)表明,拔节期叶片净光合速率大于开花期;拔节期叶片蒸腾速率也大于开花期。品种试验下拔节期瞬时水分利用效率略大于开花期,而磷肥试验中开花期瞬时水分利用效率略大于拔节期,且两个时期F1的瞬时水分利用效率都是最高,分别为3.04和3.77 umol CO2/mmol H2O,说明适当的磷肥施加可以提高作物的水分利用效率。品种试验中拔节期的SPAD值是洛阳8716最大,与另外七个品种都达到了极显著的差异,开花期各品种差异不显著,最终产量是洛阳8716和陕麦893最高;磷肥试验中F2处理下SPAD最大,且产量最高。
     2.茎流速率日变化都呈现先升高后下降的趋势;磷肥试验中F0、F1和F2单株茎流速率最高时分别为2.796、3.734和3.873 g/h,随着施肥量的增加茎流量增大;环境因子中的光合有效辐射对茎流变化影响较大;同时对日茎流速率和叶片蒸腾速率进行同步性相关分析得出,茎流速率与叶片蒸腾速率有显著的相关关系,但是相比来说有一定的时间滞后性,说明水容影响了水分的运动过程。
     3.干旱(拔节期开始,40%田间持水量)和高温(孕穗期开始,32/22℃)处理对两种在加拿大广泛种植的春小麦品种(Superb和AC Crystal)的水分利用效率和木聚糖含量有很大的影响。总体来说,高温下Superb成熟时间比AC Crystal提前了大概10天,说明Superb对高温的敏感性较强;叶片的相对含水量和比叶面积对干旱的敏感性较大。干旱和高温降低了小麦的生物量,所用的水分和产量最终增加了这两种小麦的水分利用效率;稳定性碳同位素分辨率有干旱处理和品种显著性,并且它与水分利用效率呈负相关;高温干旱降低了叶片气体交换指标。高温增加了小麦籽粒木聚糖的含量(特别是水溶性木聚糖);并且木聚糖的含量与水分利用效率呈显著的正相关。
     4.丛植菌根、氮肥(180 kg/hm2)以及干旱(拔节期开始,40%田间持水量)处理对春小麦Superb的水分利用效率以及氮磷含量的吸收有很大的影响。氮肥施加和菌根接种增大了叶片的相对含水量,而干旱降低了叶片相对含水量的值;干旱降低了叶片的比叶面积,而氮肥施加和菌根接种提高了叶片的比叶面积;干旱处理提高了不同时期小麦的水分利用效率,但在相同氮肥施加下,菌根接种对水分利用效率的影响不大,并且氮肥施加和干旱处理都降低了叶片的稳定性碳同位素分辨率,菌根接种对其影响不大;各处理下籽粒与茎秆的氮含量差异显著,同时不同部位的磷含量随着水分胁迫和菌根接种而增大,氮肥施加间接的影响了茎秆对磷素的吸收,但是对籽粒磷素的吸收影响不大。
     5.两种真菌(Penicillium和AMF)和不同水平磷肥施加(45 kg/hm~2和90 kg/hm~2)均能增加叶片的气体交换指标,并且在相同的磷肥施加水平下,AMF比Penicillium更能促进叶片的光合性能;丛枝菌根可显著的增加Castor区瞬时水分利用效率;稳定性碳同位素分辨率的含量随着施磷剂量的增加而增大;茎秆和籽粒中磷含量随着真菌接种和施磷而增大,并且AMF的影响最大,;真菌接种和磷肥施加增加了田间的叶面积指数,生物量以及产量。
The research of this paper was conducted in drought, high temperature, fungal inoculation and other several different environments to evaluate water use efficiency, photosynthetic characters and other relative items. On the Loess Plateau, (1) 8 varieties were analyzed to see the differences between their water use efficiency, sap flow velocity and gas exchange parameters, (2) using 3 different P levels on another wheat variety Changwu 134 to see the water use efficiency and other characters changes. There were also some experiments conducted in Alberta, Canada, (1) In greenhouse condition, under high temperature and water-deficit treatments the relationship between water use efficiency and arabinoxylan fractions of spring wheat was analyzed; the fungal inoculation to nutrient uptake and water use efficiency change were also analyzed; (2) Under drought field conditions, the inoculation of different fungi and different P levels adding were used to measure the differences of the water use efficiency. Those researches of water use efficiency under these several environments and combined the yields and other characters, which is useful to the wheat variety selection and cultivating model. Main results are as follows:
     1. The results of photosynthetic characters showed that the value of leaf photosynthesis rate at stem elongation stage was higher than that at flowering stage, and the value of leaf transpiration rate at stem elongation stage was also higher than that at flowering stage. For the results of instantaneous WUE, it showed that under the wheat variety experiment the instantaneous WUE was higher at stem elongation stage than that at flowering stage; but in phosphorus experiment, the instantaneous WUE was a little higher at flowering stage, and the highest value of the WUEi at both stages was under F1 treatment, and it was 3.04 and 3.77 umol CO_2/mmol H_2O respectively. It showed that adding P could increase the instantaneous WUE. The SPAD of LuoYang 8716 at stem elongation stage was the highest and had significant differences among 8 varieties, and the yield of the LuoYang 8716 and Shaan Mai 893 were the highest. Both the SPAD and the yield of F2 was the highest among 3 different phosphorus treatments.
     2. The results of the sap flow showed that curves of daily sap flow velocity firstly rose up and then dropped down. In phosphorus experiment, the highest sap flow velocity in a day was 2.796、3.734and 3.873 g/h under F0, F1 and F2 respectively, and the sap flow was increased by the P adding. Radiation had a greater impact on sap flow change during many environment factors. The correlation analysis of time synchronization for sap flow velocity and leaf transpiration rate showed that there was a significant positive correlation between them but had the hysteretic nature of the time, and that maybe because the water capacitance had effect on the water movement.
     3. Under a controlled environment of water-deficit (imposed at the stem elongation stage) and high temperature (imposed at the booting stage), the water use efficiency (WUE) and arabinoxylan concentration of two spring wheat varieties (‘Superb’and‘AC Crystal’) were analyzed. The temperature treatments were 22/12 (day/night) and 32/22℃. Overall, time to maturity under high temperature was 10 days shorter for‘Superb’than for‘AC Crystal’, indicating that‘Superb’was more sensitive to high temperature stress. Leaf relative water content (RWC) and specific leaf area (SLA) were more sensitive to drought than to high temperature for both varieties. Drought and high temperature decreased (P < 0.05) biomass, water use and grain yield but increased WUE of’Superb’and‘AC Crystal’. Without temperature stress, significant drought and variety effects were found on CID (carbon isotope discrimination) which was negatively correlated with WUE. All gas exchange parameters declined under drought and high temperature. High temperature increased the grain arabinoxylan concentration (especially the water-extractable arabinoxylans). The different arabinoxylan fractions were positively correlated with WUE suggesting that arabinoxylans can be increased by selecting for increased WUE.
