当归产量和品质形成对海拔的响应及生理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当归为甘肃道地药材,以质优物美的“岷归”享誉海内外。但由于现有适宜生态区有限,并且药农习惯于种植在比较平坦的低海拔地带,导致当归栽培面积有限,产品供不应求。为了探寻当归适宜栽培区,在国家自然科学基金项目“当归连作障碍的根际作用机制及生态扰动对策”(编号:31060182)和甘肃省农业生物技术研究于应用开发项目“当归连作障碍的生态扰动效应及根际生物及化学抑制剂研制”的资助下,于2009~2010年,在甘肃省岷县茶埠乡2300~2800m海拔范围内进行生态适应性试验,探索不同海拔下当归产量和品质差异,从叶片保护酶、渗透调节物质和光合特性等角度揭示海拔影响当归产量和品质的机理,研究影响当归产量和品质的关键因子及其影响大小,得到如下主要结论:
     1.海拔梯度通过改变光合产物分配格局和干物质积累速率而影响产量形成。随海拔升高,光合产物向根中分配提前,干物质积累速率增加。海拔导致成药期当归光合产物分配格局发生明显变化,海拔2780m处理根分配比例(≥30%)较其他两个海拔提前10d,并且后期根分配比例(约54%)明显高于其他两个海拔(49.8%~50.9%),这为采收期当归产量形成奠定基础;生物积累量随海拔升高而呈增加趋势,分别为33.1%、43.7%和46.7%,分析海拔间生物量积累的变化幅度得出:海拔越高,变化幅度越小,在海拔2360m处理基础上,海拔2570m处理增加32%,而在海拔2570m处理基础上,海拔2780m仅增加7%;药材产量依次为海拔2570m处理(28.4g/plant)>海拔2780m处理(26.6g/plant)>海拔2360m处理(21.8g/plant),低海拔2360m处理比其他两个海拔分别低22.6%和20.8%,差异达显著水平(P<0.05)。药材产量在海拔梯度间的变化幅度与干物质积累速率一样,随海拔升高而降低,依次为30.3%和6.3%。
     2.海拔梯度对当归光合色素和光合参数具有显著影响。海拔升高导致类胡萝卜素(Car)、净光合速率(Pn)、气孔导度(Gs)和胞间CO_2浓度(Ci)降低而叶绿素含量增加,而蒸腾速率(Tr)出现先增加后降低的趋势,进而影响当归光合生理生态。海拔2570m和2780m处理与海拔2360m处理相比,Car分别降低14.3%和55.4%,Pn日平均值分别降低10.0%和18.4%,Gs日平均值分别降低5.3%和16.0%,Ci日平均值分别降低7.6%和14.0%,叶绿素a分别增加7.9%和70.5%,叶绿素b分别增加21.1%和75.8%,Tr日平均值海拔2570m处理显著高于海拔2360m处理(增加13.3%),而海拔2780m处理显著低于2360m处理(降低13.3%)。通过分析影响净光合速率环境因子表明,空气相对湿度为关键因子,其次为光合有效辐射(PAR)和空气CO_2浓度。
     3.由于低海拔温度较高致使当归体内活性氧过量积累,形成膜质过氧化产物丙二醛(MDA),对细胞造成毒害,当归则通过增加细胞渗透调节物质含量降低MDA的毒害,这与当归性喜冷凉环境条件特性一致。MDA含量随海拔升高而降低,海拔2360m处理比其他两个海拔处理分别高52.4%和38.1%,处理间差异显著(P<0.05),三个海拔处理间MDA降低幅度随海拔升高而降低,依次为52.4%和30.0%;游离脯氨酸(Pro)含量随海拔升高呈现“高-低-高”的海拔效应,海拔2360m和2780m处理间差异不显著,但均显著高于海拔2570m处理,分别高出12.4%和13.6%,而Pro在三个海拔间变化幅度随海拔升高而增加,依次为12.4%和13.6%;海拔2360m和2570m处理可溶性糖含量均显著高于海拔2780m处理(P<0.05),分别高出19.7%和14.7%,而海拔2360m和2570m处理间差异不显著(P>0.05),三个海拔处理间可溶性糖含量变化幅度随海拔升高而增加,依次为7.7%和14.7%;本研究还分析了渗透调节物质与膜质过氧化产物MDA间的关系,表明渗透调节物质与MDA含量变化一致,并且渗透调节物质之间具有互补关系。
     4.当归通过增加保护酶活性来分解过氧化物,保护细胞不受过氧化物MDA的伤害。SOD活性随海拔升高而降低,海拔2780m处理比海拔2360m和2570m处理分别降低40.8%和39.3%,差异达显著水平(P>0.05),三个海拔处理间SOD活性降低幅度随海拔升高而增加,在海拔2360m基础上,海拔2570m处理降低2.5%,而在海拔2570m基础上海拔2780m处理降低39.3%;CAT活性随海拔升高而降低,海拔2780m处理比海拔2360m和2570m低13.6%和17.1%,差异达显著水平(P<0.05),三个海拔间CAT活性降低幅度随海拔升高而增加,依次为13.6%和14.6%;POD活性随海拔升高呈现先升高后降低的变化趋势,海拔2780m处理当归体内POD活性最低,比海拔2360m和2570m处理分别低26.1%和31.5%,差异达显著水平(P<0.05),三个海拔间POD活性降低幅度随海拔升高而增加,在海拔2360m基础上,海拔2570m处理浮动4.27%,而在海拔2570m基础上,海拔2780m处理浮动24.0%。三种保护酶活性与MDA含量间相关分析表明, CAT与MDA呈显著的正相关关系(R~2=0.3068),且三种保护酶间均呈极显著的正相关关系(R~2>0.96)。
     5.当归根中阿魏酸含量随海拔升高而升高,海拔2780m处理比海拔2360m处理增加14.5%,差异达显著水平(P<0.05),而海拔2570m和其他两个海拔间差异均不显著;阿魏酸含量在海拔梯度间的变化幅度随海拔升高而降低,依次为8.6%和5.5%,但差异不显著(P>0.05)。
     6.当归根中挥发油收率、挥发油含量和藁本内酯相对含量均随海拔升高而增加。当归挥发油收率海拔2360m处理最低,为0.86%,海拔2780m和2570m处理分别比低海拔2360m处理显著高于14.0%和11.6%;三个海拔处理当归挥发油含量分别为85.55%、95.16%和96.67%,且GC-MS成分分析表明,挥发油主要化学成分为藁本内酯,三个海拔处理相对含量分别为58.72%、60.91%和61.59,海拔间差异不显著(P>0.05),但对藁本内酯和其异构物含量的综合分析表明,海拔2570m(64.28%)和2780m(65.29%)处理比海拔2360m处理(58.99%)分别高出8.97%%和10.68%,海拔2780m与2360m处理间差异显著(P<0.05)。
     7.通过相关分析表明,影响当归产量和品质的关键生态因子均为温度和降雨量,相关程度为0.7417~0.9714,其次是日照时数;影响当归产量的关键生理生化因子为MDA (R~2=-0.9118),其次为可溶性糖(R~2=-0.8831),而影响阿魏酸的关键生理生化因子为可溶性糖(R~2=0.9749),其次为SOD(R~2=0.8408),影响挥发油的关键生理生化因子为可溶性糖(R~2=-0.8990)和MDA(R~2=-0.8958),其次为SOD(R~2=-0.7226);影响当归产量的关键光合参数为胞间CO_2浓度(R~2=-0.7393)和净光合速率(R~2=-0.7332),其次是空气湿度(R~2=-0.5955)、气孔导度(R~2=-0.5553)和光合有效辐射(R~2=-0.5277),而影响阿魏酸的关键光合参数为空气相对湿度(R~2=0.9699) ,其次为光合有效辐射(R~2=0.9467)、Chlb(R~2=0.9380)和气温(R~2=-0.9050),影响挥发油的关键光合参数为胞间CO_2浓度(R~2=-0.9706)和净光合速率(R~2=-0.96849),其次为空气相对湿度(R~2=0.9060)、气孔导度(R~2=0.8839)、光合有效辐射(R~2=0.8682)和空气CO_2浓度(R~2=0.8598)。综合分析,影响当归产量和品质的关键光合参数为胞间CO_2浓度、净光合速率、空气相对湿度以及光合有效辐射和空气CO_2浓度。
     综合以上研究结果认为,在试验设计范围内,随海拔升高,当归产量增加、品质改善。从生态因子角度分析,降低温度、增加降雨量有利于当归产量和品质形成;从生理生化因子分析认为,降低膜质过氧化产物MDA、渗透调节物质可溶性糖含量以及保护酶SOD活性,有利于当归产量和品质形成;从光合参数角度分析,大气相对湿度增加、有效光辐射增强和空气CO_2浓度增加均有利于产量形成和品质改善。因此,在2300m~2800m范围内,建议扩大高海拔当归栽培面积。
Angelic sinensis is one of the genuine medicinal materials of Min County in Gansu province,and Min Angelic sinensis renowned at home and abroad because of its high quality. However,the limited appropriate ecotopes and traditional customs of planting Angelic sinensis on relatively smooth and low altitude land led to the lack of planting area,and further led to the situation that the supply is inadequate to meet the demand. In order to explore the appropriate planting area of Angelic sinensis from existing ecological resources,ecological adaptability tests (field and pot experiment) were conducted in Chabu country of Min County in Gansu province during 2009-2010. In this study,we discussed the difference of yield and quality of Angelic sinensis and revealed the influencing mechanism of altitude on yield and quality of Angelica sinensis from protective enzyme,osmotic regulation substances and photosynthetic characteristics,to look for the key factors and its influence size to effect yield and quality of Angelic sinensis. The main results are as follows:
     1. Altitudes effected the Angelic sinensis yield formation through changing sink-source relationships and dry matter accumulation rate. The partitioning of photosynthates to root arrived ahead of time and dry matter accumulation rate increased with the increase of altitude. Partitioning of photosynthates in Angelic sinensis of 2780m altitude to root began 10 days ahead than the others and the percentage of photosynthates distribute to root was much more than the latter in later growth stage,which a solid base for the yield formation of Angelica sinensis in harvest period. Biological yield increased by 33.1%,43.7% and 46.7%,respectively,with the increase of altitude,compared with than in flat land. The sequence of Angelic sinensis root yield was 2570m(28.4g/plant),2780m(26.6g/plant) and 2360m (21.8g/plant),and the root yield of 2360m treatment significantly decreased by 22.6% and 20.8% compared to the other altitudes(P<0.05).The variance of root yield and dry matter accumulation rate reduced with the increase of altitude.
     2. Altitudinal gradients significantly influenced the photosynthetic pigment content and photosynthetic parameters of Angelic sinensis. The carotenoids,net photosynthetic rate(Pn),stomatal conductance(Gs) and intercellular CO_2 concentration(Ci) were decreased,but the chlorophyll content was increased and transpiration rate(Tr) increased in 2570m treatment then decreased Along with altitude elevating,Carotenoids content decreased by 14.3% and 55.4%,mean net photosynthetic rate decreased by 10.0% and 18.4%,stomatal conductivity decreased by 5.3% and 16.0%,mean intercellular CO_2 concentration decreased by 7.6% and 14.0%,chlorophyll-a increased by 7.9% and 70.5% and chlorophyll-b increased by 21.1% and 75.8%,compared 2570m and 2780m treatments with 2360m treatment. Mean transpiration rate significantly increased by 13.3% in 2570m treatment and significantly decreased by 13.3% in 2780m treatment compared to that in 2360m treatment.Analysis of environment factor influencing the net photosynthetic rate showed that the air relative humidity was the key factor,followed by photosynthetic available radiation (PAR) and air CO_2 concentration.
     3. The excessive accumulation of active oxygen metabolism caused by high temperature in low altitude area led to the formation of MDA which is the membranous peroxide and can produce a toxic effect on cells in Angelica sinensis. Angelic sinensis reduced the toxicity of MDA by increasing the content of cell osmotic regulation substances and this was consistent with Angelic sinensis’properties of being fond of cool ecological conditions. MDA content decreased with the increase of altitude that in 2360m treatment was significantly increased by 52.4% and 38.1% compared with that in 2570m treatment and 2780m treatment (P<0.05);The reducing range between treatments decreased with altitude elevating,it was 52.4% and 30.0%. Free proline content showed the altitude effect of "high—low—high" and there was no significant difference between the treatments in 2360m and 2780m,but free proline content in the two treatment above was significantly higher than that in 2570m,and increased by 12.4% and 13.6%,respectively. The variation ranges of free proline content between treatments increased by 12.4% and 13.6%with the increase of altitude. Soluble sugar content of 2360m and 2570m treatments were significantly higher than that of 2780m by 19.7 % and 14.7% (P<0.05),while the difference between the treatments of 2360m and 2570m was not significant(P>0.05),the variance range in three altitudes were increased by 7.7% and 14.7% with altitude elevatsing. The analysis of the relationship between osmotic regulation substances and membranous peroxidation product showed that the change of osmotic regulation substances content was in accordance with the change of MDA content,and there was a complementary relationship between the content of osmotic regulation substances.
     4. Low altitude caused active oxygen metabolism disordere,active oxygen accumulation and finally the formation of MDA in Angelic sinensis. In order to sheltered cells from the suffering of MDA,Angelic sinensis’cells increased the antioxidant enzymes activity to decompose peroxide. The studies showed that SOD activity reduced with the increase of altitude,and that in 2780m treatment was decreased by 40.8% and 39.3%,relatively,compared with that in 2360m and 2570m treatments (P<0.05). The reducing range of SOD activity in three altitudes were increased with altitude elevating,and that in 2570m treatment was significantly decreased by 2.5% compared to that in 2360m treatment and that in 2780m treatment was significantly decreased by 39.3% compared to that in 2570m(P<0.05). CAT activity reduced with the increase of altitude and that in 2780m treatment significantly decreased by 13.6% and 17.1% compared to that in 2360m and 2570m treatments (P<0.05). The reducing range of CAT activity in three altitudes were increased with the increase of altitude,it was 13.6% and 14.6%. POD activity showed the tendency of rising at first and then decreased with the increase of altitude. POD activity in 2780m treatment was lowest and lowered by 26.1% and 31.5% compared to that in 2360m and 2570m treatments and the difference between them were significant (P<0.05). The reducing ranges of POD activity in three altitudes were increased with the increase of altitude and it was 4.27% and 24.0%,respectively. The correlation analysis between protective enzyme and MDA showed that the content of MDA and CAT had a significantly positive correlation (R~2=0.3068) and the POD,SOD and MDA are significantly positively correlated with each other (R~2>0.96).