     4. Arbuscular mycorrhizal fungal inoculation, nitrogen adding (180 kg/hm2) and drought (imposed at the stem elongation stage, 40% filed capacity) were used to analyze changes of the water use efficiency, nitrogen and phosphorus uptake. The nitrogen adding and fungal inoculation can improve the leaf relative water content, but drought decreased it; drought decreased the specific leaf area, but nitrogen adding and fungal inoculation increased it. The water use efficiency was improved by drought, while under the same nitrogen level, fungal inoculation didn’t have much impact on water use efficiency; nitrogen adding and drought all decreased the leaf carbon isotope discrimination. Under different treatments, the leaf and stem nitrogen concentrations were changed a lot and the phosphorus concentrations of different parts were also improved by drought and fungal inoculation, while nitrogen adding indirectly influenced the stem uptake of phosphorus but not seed.
     5. This experiment evaluated the combined effects of fungal (arbuscular mycorrhizal (AM) and Penicillium) inoculations and phosphorus (P) fertilization (0, 45 and 90 kg/ha) on the net rate of photosynthesis, water use efficiency, P uptake and the growth of spring wheat (Superb) under field conditions at two locations (Castor and Vegreville) in Alberta, Canada. The results showed that both fungal inoculation and P application increased the rate of photosynthesis. Under the same P level, AM inoculation had a greater positive effect on the rate of photosynthesis than Penicillium. The AM inoculation increased the instantaneous water use efficiency (WUEi) of plants at Castor but not at Vegreville. The carbon isotope discrimination (Δ~(13)C) of the leaves increased with the rate of P application but was not affected by fungal inoculations. Phosphorus concentrations of stem and seed increased with both fungal inoculation and P application irrespective of location, with AM inoculation showing the largest effects. The interaction between P and fungi was significant for stem P concentration in plants grown in Vegreville. Both Fungal inoculations and P application increased the leaf area index (LAI), biomass and grain yields at both locations.
引文
毕银丽,丁保建,李晓林. 2001.菌根对冬小麦利用养分和水分的影响.土壤通报, 32(3): 99~103.
    毕银丽,李晓林,丁保健. 2003.水分胁迫条件下接种菌根对玉米抗旱性的影响.干旱地区农业研究, 21(2): 7~12.
    崔德杰,王维华,袁玉清. 1998.菌提高植物抗旱性机制的初步研究.莱阳农学院学报, 15(3): 167~171.
    程俊. 2008.非充分灌溉条件下不同生育期冬小麦的耗水特性及生理生态特性研究. [硕士学位论文]. 开封:河南大学.
    冯兆林译. 1965.土壤物理条件与植物生长.北京:科学出版社: 230.
    高延军,张喜英,陈素英,孙宏勇,裴冬,陈四龙. 2004.冬小麦品种间水分利用效率的差异及其影响因子分析.灌溉排水学报, 23(5): 45~ 49.
    郭秀林. 2006.小麦幼苗水分利用效率生理差异与相关基因的cDNA-AFLP分析. [博士学位论文].保定:河北农业大学.
    郭贤仕,山仑. 1994.前期干旱锻炼对谷子水分利用效率的影响.作物学报, 20(3): 352~356.
    何斌,李卫红,陈永金,徐长春,袁素芬. 2007.干旱胁迫条件下胡杨茎流与茎直径变化分析———以塔里木河下游英苏断面为例.西北植物学报, 27(2): 315~320.
    贺学礼,赵丽莉,李生秀. 1999.水分胁迫及菌根接种对绿豆生长的影响.核农学报, 14(5): 290~294.
    蒋进. 1991.极端气候条件下胡杨的水分状况及其与环境的关系.干旱区研究, 2: 35~38.
    蒋明义,郭绍川. 1996.水分亏缺诱导的氧化胁迫和植物的抗氧化作用.植物生理学通讯, 32(2): 41~50.
    贾秀领,蹇家利,马瑞昆. 1999.高产冬小麦水分生产效率及其组分特征分析.作物学报, 25(3): 309~314.
    李凤民,郭安红,雒梅,赵松岭. 1997.土壤深层供水对冬小麦干物质生产的影响.应用生态学报, 8(6): 575~579.
    李桂贞,张德罡,杨富裕. 2008.粮食作物AM真菌研究进展.中国农学通报, 24(2): 250~254.
    罗海波,马苓,段伟,李绍华,王利军. 2010.高温胁迫对“赤霞珠”葡萄光合作用的影响.中国农业科学, 43(13): 2744~2750.
    陆景陵. 2002.植物营养学.北京:中国农业大学出版社: 42 ~43.
    刘孟雨,陈陪元. 1990.水分胁迫条件下气孔与非气孔因素对小麦光合的限制.植物生理学通讯, (4): 24~27.
    刘孟雨. 1997.小麦的库源关系对水分利用效率的影响.生态农业研究, 5(3): 33~36.
    吕全,雷增普. 2000.外生菌根提高板栗苗木抗旱性能及其机理的研究.林业科学研究, 13(3): 249~256.
    刘润进,罗新书. 1988. VA菌根对中国樱桃实木苗生长和养分的影响.莱阳农学院学报, 5(1): 6~13.
    吕树作. 2007.冬小麦不同品种气冠温差与抗旱节水性的关系研究. [硕士学位论文].西安杨凌:西北农林科技大学.
    刘文兆. 2005.土壤-植物系统水分移动过程的阻容电模拟.生态学报, 25 (11): 2947~2953.
    刘友良. 1992.植物水分逆境生理.北京:农业出版社: 128~138.
    梁银丽,陈培元. 1996.土壤水分和氮磷营养对冬小麦根苗生长的效应.作物学报, (4): 476~482.
    林植芳,彭长连,林桂珠. 2001.大豆和小麦不同基因型的碳同位素分馏作用及水分利用效率.作物学报, 27(4): 410~414.
    刘祖贵,孙景生,张寄阳,段爱旺. 2002.亏缺灌溉对风沙区春小麦生长发育及水分生产效率的影响.灌溉排水, 21 (3): 28~31.
    罗中岭. 1997.热量法茎流测定技术的发展和应用.中国农业气象, 18(3) : 52~56.
    梅雪英. 2004.水分胁迫对小麦生理生态及产量品质影响的研究. [硕士学位论文].合肥:安徽农业大学.
    裴艳婷. 2009.不同土壤肥力及节水栽培措施对小麦产量和水分利用效率的影响. [硕士学位论文].泰安:山东农业大学.