     5. Ferulic acid content in Angelic sinensis root was increased with the increase of altitude,Ferulic acid content of Angelic sinensis in 2780m treatment was significantly increased by 14.5%(P<0.05) compaed with 2360m treatment,while there were no significant difference between 2570m treatment and the other two altitudes. The variation scope of ferulic acid content decrease with the increase of altitude and there were no significant difference between them.
     6. The yield and amount of essential oil,relative ligustilide content in Angelic sinensis increased with the increase of altitude. Yield of essential oil in Angelic sinensis in 2360m treatment,was 0.86% and it was the lowest in all treatments and was decreased by 11.6% and 14.0% compared to that in 2570m and 2780m treatments,respectively. Essential oil content under three altitudes were 85.5%,95.16% and 96.67%. GS-MS analysis showed that ligustilide was the main chemical compositing of essential oil and the relative content in Angelic sinensis of three altitudes were 58.72%,60.91% and 61.59%,respectively,and there were no significant difference between them. Synthetic analysis of ligustilide and its isomer showed that the content in 2570m treatment (64.28%) and 2780m treatment (65.29%) were increased by 8.97% and 10.68% compared with that in 2360m treatment,respectively and the difference between that in 2780m treatment and 2360m treatment was significant(P<0.05).
     7. Correlation analysis showed that the key ecological factors effecting the yield and quality of Angelic sinensis was temperature and rainfall which has the correlation degree from 0.7417 to 0.9714,sunshine hours. MDA and soluble sugar were the key physiological and biochemical factors effecting yield of Angelic sinensis (R~2=-0.9118) and the determination coefficients were -0.9118 and -0.8831,respectively. The physiological and biochemical factor effecting ferulic acid of Angelic sinensis,the soluble sugar was of first importance (R~2=0.9749) and then followed by SOD (R~2=0.8408). The physiological and biochemical factors effecting essential oil of Angelic sinensis,soluble sugar (R~2=-0.8990) and MDA (R~2=-0.8958) were of first importance and then followed by SOD (R~2=-0.7226). In the photosynthesis parameters,that effecting the yield of Angelic sinensis,Ci(R~2=-0.7393) and Pn(R~2=-0.7332) were the key factors and followed by RH (R~2=-0.5955),Gs(R~2=-0.5553) and PAR(R~2=-0.5277),in that effecting ferulic acid,RH(R~2=0.9699) was the key factor and followed by PAR(R~2=0.9467),Chlb (R~2=0.9380)and air temperature(R~2=-0.9050),and in that effecting effect essential oil of Angelic sinensis,Ci(R~2=-0.9706) and Pn(R~2=-0.96849) were the first important,followed by RH,Gs,PAR and air CO_2 contentration. Comprehensive analysis showed that the key photosynthesis parameters effecting the yield and quality of Angelic sinensis were Ci, Pn, RH, PAR and air CO_2 contentration.
     Based on the results described above, the yield and quality of Angelic sinensis increased with the increase of altitude. From the angle of ecological factors, the reduce of temperature and the the increase of rainfall are beneficial to the yield and quality of Angelic sinensis. From the angle of physiological and biochemical factors,the reduce of MDA content,soluble sugar content and protective enzyme activity are beneficial to the formation of the yield and quality of Angelic sinensis. From the angle of photosynthesis parameters,the increase of air relative humidity,photosynthetically active radiation (PAR) and air CO_2 density are beneficial to the yield increasing and quality improving. So,in the altitude range from 2300m to 2800m,we suggested expanding the cultivation areas of Angelic sinensis.
引文
[1]国家药典委员会.中华人民共和国药典(2010版,一部)[S].北京:中国医药科技出版社出版,2010.
    [2]王文杰.当归冷冻贮苗技术和原理[J].中药材科技,1979,(3):1.
    [3]吴汝勤.当归根生长发育的研究[J].中药材科技,1982,(1):2.
    [4]张贵君.现代实用中药鉴别技术[M].北京:人民卫生出版社,2000.
    [5]夏泉,张平,李绍平,等.当归的药理作用研究进展[J].时珍国医国药,2004,15(3):164-166.
    [6]陈慧珍.当归的研究进展[J].海峡药学,2008,20(8):83-85.
    [7]杨小军,丁永辉.甘肃当归GAP栽培的环境质量评价[J].解放军药学学报,2004,20(2):110-112.
    [8]邓振镛.干旱地区农业气象研究[J].北京:气象出版社,1999:199.
    [9]史宏志,谢子发,尹宏博,等.不同海拔对白肋烟茎叶生长发育动态的影响[J].河南农业科学, 2010,(5): 38-41.
    [10]陆永恒.生态条件对烟叶品质影响的研究进展[J].中国烟草科学,2007,28(3):43-46.
    [11]于建军,王改丽,叶贤文,等.植烟地区海拔高度对烟叶品质的影响研究进展[J].湖南农业科学, 2010,(1):38-41,80-82、90-93,
    [12]王彪,李天福,王树会.海拔高度与烟叶化学成分的相关分析[J].广西农业科学,2006,37(5): 537-539.
    [13]孙年喜,彭锐,伍晓丽,等.不同海拔青蒿生长及青蒿素累积的动态变化研究[J].世界科学技术—中医药现代化,2008,10(3):78-82.
    [14]朱仁斌,宛志沪,丁亚平,等.皖西山区西洋参有效成分含量与栽培地海拔高度的关系[J].中草药, 2002,33(2):163-166.
    [15]窦宏涛,陈琳.陕西省不同海拔地区椒样薄荷精油成分分析及香气品质评价[J].中国农学通报, 2009,25(23):132-136.
    [16]宋晓静,郭珍,袁红霞,等.不同部位、不同海拔及不同生长阶段紫茎泽兰中绿原酸含量的变化[J].北京师范大学学报(自然科学版) 2010,46(2):166-168.
    [17]马生祥,马明呈,张振华.不同海拔野生金露梅叶的成分分析[J].青海农业科技,2010(2):8-12.
    [18]陈翠,袁理春,杨丽英,等.不同海拔、土壤类型及肥力对云南重楼产量和质量的影响研究[J].西南农业学报,2009,22(5):1388-1391.
    [19]张霁,蔡传涛,蔡志全,等.不同海拔云南黄连生物量和主要有效成分变化[J].应用生态学报, 2008,19(7):1455-1461.
    [20]甄才红,刘国顺,王彦亭,等.中性致香物质含量的影响[J].河南农业科学,2010,(2):46-50.
    [21]陈双林.海拔对毛竹林结构及生理生态学特性的影响研究[D].南京林业大学博士论文,2009年.
    [22]潘红丽,李迈和,蔡小虎,等.海拔梯度上的植物生长与生理生态特性[J].生态环境学报,2009,18(2): 722-730.
    [23]张明,刘峻杰,张铭彩,等.半夏不同海拔种植的研究[J].中国现代中药,2010,12(2):29-30.
    [24]LOEHLE C. Height growth tradeoffs determines northern and southern range limits for trees[J]. Journal of Biogeography,1998,25:735-742.
    [25]李俊清,牛树奎.森林生态学[M].北京:高等教育出版社,2006.
    [26]CRIDDLE R S,HOPKIN M S,MCARTHuR E D,et al.Plant distribution and the temperature coefficient of metabolism[J]. Plant,Cell and Environment,1994,17:233-243.
    [27]SCHENK H J. Modeling the effects of temperature on growth and persistence of tree species: A critical review of tree population models[J]. Ecology Modelling,1996,92: 1-32.
    [28]LOEHLE C. Forest ecotone response to climate change: sensitivity to temperature response functional forms[J]. Canadian Journal of Forest Research,2000,30(10):1632-1645.
    [29]K?RNER C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems[M].2nd ed. New York: Springer Berlin Heidelberg,2003.
    [30]TINGEY D T,PHILLIPS D L,JOHNSON M D. Elevated CO2 and conifer roots: effects on growth,life span and turnover[J].New Phytologist,2000,147:87-103.
    [31]CELINE B,RuNNING S W. Impacts of climate change on natural forest productivity-evidence since the middle of the 20th century[J]. Global Change Biology,2006,12: 862-882.
    [32]GuNDERSON C A,WuLLSCHLEGER S D. Photosynthetic acclimation in trees to rising atmospheric CO2: A broader perspective[J]. Photosynthesis Research,1994,39:369-388.
    [33]TRANQuILLINI W. Physiological Ecology of the Alpine Timberline: Tree Existence at High Altitude with Special Reference to the European Alps,Ecological Studies[M]. New York: Springer Berlin Heidelberg,1979.
    [34]BARRY R G. Mountain Weather and Climate[M]. Methuen,Londonand New York,1981.
    [35]REINERS W A,HOLLINGER D Y,LANG G E. Temperature and evapotranspiration gradients of the White Mountains,New Hampshire,uSA[J]. Arctic and Alpine Research,1984,16:31-36.
    [36]LOEHLE C. Height growth tradeoffs determines northern and southern range limits for trees[J]. Journal of Biogeography,1998,25:735-742.
    [37]李俊清,牛树奎.森林生态学[M].北京:高等教育出版社,2006.
    [38]IPCC.Climate change: the Physical Science Basis Contribution of Working Group I//Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge: Cambridge university Press,2007.
    [39]LOEHLE C. Height growth tradeoffs determines northern and southern range limits for trees[J]. Journal of Biogeography,1998,25:735-742.
    [40]陈少勇,董安祥.青藏高原总云量的气候变化及其稳定性[J].干旱区研究,2006,23(2): 327-333.
    [41]JAVIER C,ASUNCION J. Effect of cloud cover on UVB exposure under tree canopies: Will Climate change affect UVB exposure[J]. Physical Geography,2004,86(1): 81-89.
    [42]BRADSHAW W E,HOLZAPFEL C M. Genetic response to rapid climate change: it’s seasonal timingthat matters[J]. Melecular Ecology,2008,17: 157-166.
    [43]王勋陵,王静.植物的形态结构与环境[M].兰州:兰州大学出版社,1989.
    [44]CASTRO D P,PUYRAVAUD J P,CORNELISSEN J H C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of wide range of woody plant species and types[J]. Oecologia,2000,124: 476-486.
    [45]HENRY H,ARSSEN L W. The relationship between shade tolerance and shade avoidance strategies in woodland plants[J]. Oikos,1997,80:575-582 .
    [46]李芳兰,包维楷,刘俊华.岷江上游干旱河谷海拔梯度上四川黄栌叶片特征及其与环境因子的关系[J].西北植物学报,2005,25(11):2277-2284.
    [47]MESSIER C,DOUCET R,RUEL J C,et al. Functional ecology of advance regeneration in relation to light in boreal forests[J]. Canadian Journal of Forest Research,1999,29: 812-823.
    [48]GARDINER E S,HODGES J D. Growth and biomass distribution of cherry bark oak (Qurecus pagoda Raf.) seedlings as influenced by light availability[J]. Forest and Ecology Management, 1998,108: 281-287.
    [49]CANHAM C D. Growth and architecture of shade-tolerant trees: response to canopy gaps[J]. Ecology,1988,70: 1634-1638.
    [50]WILSON J B. A review of evidence on the control of shoot: root ratio,in relation to model[J]. Annals of Botany,1988,61: 433-449.
    [51]周秀骥.高等大气物理学[M].北京:气象出版社,1991.
    [52]丁守国,赵春生,石广玉,等.近20年全球总云量变化趋势分析[J].应用气象学报,2005,16(5): 670-678.
    [53]Vitous ek P M,Mat son P A,Cl eve K V. Nitrogen availability and nitrificat ion during succession primary secondary and old fields eries [J] . Plant and Soil,l989,11(5):229-239.
    [54]Houghton J T. Climate Change 1995: the Science of climate change [M].Cambridge,Great Britain:Cambridge university Press,1996.
    [55]席承藩.中国土壤[M].北京:中国农业出版社. 1998,869-874.
    [56]DEMERS J D,LEE T D,BARRETT J P. Substrate type and the distribution of sugar maple at its elevational limit in the White Mountains,New Hampshire[J]. Canadian Journal of Forest Research, 1998,28:490-494.
    [57]吕贻忠,张凤荣,孙丹峰.百花山山地土壤中有机质的垂直分布规律[J].土壤,2005,37(3): 277-283.
    [58]田种存,高旭升,陈玉福,等.不同海拔下高山草原土土壤养分变化初探[J].青海农林科技,2006,3: 69-71.
    [59]王斌,陈亚明,周志宇.贺兰山西坡不同海拔上土壤氮素矿化作用的研究[J].生态学报,2007,27(3): 483-490.
    [60]BHATTARAI K R,VETAAS O R. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas,east Nepal[J].Global Ecology and Biogeography,2003,12: 327-340.
    [61]王瑞永,刘莎莎,王成章,等.不同海拔高寒草地土壤理化指标分析[J].草地学报,2009,17(5): 61-68.
    [62]李文华,廖俊国,译.高山林线生理生态[M].北京:中国环境科学出版社,1986.
    [63]LUO T X,PAN Y D,OU YANG H,et al. Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau[J]. Global Ecology and Biogeography,2004,13: 345-358.
    [64]LI M H,YANG J,KR?UCHI N. Growth responses of Picea abies and Larix decidua to elevation in the sub alpine areas of Tyrol,Austria[J]. Canadian Journal of Forest Research,2003,33:653-662.
    [65]LI M H,YANG J. Effects of microsite on growth of Pinus cembra in the subalpine zone of the Austrian Alps[J]. Annals of Forest Science,2004,61:319-325.
    [66]LEVESQUE E,HENRY G,SVOBODA J. Phenological and growth responses of Papaver radicatum along altitμdinal gradients in the Canadian High Arctic[J]. Global Change and Biology,1997,3(suppl.1): 125-145.
    [67]RAICH J W,RUSSELL A E,VITOUSEK P M. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa,Hawaii[J]. Ecology,1997,78:707-721.