    上官周平,周维. 1998.栽培条件对冬小麦叶片水分利用效率的影响.植物营养与肥料学报, 4(3): 231~236.
    上官周平. 2000.小麦13C分辨率和水分利用效率对氮素与水分的响应.植物营养与肥料学报, 6(3):345~348.
    宋会兴,彭远英,钟章成. 2008.干旱生境中接种丛枝茵根真菌对三叶鬼针草(Bidens pilosa L.)光合特征的影响.生态学报, 28(8): 3744~3751.
    山仑,徐萌. 1991.节水农业及其生理生态基础.应用生态学报, 2(1): 70~76.
    山仑,邓西平. 2000.黄土高原半于旱地区的农业发展与高效用水.中国农业科技导报, 2(4): 34~38.
    孙云,李柱军. 2008.麻栎菌根化幼苗对水分胁迫的响应.现代农业科学, 15(7): 20~22.
    温达志,陆耀东,旷远文,胡羡聪,张德强,薛克娜,孔国辉. 2003. 39种木本植物对大气污染的生理生态反应与敏感性.热带亚热带植物学报, 11(4): 341~347.
    王建林,于贵瑞,房全孝,齐华,王秋凤. 2007.作物水分利用效率的制约因素与调节.作物杂志, 2:9~11.
    魏媛,张金池,尹晓阳,杨萍. 2007.华山松菌根化幼苗的抗旱特性.南京林业大学学报, 31(4): 69~72.
    王月福,于振文,潘庆民. 1998.土壤水分胁迫对耐旱性不同的小麦品种水分利用效率的影响.山东农业科学, 1998(3): 5~7.
    王幼珊,张美庆,张弛. 1994. VA菌根真菌抗盐碱菌株筛选.土壤学报, (31增: 79~83.
    王志和,张维城. 2003.小麦优质高产栽培理论与实践.北京:中国科学技术出版社.
    谢华,沈荣开. 2001.用茎流计研究冬小麦蒸腾规律.灌溉排水, 20(1): 5~9.
    薛松,王沛洪. 1992.水分胁迫对冬小麦CO2同化作用的影.植物生理学报,18(2): 1~7.
    尹光彩,周国逸,王旭,褚国伟,黄志宏. 2003.应用热脉冲系统对桉树人工林树液流通量的研究.生态学报, (10): 1984~1990.
    岳广阳,张铜会,赵哈林,牛丽,刘新平,黄刚. 2006.科尔沁沙地黄柳和小叶锦鸡儿茎流及蒸腾特征.生态学报, 20(10): 3205~3213.
    尹晓阳,朱忠荣. 2008.马尾松菌根化苗水分胁迫生理与耐旱性研究.林业资源管理, 3: 63~67.
    杨艳. 2010.外生菌根真菌提高油松抗旱性的研究. [硕士学位论文].西安杨凌:西北农林科技大学.
    余卓玲,梁计南. 2005. VA菌根真菌对植物吸收能力及抗逆性的影响研究进展.广东农业科学, 3: 44~47.
    张成军,郭佳秋,陈国祥,解恒才. 2005.高温和干旱对银杏光合作用、叶片中黄酮苷和萜类内酯含量的影响.农村生态环境, 21(3): 11~15.
    赵慧,张正斌,徐萍. 2006.小麦叶片水分利用效率生理状况遗传相关分析.中国农业科学, 39(9): 1796~1803..
    赵海波,林琪,刘义国,姜雯,刘建军,翟延举. 2010.氮磷肥配施对超高产冬小麦灌浆期光合日变化及产量的影响.应用生态学报, 21(10): 2545~2550.
    张娟,张正斌,谢惠民,董宝娣,胡梦芸,徐萍. 2005.小麦叶片水分利用效率及相关生理性状的关系研究.作物学报, 31(12): 1593~1599.
    朱林. 2009.碳同位素分辨率在春小麦节水品种改良中的应用研究. [博士学位论文].西安杨凌:西北农林科技大学.
    张岁岐,山仑. 1997.磷素营养和水分胁迫对春小麦产量和水分利用效率的影响.西北农业学报, 6(l): 22~25.
    张岁岐,山仑. 2002.植物水分利用效率及其研究进展.干旱地区农业研究, 20(4): 1~5.
    张岁岐,山仑,薛青武. 2000.氮磷营养对小麦水分关系的影响.植物营养与肥料学报, 6(2): 147~151.
    周晓果,景蕊莲,昌小平,张正斌. 2005.小麦苗期水分利用效率及其相关性状的QTL分析.植物遗传资源学报, 6(1): 20~25.
    张正斌,山仑. 1997.小麦旗叶水分利用效率比较研究.科学通报, 42(17): 1876~1881.
    张正斌. 2001.小麦水分利用效率及相关性状的QTLs研究. [博士后研究工作报告].中国农业科学院作物品种资源研究所.
    张正斌,徐萍,张建华,王峻. 2002.作物抗旱节水相关基因的标记和克隆及转基因研究.西北植物学报, 22 (6): 1537~1544.
    张正斌,徐萍,周晓果,董宝娣. 2006.作物水分利用效率的遗传改良研究进展.中国农业科学, 39(2): 289~294.
    Abbad H, EI-Jaafari S A, Bort J, Araue J L. 2004. Comparative relationship of the flag leaf and the ear photosynthesis with the biomass and grain yield of surum wheat under a range of water conditions and different genotypes. Agronomie, 24: 19~28.
    Abbate P E, Dardanelli J L, Cantarero MG, Maturano M, Melchiori R J M, Suero E E. 2004. Climatic and water availability effects on water-use efficiency in wheat. Crop Science, 44, 474~483.
    Al-Karaki G N, Al-Raddad A. 1997. Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza, 7: 83~88.
    Al-Khatib K, Paulsen G M. 1990. Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions. Crop Science, 30: 1127~1132.
    Allen E B, Allen M F. 1986. Water relations of xeric grasses in the field: interactions of mycorrhizas and competition. New Phytologist, 104: 559~571.
    Allen M F, Smith W K, Moore T S, Christensen M. 1981. Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis H.B.K. New Phytologist, 88: 683~693.
    Andrea M, Maria T A, Giuseppe P, Gianpietro V. 2006. Variation in carbon isotope discrimination during growth and at different organs in sugar beet (Beta vulgaris L.). Field Crops Research, 98: 157~163.
    Angus J F, van Herwaarden A F. 2001. Increasing water use and water use efficiency in dryland wheat. Journal of Agronomy, 93: 290~298.
    Anyia A O, Herzog H. 2004. Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. European Journal of Agronomy, 20: 327~339.
    Anyia A O, Slaski J J, Nyachiro J M, Archambault D J, Juskiw P. 2007. Relationship of carbon isotope discrimination to water use efficiency and productivity of barley under field and greenhouse conditions. Journal of Agronomy and Crop Science, 193: 313~323.
    Araus J L, Slafer G A, Reynolds M P, Royo C. 2002. Plant breeding and drought in C3 cereals: what should we breed for? Annals of Botany, 89: 925~940.
    Attia M. and Nemat, Awad M. 2003. Assessmentthe impact of certain growth promoting rhizobacteria strains on symbiotic effectiveness of Arbuscular Mycorrhizal Fungi. Egypt Journal of Microbiology, 38(1): 75~88.
    AugéR M. 2000. Stomatal behavior of arbuscular mycorrhizal plants. In: Kapulnik Y, Douds D eds. Mycorrhizal symbiosis: molecular biology and physiology. Kluwer, Dordrecht, The Netherlands: 201~237.
    AugéR M. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11: 3~42
    Bai Y, Han X, Wu J, Chen Z Z, Li L H. 2004. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431: 181~184.
    Barea J M, Azcon-aguilar C, Azcon R. 1987. Vesicular–arbuscular mycorrhiza improve both symbiotic N2 fixation and N uptake from soil as assessed with a 15N technique under field conditions. New Phytologist, 106: 717~725.
    Bethenod O, Katerji N, Goujet R, Bertolini J M, Rana G.. 2000. Determination and validation of corn crop transpiration by sap flow measurement under field conditions. Theoretical and Applied Climatology, 67: 153~160.
    Bethenod O, Ruget F, Katerji N, Combe L, Renard D. 2001. Impact of atmospheric CO2 concentration on water use efficiency of maize. Maydica, 46: 75~80.
    Bethlenfalvay G J, Brown M S, Ames R N, Thomas R S. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Plant Physiology, 72: 565~571.
    Briggs L J, Shantz H J. 1913. The water requirements of plants. II. A review of the literature. USA. Department Agriculture Bureau. Plant Industry Bulletin, 285: 1~96.
    Briggs L J, Shantz H J. 1914. Relative water requirements of plants. Journal Agriculture Research, 3: 1~63.
    Bou JaudéM, Katerji N, Mastrorilli M, Rana G. 2008. Analysis of the ozone effect on soybean in the Mediterranean region. II. The consequences on growth, yield and water use efficiency. European Journal of Agronomy, 28: 519~525.
    Cabrera-Bosquet L, Molerol G, Bortl J, Nogues S, Araus J L. 2007. The combined effect of constant water deficit and nitrogen supply on WUE, NUE and 13C in durum wheat potted plants. Annals of Apply Biology, 151: 277~289.
    Cabuslay G S, Ito O, Alejar A A. 2002. Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Science, 163: 815~827.
    Casson J P, Bennett D R, Nolan S C, Olson B M, Ontkean G R. 2006. Degree of phosphorus saturation thresholds in manure-amended soils of Alberta. Journal of Environmental Quality, 35: 2212~2222.
    CastrignanòA, Katerji N, Karam F, Mastrorilli M, Hamdy A. 1998. A modified version of CERES-Maize model for predicting crop response to salinity stress. Ecological Modelling, 111: 107~120.
    Chen J, Chang X S, Anyia O A. 2010. The Physiology and Stability of Leaf Carbon Isotope Discrimination as a Measure of Water-Use Efficiency in Barley on the Canadian Prairies. Journal of Agronomy andCrop Science, 197: 1-11.
    Chetner S. The Agroclimatic Atlas Working Group. 2003. Agroclimatic Atlas of Alberta, 1971-2000. Alberta Agriculture, Food and Rural Development, Agdex 071-1, 97.
    Choisnel E. 1999. Changement climatique et cycle de l’eau. C. R. Acad. Agric. France, 85: 21~31. Coles G D, Hartunian-Sowa S M, Jamieson P D, Hay A J, Atwell W A, Fulcher R G. 1997.
    Environmentally-induced variation in starch and non-starch polysaccharide content in wheat. Journal of Cereal Science. 26: 47~54.
    Condon A G, Farquhar G D, Richards R A. 1990. Genotypic variation in carbon isotope discrimination and transpiration efficiency in wheat, leaf gas exchange and whole plant studies. Australian Journal of Plant Physiology, 17: 9~22.
    Condon A G, Richards R A, Rebetzke G J, Farquha G D. 2002. Improving intrinsic water use efficiency and crop yield. Crop Science, 42: 122~131.
    Crafts-Brandner S J, Law R D. 2000. Effect of heat stress on the inhibition and the recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state. Planta, 212: 67~74.
    Craufurd P Q, Peacock J M. 1993. Effect of heat and drought stress on sorghum (Sorghum bicolor). II. Grain yield. Experimental Agriculture, 29: 77~86.
    Cui N B, Du T, Kang S Z, Li F S, Hu X T, Wang M X, Li Z J. 2009. Relationship between stable carbon isotope discrimination and water use efficiency under regulated deficit irrigation of pear-jujube tree. Agricultural Water Management, 96: 1615~1622.
    Davies W J, Zhang J. 1991. Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology and Plant Molecular Biology, 42: 55~76.
    Davies F T, Potter J R, Linderman R G. 1993. Drought resistance of mycorrhizal pepper plants independent of leaf P-concentration. Response in gas exchange and water relations. Plant Physiology, 87: 45~53.
    Davies W J, Tardieu F, Trejo C L. 1994. How do chemical signals work in plants that grow in drying soil? Plant Physiology, 104: 309~14.
    Dawson T E, Mambelli S, Plamboeck A H, Templer P H, Tu K P. 2002. Stable isotopes in plant ecology. Annual Review of Ecology System, 33: 507~559.
    del Blanco I A, Rajaram S, Kronstad W E, Reynolds M P. 2000. Physiological performance of synthetic hexaploid wheat-derived population. Crop Science, 40: 1257~1263.
    Dietz K J, Foyer C, 1986. The relationship between phosphate and photosynthesis in leaves. Reversibility of the effects of phosphate deficiency on photosynthesis. Planta, 167: 376~381.
    Dixon R K, Rao M V, Garg V K. 1994. Water relations and gas exchange of mycorrhizal Leucaena leucocephala seedlings. Journal of Tropical Forest Science, 6:542~552.
    Donovan L, Ehleringer J R. 1994. Carbon isotope discrimination, water use efficiency, growth and mortality in a natural shrub population. Oecologia, 100: 347~354.
    Douglas S G. 1981. A rapid method for the determination of pentosans in wheat flour. Food Chemistry, 7: 139~145.
    EI Hafid R, Smith D H, Karrou M, Samir K. 1998. Physiological responses of spring durum wheat cultivars to early-season drought in a Mediterranean environment. Annals of Botany, 81: 363~370.