    [68]刘兴良,刘世荣,宿以明,等.巴郎山川滇高山栎灌丛地上生物量及其对海拔梯度的响应[J].林业科学,2006,42(2):1-7.
    [69]LI M H,KR?UCHI N,DOBBERTIN M. Biomass distribution of different-aged needles in young and old Pinus cembra trees at highland and lowland sites[J]. Trees,2006,20:611-618.
    [70]穆彪,杨健松,李明海.黔北大娄山区海拔高度与烤烟烟叶香吃味的关系研究[J].中国生态农业学报,2003,11(4):148-151.
    [71]BARRY R G. Mountain Weather and Climate[M]. Methuen,London and New York,1981.
    [72]CORDELL S,GOLDSTEIN G,MULELLER-DOMBOIS D,et al. Physiological and morphological variation in Metrosideros polymorpha,a dominant Hawaiian tree species,along an altitudinal gradient: role of phonotypic plasticity[J]. Oecologia,1998,113: 188-196.
    [73]WRIGHT I J,REICH P B,CORNELISSEN J H C,et al. Modulation of leaf economic traits and trait relationships by climate[J]. Global Ecology and Biogeography,2005,14: 411-421.
    [74]周广泰,刘凤琴,郭书贤.青海高山植物解剖特点[J].青海师范大学学报:自然科学版,1992,4: 45-60.
    [75]李芳兰,包维楷,吴宁.岷江上游干旱河谷海拔梯度上四川黄栌(Cotinus szechuanensis)叶片的生态解剖[J].应用与环境生物学报,2007,13(4): 486-491.
    [76]WILSON P J,THOMPSON K,HODGSON J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist,1999,143: 155-162.
    [77]LI C Y,ZHANG X J,LIU X L,et al. Leaf morphological and physical responses of Quercus aquifolioides along an altitudinal gradient[J]. Silva Fennica,2006,40(1): 5-13.
    [78]朱万泽.贡嘎山地区黄背栎光合作用日变化及光合响应[J].东北林业大学学报,2005,33(6):14-18.
    [79]师生波,李惠梅,王学英,等.青藏高原几种典型高山植物的光合特性比较[J].植物生态学报, 2006,30(1):40-46.
    [80]刘志民,杨甲定,刘新民.青藏高原几个主要环境因子对植物的生理效应[J].中国沙漠,2000,20(3): 309-313.
    [81]祁建,马克明,张育新.辽东栎(Quercus liaotun gensis)叶特性沿海拔梯度的变化及其环境解释[J].生态学报,2007,27(3): 930-937.
    [82]TAKASHIMA T,HIKOSAKE K,HIROSE T. Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species[J].Plant,Cell and Environment,2004,27: 1047-1054.
    [83]FRIEND A D,WOODWARD F I,SWITSUR V R. Field measurements of photosynthesis,stomatal conductance,leaf nitrogen and 13C along altitudinal gradients in Scotland[J]. Functional Ecology,1989,3:117-122.
    [84]K(O|¨)RNER C. The nutritional status of plants from high altitudes: A worldwide comparison[J]. Oecologia,1989,81: 379-391.
    [85]FISCHER C,H(O|¨)LL W. Food reserves of Scots pine (Pinus sylvestris L.). I. Seasonal changes in the carbohydrate and fat reserves of pine needles[J]. Trees,1991,5: 187-195.
    [86]SAKAI A,YOSHIDA S. The role of sugar and related compounds in variations of freezing resistance[J]. Cryobiology,1968,5:160-174.
    [87]PALONEN P. Relationship of seasonal changes in carbohydrates and cold hardiness in canes and buds of three red raspberry cultivars[J]. Journal of the American Society for Horticultural Science,1999,124:507-513.
    [88]VAGUJFALV A,KEREPESI I,GALIBA G,et al.Frost hardiness depending on carbohydrate changes during cold acclimation in wheat[J]. Plant Science,1999,144: 85-92.
    [89]潘庆民,韩兴国,白永飞,等.植物非结构性贮藏碳水化合物的生理生态学研究进展[J].植物学通报, 2002,19(1):30-38.
    [90]LI M H,HOCH G,K(O|¨)RNER C. Spatial variability of mobile carbohydrates within Pinus cembra trees at the Alpine treeline[J]. Phyton,2001,41(2): 203-213.
    [91]LI M H,HOCH G,K(O|¨)RNER C. Souce/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline[J]. Trees,2002,16:331-337.
    [92]HOCH G,POPP M,K(O|¨)RNER C. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline[J]. Oikos,2002,98: 361-374.
    [93]HOCH G,K(O|¨)RNER C. The carbon charging of pines at the climatic treeline: a global comparison[J]. Oecologia,2003,135: 10-21.
    [94]SHI P L,K(O|¨)RNER C,HOCH G. End of season carbon supply status of woody species near the treeline in western China[J]. Basic and Applied Ecology,2006,7: 370-377.
    [95]SHI P L,KORNER C,HOCH G. A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas[J]. Functional Ecology,2008,22: 213-220.
    [96]LARCHER W,BAUER H. Physiological Plant Ecology[M]. New York: Springer-Verlag,1981.
    [97]谭亚玲,洪汝科,陈金凤,等.海拔高度对不同水稻品种生长的影响研究[J].种子,2009,28(7):27-30.
    [98]张明,刘峻杰,张铭彩,等.半夏不同海拔种植的研究[J].中国现代中药,2010,12(2):29-30.
    [99]Larcher W. Hochgebirge: An den grenzen des wachstums; kologische Grundwerte in Osterreich [J]. Biosystematics and Ecology Series,1994,304-343.
    [100]Shi S B,Ben G Y,Han F. Analysis of the solar UV-B radiation and plant UV -B-absorbing compounds in different regions[J]. Acta PhytoecologicaSinica,1999,23(6):52-53.
    [101]简永兴,杨磊,谢龙杰.种植海拔对烤烟石油醚提取物及常规化学成分的影响[J].烟草科技, 2005,(7): 3-6.
    [102]简永兴,杨磊,陈亚,等.海拔高度对湘西北烤烟品质的影响[J].作物杂志,2006,(3):26-29.
    [103]简永兴,董道竹,李连利,等.种植海拔对烤烟中性挥发性香气物质及燃吸品质的影响[J].烟草科技,2009,(9): 43-46.
    [104]甄才红,刘国顺,王彦亭,等.中性致香物质含量的影响[J].河南农业科学,2010,(2):46-50.
    [105]沈广材,史宏志,杨兴有,等.海拔高度对白肋烟中熟早熟品种经济性状和品质的影响[J].西南农业学报,2009,22(5):1262-1266.
    [106]朱仁斌,宛志沪,丁亚平,等.皖西山区西洋参有效成分含量与栽培地海拔高度的关系[J].中草药, 2002,33(2):163-166.
    [107]窦宏涛,陈琳.陕西省不同海拔地区椒样薄荷精油成分分析及香气品质评价[J].中国农学通报, 2009,25(23):132-136.
    [108]宋晓静,郭珍,袁红霞,等.不同部位、不同海拔及不同生长阶段紫茎泽兰中绿原酸含量的变化[J].北京师范大学学报(自然科学版) 2010,46(2):166-168.
    [109]马生祥,马明呈,张振华.不同海拔野生金露梅叶的成分分析[J].青海农业科技,2010(2):8-12.