    Ellis J R, Larsen H J, Boosalis M G. 1985. Drought resistance of wheat plants inoculated with vesicular-arbuscular mycorrhizae. Plant Soil, 86: 369~378.
    El-sharkawy M A, Tafur S M D. 2007. Genotypic and within canopy variation in leaf carbon isotope discrimination and its relation to short-term leaf gas exchange characteristics in cassava grown under rain-fed conditions in the tropics. Photosynthetica, 45: 515~526.
    Endaie B, Hall A E, Fraquhar G D. 1991. Water use efficiency and carbon isotope discrimination in wheat. Crop Science, 31: 1282~1288.
    Farquhar G D, O’Leary M H, Berry J A. 1982a. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9: 121~137.
    Farquhar G D, Sharkey T D. 1982b. Stomatal conductance and photosynthesis. Annual Review of Physiology, 33: 317~345.
    Farquhar G D, Ehleringer J R, Hubick K T. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology, 40: 503~537.
    Fay P, Mitchell D T, Osborne B A. 1996.Photosynthesis and nutrient—use efficiency of barley in response to low arbuscular mycorrhizal colonization and addition of phosphorus. New Phytologist, 132(3): 425~433.
    Finnie SM, Bettge AD, Morris CF. 2006. Influence of cultivar and environment on water-soluble and water-insoluble arabinoxylans in soft wheat. Cereal Chemistry, 83: 617~623.
    Fischer R A, Turner N C. 1978. Plant productivity in arid and semi-arid zones. Annual Review of Plant Physiology, 29: 277~317.
    Fischer R A, Rees D, Sayre K D, Lu Z M, Condon A G, Larque S A. 1998. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Science, 38: 1467~1475.
    Fitter A H. 1988. Water relations of red clover Trifolium pretense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought. Journal of Experimental Botany, 39: 595~603.
    Gadd G M. 1999. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology, 41: 47~92.
    Gadkar V, David-Schwartz R, Kunik T, Kapulnik Y. 2001. Arbuscular mycorrhizal fungi colonization. Factors involved in host recognition. Plant Physiology, 127: 1493~1499
    George E, R?mheld V, Marschner H. 1994. Contribution of mycorrhizal fungi to micronutrient uptake by plants. In: Manthey JA, Crowley DE, Luster DG (eds) Biochemistry of metal micronutrients in the rhizosphere. Lewis: London: 93~109.
    Gerdes G, Allison B E, Pereira L S. 1994. Overestimation of soybean crop transpiration by sap-flow measurements under field conditions in Central Portugal. Irrigation Science, 14: 187~200.
    Gerrestsen F C. 1948. The influence of micro-organism on the phosphate intaken by the plant. Plant and Soil, 1: 51~60.
    Graham J H. 1987. Water relations of mycorrhizal and phosphorus fertilized non-mycorrhizal citrus under drought stress. New Phytologist, 105: 411~419.
    Griffin J J, Ranney T G, Pharr D M. 2004. Heat and drought influence photosynthesis and water relations, and soluble carbohydrates of two ecotypes of redbud (Cercis canadensis). Journal of American Society for Horticultural Science, 129: 497~502.
    Handly L L, Nevo E, Raven J A, John A R, Martlnez-Carrasco R, Scrimgeour C M, Pakniyat H, Forster B P.1994. Chromosome 4 controls potential of water use efficiency (13C) in barley. Journal of Experimental Botany, 280: 1661~1663.
    Hatfield J L, Sauer T J, Prueger J H. 2001. Managing soil to achieve greater water use efficiency. Journal of Agronomy, 93: 271~280.
    Heaton T, Lee A, Tallman G. 1987. Stomata in senescing leaves: Guard cell viability and regulation of stomatal function in Nicotiana glauca. In: Thomson WW, Nothnagel EA, Huffaker RC (eds), Plant Senescence: Its Biochemistry and Physiology, American Society of Plant Physiologists, Rockville: MD: 198~214.
    Henderson J C. Davies F T. 1990. Drought acclimation and the morphology of mycorrhizal Rosa hybrida L. cv Ferdy is independent of leaf elemental content. New Phytologist, 115: 503~510.
    Heyne E G, Brunson A M. 1940. Genetic studies of heat and drought tolerance in maize. Journal of American Society of Agronomy, 32: 803~814.
    Hong B H, Rubenthaler G L, Allen R E. 1989. Wheat pentosans cultivate variation and relationship to kernel hardness. Cereal Chemistry, 66: 369~373.
    Howell T A, Musik J T. 1985. Les besoins en eau des Cultures. Conference internationale, Paris, September 11~14. Relationship of dry matter production of field crops to water consumption, 247~269.
    Hsiao T. Steduto P, Fereres E. 2007. A systematic and quantitative approach to improve water use efficiency in agriculture. Irrigation Science, 25: 209~231.
    Huang Y, Chen L, Fu B, Huang Z, Gong J. 2005. The wheat yields and water-use efficiency in the Loess Plateau: straw mulch and irrigation effects. Agricultural Water Management, 72: 209~222.
    Hubick K T, Farquhar G D. 1989. Carbon isotope discrimination and the ratio of carbon gained to water lost in barley cultivars. Plant Cell Environment, 12: 795~804.
    Impa S M, Nadaradjan S, Boominatha P N, Shashidhar G, Bindumadhava Hsheshsha-yee M S. 2005.
    Carbon isotope discrimination accurately reflects variability in WUE measured at a whole plant level in rice. Crop Science, 45: 2517~ 2522.
    IPCC, 2001. In: Houghton J T, Ding Y, Griggs D J, Noguer M, Van der Linden P J, Dai X. Maskell K, Johnson C A (Eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge: UK/New York, NY, USA: 881.
    Jelaca S L, Hlynka I. 1972. Effect of wheat-flour pentosans in dough, gluten, and bread. Cereal Chemistry, 49: 489~495.
    Johnson R C, Mornhinwed D W, Ferris D M et al. 1987. Leaf photosynthesis and conductance of selectedTriticum species at different water potential. Plant Physiology, 83: 1014~1017.
    Johnson R C. 1993. Carbon isotope discrimination, water relations and photosynthesis in tall fescue. Crop Science, 33: 169~1744.
    JoséI Q, JoséM B, Allen M F, Caravaca F, Roldán A. 2003. Differential response ofδ13C and water use efficiency to arbuscular mycorrhizal infection in two arid land woody plant species. Oecologia, 135: 510~-515.
    Karlsson P E, Pleijel H, Karlsson G P, Medin E L, Skarby L. 2000. Simulations of stomatal conductance and ozone uptake to Norway spruce saplings in open-top chambers. Environmental Pollution, 109:443~451.
    Katerji N, Hallaire M. 1984. Les grandeurs de réference utilisable dans Iétude de Ialimentation en can des cultures. Agronomie, 4: 999~1008.
    Katerji N, van Hoorn J W, Hamdy A, Mastrorilli M, Mou Karzel E. 1997. Osmotic adjustment of sugar beets in response to soil salinity and its influence on stomatal conductance, growth and yield. Agricultural Water Management, 34: 57~69.
    Katerji N, van Hoorn J W, Hamdy A, Mastrorilli M. 2003. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agricultural Water Management, 62: 37~66.
    Koide R T. 1993. Physiology of the mycorrhizal plant. Advanced Plant Pathology, 9: 33~54.
    Kried D R, Hutmacher R B. 1986. Photosynthetic rate control in sorghum: Stom atal and non-stom atalfactors. Crop Science, 26: 112~117.
    Kupulnik Y, Kushnir U. 1991. Growth dependency of wild, primitive and modern cultivated wheat lines on vesicular-arbuscular mycorrhizae fungi. Euphytica, 56: 27~36.
    Lambert D H, Weidensaul T C. 1991. Element uptake by mycorrhizal soybean from sewage-sludge-treated soil. Soil Science Society of American Journal, 55: 393~398.
    Lancashire P D, Bleiholder H, Langelüddeke P, Strauss R, Van den Boom T, Weber E, Witzenberger A. 1991. A uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology, 119: 561~601.
    Laurentin A M, Douglas E. 2003. Dietary fibre in health and disease. Nutrition Bulletin, 28: 69~73.
    Lawlor D W. 2002. Limination to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. Annals of Botany, 89: 871~885.
    Li F M, Song Q H, Liu H S , Li F R, Liu X L. 2002. Effects of pre-sowing irrigation and phosphorus application on water use and yield of spring wheat under semi-arid conditions. Agricultural Water Management, 49(3): 173~183.
    Li S B, Morris C F, Bettge A D. 2009. Genotype and environment variation for arabinoxylans in hard winter and spring wheats of the U.S. Pacific Northwest. Cereal Chemistry, 86: 88~95.
    Little J J, Nolan S C, Casson J P, Olson B M. 2007. Relationships between soil and run off phosphorus in small Alberta watersheds. Journal of Environmental Quality, 36: 1289~1300.
    Ludwig F, Asseng S. 2006. Climate change impacts on wheat production in a Mediterranean environment in Western Australia. Agricultural System, 90: 159~179.
    Mian M A R, Bailey M A, Ashley D A, Wells R, Carter T E, Jr. Parrott W A, Boerma H R. 1996. Molecular markers associated with water use efficiencyand leaf ash in soybean. Crop Science, 36: 1252~1257.
    Marschner H, Dell B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant Soil, 159: 89~102.
    Martin B, Thorstenson Y R. 1988. Stable carbon isotope composition, water use efficiency, and biomass productivity of Ly-copersicon esculentum, Lycopersicon pennellii, and the F1 hybrid. Plant Physiology, 88: 213~217.
    Martin B J, Nienhuis J, King G, Schaefer A. 1989. Restriction fragment length polymorphism associated with water use efficiency in tomato. Science, 243: 1725~1728.
    Masle J, Gilmore S R, Farquhar G D. 2005. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature, 436: 866~870.
    Meinzer F C, James S A, Goldstein G. 2004. Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees. Tree Physiology, 24: 901~909.
    Michelsen A, Rosendahl S. 1990. The effect of VA mycorrhizal fungi, phosphorus and drought stress on the growth of Acacia nilotica and Leucaena leucocephala seedlings. Plant Soil, 124: 7~13.
    Miiller P, Li X P, Niyogi K K. 2001. Non-Photochemical Quenching. Aresponse to excess light energy. Plant Physiology, 125: 1558~1566.
    Mittler R. 2006. Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11: 15~19.
    Moffat A S. 2002. Plant genetics. Finding new ways to protect drought-stricken plants. Science, 296: 1226~1229.
    Mohammad A, Mitra B, Khan A G. 2004. Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agriculture, Ecosystem & Environment, 103: 245~249.
    Molden D, Oweis T. 2007. Pathways for increasingwater productivity. In: Molden, D. (Ed.),Water for Food,Water for Life: A Comprehensive Assessment of Water Management in Agriculture. InternationalWater Management Institute, Earthscan and Colombo: London: 279~310.
    Morales A, Alvear M, Valenzuela E, Rubio R, Borie F. 2007. Effect of inoculation with Penicillium albidum, a phosphate-solubilizing fungus, on the growth of Trifolium pratense cropped in a volcanic soil. Journal of Basic Microbiology, 47: 275~280.
    Morgan J A, LeCain D R. 1991. Leaf gas exchange and related trait among 15 winter genotypes Crop science, 31: 443~448.
    Morgan J M, Tan M K. 1996. Chromosomal location of a wheat osomregulation gene using RFLP analysis. Austrulia Journal of Plant Physiology, 23: 803~806.
    Morte A, Lovisolo C, Schubert A. 2000. Effect of drought stress on growth and water relations of the mycorrhizal association helianthemum almeriense-terfezia claveryi. Myocrrhiza, 10: 115~119.
    Nagler P L, Glenn E P, Thompson L T. 2003. Comparison of transpiration rates among saltcedar, cottonwood and willow trees by sap flow and canopy temperature methods. Agricultural and Forest Meteorology, 116: 73~89.
    Nelsen C E, Safir G R. 1982. The water relations of well-watered mycorrhizal and nonmycorrhizal onion plants. Journal of American Society Horticultural Science, 107(2): 71~74.
    Osmond C B, Winter K, Powles S B. 1980. Adaptive significance of carbon dioxide cycling during photosynthesis in water stressed plants. In: Turner N C, Kramer P J, eds. Adaptation of Plants to Water and High Temperature Stress. New York, Wiley: 139~154.
    Oweis T. 1997. Supplemental Irrigation.A Highly Efficient Water Use Practice. ICARDA Editions, 16. Oweis T, Zhang H, Pala M. 2000. Water use efficiency of rainfed and irrigated bread wheat in a Mediterranean environment. Journal of Agronomy, 92: 231~238.
    Ozier-Lafontaine H, Lafolie F, Bruckler L, Tournebize R, Mollier A. 1998. Modelling water competition intercrops: theory and comparison with field experiments. Plant Soil, 204: 183~201.
    Passioura J. 2004. Increasing crop productivity when water is scarce– from breeding to field management. In New Directions for a Diverse Planet. Proceedings of 4th International Crop Sciences Congress, 26 September–1 October: 1–17. Brisbane, Australia: Published on CD–ROM by The Regional InstituteLtd.