    [110]陈翠,袁理春,杨丽英,等.不同海拔、土壤类型及肥力对云南重楼产量和质量的影响研究[J].西南农业学报,2009,22(5):1388-1391.
    [111]朱兴党.不同海拔烟叶主要化学成分对比分析[J].科技创新导报,2010,17:248-249.
    [112]常寿荣,罗华元,王玉,等.云南烤烟种植海拔与致香成分的相关性分析[J].中国烟草科学, 2009,30(3): 37-40.
    [113]黄驊,查宏波,钱文有,等.昭通烟区海拔高度与烤烟常规化学成分含量相关性研究[J].安徽农学通报,2010,16(3):82-83.
    [114]付亚丽,卢红,尹建雄,等.云南烤烟烟碱、总氮和粗蛋白含量与种植海拔的相关性分析[J].云南大学学报,2007,22(5):676-680.
    [115]简永兴,董道竹,李连利,等.种植海拔对烤烟中性挥发性香气物质及燃吸品质的影响[J].烟草化学,2009,(9):43-46.
    [116]鲁如坤.土壤植物营养学原理与施肥[M].北京:化学工业出版社.1998,281-306.
    [117]Li H S.Plant physiological biochemical experiment principles and techniques[M]. Beijing: Higher Education Press,1999: 137-263.
    [118]LICHTENTHAL ER H K. Chlorophylls and carotenoids:pigments of photosynt hetic biomembranes [J]. Methods Enzymol,1987,148:350-382.
    [119]BERRYJA,DOWNTONWJ.Environmental regulation of photosynthesis[A].In:Photosynthesis: Development,carbon metabolism and plant productivity(Vol.Ⅱ)[C].New York:Academic Press, 1982.
    [120]AEBI H. Catalase in vit ro[J].Methods Enzymol,1984,105:121-126.
    [121]RAO M V ,PAL IYATH C,ORMROD D P.ult raviolet B and ozone induced biochemical changes in antioxidant enzymes of A rabi dopsisthaliana[J].Plant Physiology,1996,110(1):125-136.
    [122]陈楠,薛敦渊.超临界CO2提取岷县当归挥发油的成分研究[J].甘肃教育学院学报(自然科学版),2003,17(4):30-33.
    [123]胡长鹰.当归挥发油的提取与成分分析[J].食品与机械,2006,22(2):24-26.
    [124]李伟东,杨光明,蔡宝昌.三种方法提取当归挥发油的气相色谱-质谱比较[J].广东中医药大学学报,2004,22(3):206-210.
    [125]Müller I,Schmid B,Weiner J.The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants[J].Perspectives in Plant Ecology,Evolution and Systematics,2000, 3:115-127.
    [126]Zak DR,Pregitzer KS,Curtis PS,Vogel CS,Holmes WE,Lussenhop J. Atmospheric CO2,soil-N availability,and allocation of biomass and nitrogen by Populus tremuloides[J].Ecological Applications,2000,10,34-46.
    [127]Domisch T,Finer L,Lehto T(2001).Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season[J].Tree Physiology,2001,21,465–472.
    [128]Hale BK,Herms DA,Hansen RC,Clausen TP,Arnold D. Effects of drought stress and nutrient availability on dry matter allocation,phenolic glycosides,and rapidinduced resistance of poplar to two Lymantriid defoliators[J].Journal of Chemical Ecology,2005,31,2601-2620.
    [129]Rachmilevitch S,Huang B,Lambers H. Assimilation and allocation of carbon and nitrogen of thermal and nonthermal Agrostis species in response to high soil temperature[J].New Phytologist,2006,170,479-490.
    [130]Sigee DC,Bahram F,Estrada B,Webster RE,Dean AP. The influence of phosphorus availability on carbon alloca tion and P quota in Scenedesmus subspicatus: a synchrotron-based FTIR analysis[J]. Phycologia,2007,46,583-592.
    [131] Marcelis LFM,Heuvelink E,Goudriaan J.Modelling biomass production and yield of horticulturalcrops: are-view[J]. Scientia Horticulturae,1998,74,83-111.
    [132]Andrews M,Raven JA,Sprent JI. Environmental effects on dry matter partitioning between shoot and root of crop plants: relations with growth and shoot protein concentration[J].Annals of Applied Biology,2001,138,57-68.
    [133]Domisch T,Finer L,Lehto T.Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season[J].Tree Physiology,2001,21,465-472.
    [134]Glynn C,Herms DA,Egawa M,Hansen R,Mattson WJ.Effects of nutrient availability on biomass allocation as well as constitutive and rapid induced herbivore resistance in poplar[J]. Oikos,2003,101,85-397.
    [135]Ngugi MR,Hunt MA,Doley D,Ryan P,Dart P. Dry matter production and allocation in Eucalyptus cloeziana and Eucalyptus argophloia seedlings in response to soil water deficits[J]. New Forests,2003,26,187-200.
    [136]VanderWerf A,Nagel OW.Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: opinion[J]. Plant and Soil,1996,185,21-32.
    [137]Poorter H,Nagel O.The role of biomass allocation in the growth response of plants to different levels of light,CO2,nutrients and water: a quantitative review[J]. Australian Journal of Plant Physiology,2000,27,95-607.
    [138]陈传孟,陈继树,古堂生,等.南岭山区不同海拔烤烟品质研究[J].中国烟草科学,1997,4:8-12.
    [139]Kotowski W,van Andel J,van Diggelen R,Hogendorf J. Responses of fen plant species to groundwater level and light intensity[J]. Plant Ecology,2001,155,14-156.
    [140]Ammer C.Growth and biomass partitioning of Fagus sylvatica L. and Quercus robur L. seedlings in response to shading and small changes in the R/FR-ratio of radiation[J].Annals of Forest Science,2003,60,163-171.
    [141]Grechi I,Vivin P,Hilbert G,Milin S,Robert T,Gaudillère JP.Effect of light and nitrogen supply on internal C: N balance and control of root-to-shoot biomass allocation in grapevine[J]. Environmental and Experimental Botany,2007,59,139-149.
    [142]陈亚军,张教林,曹坤芳.两种热带木质藤本幼苗形态、生长和光合能力对光强和养分的响应[J].植物学通报,2008,25,185-194.
    [143]孙晓方,何家庆,黄训端,等.不同光强对加拿大一枝黄花生长和叶绿素荧光的影响[J].西北植物学报),2008,28(4):0752-0758.
    [144] McConnaughay KDM,Coleman JS.Biomass allocation in plants: ontogeny or optimality[J]. A test along three resource gradients.Ecology,1999,80,2581-2593.
    [145]Huang BR,Fu JM.Photosynthesis,respiration,and carbon allocation of two cool-season perennial grasses in response to surface soil drying[J]. Plant and Soil,2000,227,17-26.
    [146]Ngugi MR,Hunt MA,Doley D,Ryan P,Dart P.Dry matter production and allocation in Eucalyptus cloeziana and Eucalyptus argophloia seedlings in response to soil water deficits[J]. New Forests,2003,26,187-200.
    [147]Drymatter production and allocation in Eucalyptus cloeziana and Eucalyptus argophloia seedlings in response to soilwater deficits[J]. New Forests,26,187-200.