    Pate J S. 2001. Carbon isotope discrimination and plant water-use efficiency. In: Unkovich M, Pate JS, McNeill A, Gibbs DJ (Eds.), Stable Isotope Techniques in the Study of Biological Processes and Functioning of Ecosystems. Kluwer, Boston: 19~36.
    Perarnaud V, Seguin B, Malézieux E, Deque M, Loustau D. 2002. Agrometorological research and applications needed to prepare agriculture and forestry adapt to 21st century climate change. In: WMO International Workshop on Reducing Vulnerability of Agriculture and Forestry to Climate Variability and Climate Change, Ljubljana, Slovenia, October: 7~9.;
    Pereira L S, Oweis T, Zairi A. 2002. Irrigation management under water scarcity. Agricultural Water Management, 57: 175~206.
    Perrin C H. 1953. Rapid Modified Procedure for Determination of Kjeldahl Nitrogen. Analytical Chemistry, 25(6): 968~971.
    Philippe M, Matthew P R, Richard T, Ector G, Roberto JP, Felipe Z. 2005. Relationship between grain yield and carbon isotope discrimination in bread whet under four water regimes. European Journal of Agronomy, 22: 231~242.
    Philippe M, Madavalam S S, Javed A, Roberto J P. 2007. Using carbon isotope discrimination to select maize (Zea mays L.) inbred lines and hybrids for drought tolerance. Plant Science, 173: 390~396.
    Polley W H. 2002. Implications of atmospheric and climatic change for crop yield and water use efficiency. Crop Science, 42: 131~140.
    Ragab R. 2003. Climate change and water resources management. In: The 3rd World Water Forum, Special Session on Food Security and Water Savings in the Mediterranean. IAM Editions: 87~107.
    Ray I M, Townsend M S, Muncy C M. 1999. Heritabilities and interrelationships of water-use efficiency and agronomic traits in irrigated alfalfa. Crop Science, 39: 1088~1092.
    Rebetzke G J, Richards R A. 1999. Genetic improvement of early vigour in wheat. Australian Journal of Agricultural Research, 50: 291~301.
    Rebetzke G J, Condon A G, Richards R A, Farquhar G J. 2002. Selection for reduced carbon-isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Science, 42: 739~745.
    Rekika D, Nachit M M, Araus J L, Monneveaux P. 1998. Effects of water deficit on photosynthesis rate and osmotic adjustment wheat. Photosynthetica, 32(1): 129~138.
    Reynolds M P, Van Ginkel M, Ribaut J M. 2000. Avenues for genetic modification of radiation use efficiency in wheat. Journal of Experimental Botany, 51: 459~473.
    Richards R A, Condon A G, Rebetzke G J. 2001. Traits to improve yield in dry environments. In Application of Physiology in Wheat Breeding, pp. 88–100. Eds M.P. Reynolds, J.I. Ortiz-Monasterio and A. McNab. DF, Me′xico: CIMMYT.
    Richards R A, Rebetzke G J, Condon A G, van Herwaarden A F. 2002. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Science, 42, 111~121.
    Rizhsky L, Liang H, Mittler R. 2002. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology, 130: 1143~1151.
    Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. 2004. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134:1683~1696.
    Roberts S, Vertessy R, Grayson R.. 2001. Transpiration from Eucalyptus sieberi(L.Johnson)forest of different age. Forest Ecology and Management, 143: l53~l61.
    Rodrriguez D, Sadras V O. 2007. The limit to wheat water-use efficiency in eastern Australia. I. Gradients in the radiation environment and atmospheric demand. Australian Journal of Agricultural Research, 58: 287~302.
    Saastamoinen M, Plaami S, Kumpulainen J. 1989. Pentosan andβ-glucan content of Finnish winter rye varieties as compared with rye of six other countries. Journal of Cereal Science, 10: 199~207.
    Sadras V O, Angus J F. 2006. Benchmarking water use efficiency of rainfed wheat in dry environments. Australian Journal of Agricultural Research, 57: 847~856.
    Savin R, Nicolas M E. 1996. Effects of short periods of drought and high temperature on grain growth and starch accumulation of two malting barley cultivars. Australian Journal of Plant Physiology, 23: 201~210.
    Sayre K, Acevedo E, Austin R. 1995. carbon isotope discrimination and grain yield for three bread wheat germplasm groups grown at differentleves ofwater stress. Field Crops Research, 41: 45~54.
    Shah N, Paulsen G. 2003. Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and Soil, 257: 219~226.
    Shangguan Z P, Shao M A, Dyckmans J. 2000. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environmental and Experimental Botany, 44: 141~149.
    Sharma A K, Srivastava P C, Johri B N. 1994. Contribution of VA mycorrhiza to zinc uptake in plants. In: Manthey JA, Crowley DE, Luster DG (eds) Biochemistry of metal micronutrients in the rhizosphere. Lewis, London: 111~123.
    Sheshshayee M S, Bindumadhava H, Rachaputi N R, Prasad T G, Udayakumar M, Wright G C, Nigam S N. 2006. Leaf chlorophyll concentration relates to transpiration efficiency in peanut. Annals of Apply Biology, 148: 7~15.
    Simpson D, Daft M J. 1990. Interactions between water-stress and different mycorrhizal inocula on plant growth and mycorrhizal development in maize and sorghum. Plant Soil, 121: 179~186
    Smith D M, Allen S J. 1996. Measurement of sap flow in plant stems. Journal of Experimental Botany, 47: l833~1844.
    Souza C R, Maroco J, Santos T, Rodrigues M L, Lopes C M, Pereira J, Chaves M M. 2005. Impact of deficit irrigation on water use efficiency and carbon isotope composition (δ13C) of field-grown grapevines under Mediterraneanclimate. Journal of Experimental Botany, 56: 2163~2172.
    Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. 2001. Soybean response to water:A QTL analysis of drought tolerance. Crop Science, 41: 493~509.
    Sportisse B. 2002. Air Pollution, Modelling and Simulation. Springer-Verlag, Berlin: 592.
    St Clair B S, Lynch P J. 2005. Base cation stimulation of mycorrhization and photosynthesis of sugar maple on acid soils are coupled by foliar nutrient dynamics. New Phytologist, 165: 581~590.
    Steinberg S L, Mcfarland M J, Worthington J. 1990. Compari—son of trunk and branch sap flow with canopy transpiration in Pecan. Journal of Experimental Botany, 41: 653~59.
    Stone P. 2001. The effects of heat stress on cereal yield and quality. In: Crop Responses and Adaptations toTemperature Stress (ed. A.S. Basra), Food Products Press, Binghamton, NY, USA: 243~291.
    Su P X, Yan Q D, Chen H S. 2005.δ13C values water efficiency of the leaves and assimilating shoots of desert plants. Acta Botanica Boreali-Occidentalia Sinica, 25: 727~732.
    Subramanian K S, Charest C. 1995. Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza, 5: 273~278.
    Tambussi E A, Nogues S, Ferrio P, Voltas J, Araus J L. 2004. Does a higher yield potential improve barley performance under Mediterranean conditions? Field Crops Research, 91: 149~160.
    Tanner C B, Sinclair T R. 1983. Efficient water use in crop production: research or research? In: Taylor, H.M., Jordan, W.R., Sinclair, T.R. (Eds.), Limitations to Efficient Water Use in Crop Production. American Society Agronomy, 1–27.
    Tawaraya K, Turjaman M, Ekamawanti H A. 2007. Effect of Arbuscular Mycorrhizal Colonization on Nitrogen and Phosphorus Uptake and Growth of Aloe vera L. Hortscience, 42(7): 1737~1739.
    Takai T, Ohsumi A, San-oh Y, C. Laza M R, Kondo M, Yamamoto T, Yano M. 2009. Detection of a quantitative trait locus controlling carbon isotope discrimination and its contribution to stomatal conductance in japonica rice. Theoretical and Applied Genetics, 118: 1401~1410.
    Thompson D S, Wilkinson S, Bacon M A, William J D. 1997. Multiple signals and mechanisms that regulate leaf growth and stomatal behavior during water deficit. Plant Physiology, 100: 303~313
    Turner N C. 2004a. Sustainable production of crops and pastures under drought in a Mediterranean environment. Annals of Applied Biology, 144: 139~147.
    Turner N C. 2004b. Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems. Journal of Experimental Botany, 55: 2413~2425.
    Van Den Boogaard R, Veneklass E J, Lambers H. 1996. The association of biomass allocation with growth and water use efficiency of two Triticum aestivum cultivars. Australian Journal of Plant Physiology, 23(6): 751~761.
    Van den Boogaard R, Alewinjinse D, Veneklaas E J, Lambers H. 1997. Growth and water use efficiency of 10 Triticum aestivum culticars at different water availability in relation to allocation of biomass. Plant Cell and Environment, 20: 200~210.
    Veneklaas EJ, Santos Silvam P R M, Denouden F. 2002. Determinants of growth rate in Ficus benjamina L. compared to related faster-growing woody and herbaceous species. Horticultural Science, 93: 75~84.
    Viets F G. 1972. Water deficits and nutrient availability. In: Kozlowski TT (ed) Water deficits and plant growth, vol 3. Academic, New York: 217~239.
    Wakelin S A, Warren R A, Ryder M H. 2004. Effect of soil properties on growth promotion of wheat by Penicillium radicum. Australian Journal of Soil Research, 42: 897~904.
    Wang G M, Coleman D C, Freckman D W, Dyer M I, McNaughton S J, Acra M A, Goeschl J D. 1989.
    Carbon partitioning patterns of mycorrhizal versus non-mycorrhizal plants: real time dynamic measurements using CO2. New Phytologist, 112: 489~493.
    Wang Z, Huang B. 2004. Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress. Crop Science, 44: 1729~1736.
    Whitelaw M A, Harden T J, Bender G L. 1997. Plant growth promotion of wheat inoculated with Penicillium radicum. Australian Journal of Soil Research, 35: 291~300.
    Whitelaw M A, Harden T J, Helyar K R. 1999. Phosphate solubilisation in solution culture by the soilfungus Penicillium radicum. Soil Biology & Biochemistry, 31: 655~665.
    Wigley T M L, Raper S C B. 2001. Interpretation of high projections for global-mean warming. Science, 293: 451~454.
    Wright G C, Nageswara Rao R C. 1994. Peanut Water Relations. In: Smartt, J. (Ed.), The Groundnut Crop. Chapman & Hall, London: 281~325.
    Woodward F I. 1992. Predicting plant responses to global environmental change. New Phytologist, 112: 239~251.
    Xia G M, Kang S Z, Li F S, Zhang J H, Zhou Q Y. 2008. Diurnal and seasonal variations of sap flow of Caragana korshinskii in the arid desert region of north-west China. Hydrological processes, 22: 1197~1205.
    Xu Q, Paulsen A Q, Guikema J A, Paulsen GM. 1995. Functional and ultrastructural injury to photosynthesis in wheat by high temperature during maturation. Environmental and Experimental Botany, 35: 43~54.
    Xu Z Z, Zhou G S. 2005a. Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis. Plant Soil, 269: 131~139.
    Xu Z Z, Zhou G S. 2005b. Effects of water stress and nocturnal temperature on carbon allocation in the perennial grass, Leymus chinensis. Plant Physiology, 123: 272~280
    Xu Z Z, Zhou G S. 2006. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta, 224: 1080~1090.
    Yin C Y, Wang X, Duan B L, Luo J X, Li C Y. 2005. Early growth, dry matter allocation andwater use efficiency of two sympatric Populus species as affected by water stress. Environmental and Experimental Botany, 53: 315~322.
    Zhang B B, Liu W Z, Chang X S, Anyia O A. 2010. Water-Deficit And High Temperature Affected Water Use Efficiency And Arabinoxylan Concentration In Spring Wheat. Journal of Cereal Science, 52: 257~263.
    Zhang Z B, Shah L, Xu Q. 2000. Background analysis of genes controlling water use efficiency of Triticum. Acta Genetica Sinica, 3: 240~246.
    Zhao B Z, Zhang J B, Motohiko K, Morihiro M, Yasuo O. 2004a. Water-use efficiency of upland rice and carbon isotope discrimination. Acta Pedol. Sinica, 41: 707~714.
    Zhao B Z, Kondo M, Maeda M, Ozaki M, Zhang J B. 2004b. Water-use efficiency and carbon isotope discrimination in two cultivars of upland rice during different developmental stages under three water regimes. Plant and Soil, 261: 61~75.
    Zheng Y R, Xie Z X, Jiang L H, Shimizu H, Rimmington G M, Zhou G S. 2006. Vegetation responses along environmental gradients on the Ordos plateau, China. Ecological Research, 21: 396~404.
    Zheng Y R, Rimmington G M, Xie Z X, Zhang L, An P, Zhou G S, Li X J, Yu Y J, Chen L J, Shimizu H. 2008. Responses to air temperature and soil moisture of growth of four dominant species on sand dunes of central Inner Monglia. Journal of Plant Research, 121: 473~482.
    Zwart S J, Bastiaanssen W G M. 2004. Review of measured crop water productivity values for irrigated wheat, rice, cotton, and maize. Agricultural Water Management, 69: 115~133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700