    [148]肖冬梅,王淼,姬兰柱.水分胁迫对长白山阔叶红松林主要树种生长及生物量分配的影响[J].生态学杂志,200423,93-97.
    [149]Coyle DR,Coleman MD. Forest production responses to irrigation and fertilization are not explained by shifts in allocation[J]. Forest Ecology and Management,2005,208:137-152.
    [150]Xu ZZ,Zhou GS. Effects of water stress and nocturnal temperature on carbon allocation in the perennial grass,Leymus chinensis[J]. Physiologia Plantarum,2005,123:272-280.
    [151]贺海波,李彦.干旱、盐胁迫条件下两种盐生植物生物量分配对策的研究[J].干旱区研究,2008 25,242-247.
    [152]Farrar JF,Williams ML.The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning,source-sink relations and respiration[J].Plant,Cell and Environment,1991,14: 819-830.
    [153]Andrews M,Raven JA,Sprent JI. Environmental effects on dry matter partitioning between shoot and root of crop plants: relations with growth and shoot protein concentration[J]. Annals of Applied Biology,2001,138:57-68.
    [154] Hyvonen R,Agren GI,Linder S,Persson T,et al. The likelyimpact of elevated [CO2],nitrogen deposition,increasedtemperature and management on carbon sequestration intemperate and boreal forest ecosystems:a literature review[J]. New Phytologist,2007,173,63-480.
    [155]邱黛玉,蔺海明,陈垣,等.经纬度和海拔对当归成药期植株长势和早期抽薹的影响[J].草地学报, 2010,18(6)838-843.
    [156]史宏志,谢子发,尹宏博,等.海拔高度对白肋烟地上部干物质积累动态的影响[J].西南农业学报,2008,21(5):1275-1278.
    [157]冯学民,蔡德利.土壤温度与气温及纬度和海拔关系的研究[J].土壤学报,2004,41(3):489-491.
    [158]池再香,杨桂兰,杨黎,等.不同海拔的光温因子对超级稻陆两优106产量的影响研究[J].贵州气象,2007,31(6):9-10.
    [159]陈翠,袁理春,杨丽英,等.不同海拔、土壤类型及肥力对云南重楼产量和质量的影响研究[J].西南农业学报,2009,22(5):1388-1391.
    [160]李明海,任远伦,詹蓉晖,等.不同海拔和土壤类型对烟叶产量质量的影响[J].中国烟草科学, 1997,(3):27-30.
    [161]赵广琦,杜增平.不同海拔与不同株龄和月份对黄连质量和产量的影响[J].中草药,2002, 33(12):1119-1121.
    [162]贺瑞坤,彭慧蓉,陈训.海拔高度对贵州花江峡谷顶坛花椒产量与品质的影响[J].安徽农业科学, 2008,36(6):2294-2295.
    [163]张大琼,徐洪志,曾川,等.两个海拔高度下甘蓝型油菜主要农艺性状及其对产量的影响[J].西南农业学报,2007,20(3):362-364.
    [164]谭亚玲,洪汝科,陈金凤,等.海拔高度对不同水稻品种生长的影响研究[J].种子,2009,28(7):27-30.
    [165]Hilbert D W,Canadell . Biomass partitioning and resource allocation of plants from Mediterranean type ecosystem: possible response to elevated atmospheric CO2.Mediterranean-type Ecosystem. New York:Springer,1995.
    [166]战吉宬,黄卫东,王利军.不同光环境对葡萄幼苗光合产物分配与转化的影响[J].中国农业科学, 2002,35(11):1432-1436.
    [167]Farrar JF,Williams ML (1991). The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning,source-sink relations and respiration[J]. Plant,Cell and Environment,14,819-830.
    [168]张明,刘峻杰,张铭彩,等.半夏不同海拔种植的研究[J].中国现代中药,2010,12(2):29-30.
    [169]唐永金,侯大斌,董玉飞,等.山区海拔与坡向对玉米产量性状的影响[J].作物研究,1998(1):22-24.
    [170]杜占池,杨宗贵,崔骁勇.草原植物光合生理生态研究[J].中国草地,1999,21(3) :20-27.
    [171]许大全.光合效率[M].上海:上海科学技术出版社,2002:86-95.
    [172]葛滢,常杰,陈增鸿,等.青冈净光合作用与环境因子的关[J].生态学报,1999,19(5):683-688.
    [173]黄成林,傅松玲,梁淑云,等.遮荫条件下绞股蓝光合作用特点的研究[J].应用生态学报,2004,15 (7):1131-1134.
    [174]王玉辉,周广胜.松嫩草地羊草叶片光合生理生态特征分析[J] .应用生态学报,2001,12(1):75-79.
    [175]阎秀峰,孙国荣,肖玮.星星草光合蒸腾日变化与气候因子的关系[J].植物研究,1996,16(4): 477-484.
    [176]刘玉华,史纪安,贾志宽,等.干旱条件下紫花苜蓿光合蒸腾日变化与环境因子的关系[J].应用生态学报,2006,17(10):1811-1814.
    [177]张新慧,张恩和.当归叶片光合参数日变化及其与环境因子的关系[J].西北植物学报,2008, 28(11):2314-2319.
    [178]秦天才,吴玉树,黄巧云.镉铅单一和复合污染对小白菜抗坏血酸含量的影响[J].生态学杂志, 1997,16(3):31-34.
    [179]黄振英,董学军,蒋高明,等.沙柳光合作用和蒸腾作用日动态变化的初步研究[J]西北植物学报, 2002,22 (4):817-823.
    [180]张贤珍,程延年,勾俊哲,等.BASIC语言农业数理统计计算程序[M].北京:中国农业出版社, 1990:178.
    [181]袁志发.试验统计与分析[M] .北京:高等教育出版社,2000 :178-197.
    [182]李铮铮,伍钧,唐亚,等.铅、锌及其交互作用对鱼腥草叶绿素含量及抗氧化酶系统的影响[J].生态学报,2007,27(12):5441-5446.
    [183]邹琦.作物抗旱生理生态研究[M] .济南:山东科学技术出版社,1994:155-163.
    [184]FARQu HAR G D,SHARKEY T D. Stomatal conductance and photosynthesis[J].A nnual Review of Plant Physiology,1982,33:317-345.
    [185]陈兆波,张翼,王沛,等.香紫苏开花期蒸腾和光合作用日变化特征及其影响因子研究[J].西北植物学报,2007,27(6):1202-1208.
    [186]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33 (4) :241-244.
    [187]Xu D Q ,SHEN Y G. Diurnal variations in the photosynthetic efficiency in plant s[J].Acta Phy tophysiologica Sinica,1997,23 (4) :410-416.
    [188]池春玉,丁国华,连永权,等.低温胁迫对三种冷季型草坪草脯氨酸含量及膜透性的影响[J].中国农学通报,2007,23(1):101-104.
    [189]姚雄,任万军,杨文钰,等.烯效唑对水稻秧苗抵御不同类型低温胁迫能力的影响[J].草业学报, 2008,17(5):68-75.
    [190]Steward C R,Hanson A D.Proline Accumulation as a Metabolic Response to Water Stress,Adaptatin of Plant to Water and High Temperature Stress[M] . New York:Academic Press,1980:173-189.
    [191]崔秀敏,王秀峰.基质供水状况对番茄穴盘苗碳氮代谢及生长发育的影响[J].园艺学报, 2004,31(4):477-481.
    [192]宋凤斌,徐世昌.玉米抗旱性鉴定指标的研究[J].中国生态农业学报,2004,12(1): 127-129.
    [193]Jones O R,Hauser V L,Popham T W. No-tillage effects on infiltration,runoff and water conservation on dryland[J]. American Society of Agricultural and Biological Engineers,1994,37(2): 473-479.
    [194]李晓征,彭峰,徐迎春,等.不同光强下6种常绿阔叶树幼苗的生理特性[J].广西农业科学, 2005,36(4):312-315.
    [195]潘远智,江明艳.遮荫对盆栽一品红光合特性及生长的影响[J].园艺学报,2006,33(1): 95-100.
    [196]张智,夏宜平,徐伟韦.两种观赏草的自然失水胁迫初步研究[J].园艺学报,2007,37(4): 1029-1032.
    [197]李源,师尚礼,王赞,等.干旱胁迫下鸭茅苗期抗旱性生理研究[J].中国草地学报,2007,29 (2): 35-40.
    [198]熊璇,于晓英,魏湘萍,等.遮荫对重瓣大花萱草光合色素含量及生理特性的影响[J].湖南农业科学,2009(1):29-32.
    [199]张利红,李培军,李雪梅,等.镉胁迫对小麦幼苗生长及生理特性的影响[J].生态学杂志, 2005,24(4): 458-460
    [200]Michel B E,Kaufmann M R.The Osmotic Potential of Polyethylene Glycol 6000[J].Plant Physiology,1973,51(5):914- 916
    [201]孙小霞.高羊茅对铅递进胁迫的生理响应[J].河南科技大学学报,2006,27(6):75-78 .
    [202]王代军,温洋.温度胁迫下几种冷季型草坪草抗性机制的研究[J].草业学报,1998,7(1):75-80.
    [203]侯福林.植物生理学实验教程[M].北京:科学出版社,2004 .
    [204]张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社,1993.
    [205]LarcherW. Hochgebirge: An den grenzen des wachstums .; kologische Grundwerte in Osterreich [J].Biosystematics and Ecology Series,1994,304-343.
    [206]Shi S B,Ben G Y,Han F.Analysis of the s olaruV-B radiation and p lantuV-B-absorbing compounds in different regions[J].Acta Phytoecologica Sinica,1999,23 (6):529-53.
    [207]蔡仕珍,潘远智,陈其兵,等.低温胁迫对花叶细辛生理生化及生长的影响[J].草业学报,2010, 19(1):95-102.
    [208]董合忠,李维江,唐薇,等.干旱和淹水对棉苗某些生理特性的影响[J].西北植物学报,2003,23(10): 1695?1699.
    [209]杨兴有,崔树毅,刘国顺,等.弱光环境对烟草生长、生理特性和品质的影响[J].中国生态农业学报, 2008,16(3):635?639.
    [210]Türkan I,Bor M,Ozdemir F.Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P.acutifolius Gray and drought-sensitive P. vulgaris L.subjected to polyethylene glycol mediated water stress[J].Plant Science,2005,168: 223?231.
    [211]陈少裕.膜脂过氧化作用对植物细胞的伤害[J].植物生理学通讯,1991,27(2):841.
    [212]SalinM L.Toxic oxygen species and p rotective system of the chl or oplast[J].Physiol Plant,1988,72: 681.
    [213]王鑫,郭平毅,原向阳,等.2,4-D丁酯对婴粟保护酶活性及脂质过氧化作用的影响[J].生态学报, 2008,28 (3):1098-1103.
    [214]龚双姣,马陶武,姜业芳,等.镉胁迫下3种藓类植物抗氧化酶活性变化的比较研究[J].西北植物学报,2008,28 (9):1765-1771.
    [215]余玲,王彦荣,Garnet t T,等.紫花苜蓿不同品种对干旱胁迫的生理响应[J].草业学报, 2006,15(3):75-85.
    [216]李予霞,崔百明,董新平,等.PEG处理下葡萄试管苗脯氨酸及内源ABA含量变化的研究[J].石河子大学学报(自然科学版),2004,22(1):43-45.
    [217]GALL EGO SM,BENAV DES M P,TOMARO M. Effect of heavy metal ion excess on sunflower leaves:evidence for involvement of oxidative stress[J].Plant Science,1996,121:151-159.
    [218]潘瑞炽.植物生理学[M ].北京:高等教育出版社,2001,279-288.
    [219]丁海东,朱为民,杨少军,等.镉、锌胁迫对番茄幼苗生长及脯氨酸和谷胱甘肽含量的影响[J].江苏农业学报,2005,21(3):191-196.
    [220]孟繁静,刘道宏,苏业瑜.植物生理生化(第四版) [M ].北京:中国农业出版社,1995,366-369.
    [221]王瑾,刘桂茹,杨学举. PEG胁迫下不同抗旱小麦品种幼苗形态及主要理化特性的比较[J].河北农业大学学报,2005,28(5):6-10.
    [222]孔繁翔,桑伟莲.小麦铝抗性和敏感品系对铝胁迫的生理生化反应[J].应用与环境生物学报, 2004,10(5):559-562.
    [223]杨书运,严平,梅雪英.水分胁迫对冬小麦抗性物质可溶性糖与脯氨酸的影响[J].中国农学通报, 23(12):229-233.
    [224]史玉炜,王燕凌,李文兵,等.水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响[J].新疆农业大学学报,2007,30(2):5-8.
    [225]池春玉,赵岩,连永权,等.紫羊茅内源脯氨酸和可溶性糖含量季节变化的研究[J].北方园艺, 2009(10):208-209.
    [226]喻敏,萧洪东,陈跃进,等.硼、钼对低温下海滨雀稗可溶性糖和游离脯氨酸含量的影响[J].作物学报,2004,30(8):739-744.
    [227]王静,杨德光,马凤鸣,等.水分胁迫对玉米叶片可溶性糖和脯氨酸含量的影响[J].玉米科学, 2007,15(6):57-59.
    [228]刘磊,陈立波,李志勇,等.晚秋温度对苜蓿地上部游离脯氨酸、可溶性糖和POD活性的影响[J].草业科学,2009,26(10):89-93
    [229]董合忠,李维江,唐薇,等.干旱和淹水对棉苗某些生理特性的影响[J].西北植物学报,2003, 23(10):1695-1699.
    [230]Türkan I,Bor M,Ozdemir F.Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P.acutifolius Gray and drought-sensitive P.vulgaris L.subjected to polyethylene glycol mediated water stress[J].Plant Science,2005,168:223-231.
    [231]CHAOUI A,MAZHOUDI S.Cadmium and zinc induction of lipid peroxidetion and effects on antioxidant enzyme activities in bean[J].Plant Science,1997,127:139-147.
    [232]马旭俊,朱大海.植物超氧化物歧化酶(SOD)的研究进展[J].遗传,2003,25(2):225-231.
    [233]朱军涛,李向义,张希,等.明昆仑山北坡前山带塔里木沙拐枣对不同海拔生境的生理生态响应[J].生态学报,2010,30(3) :602-609
    [234]叶立华,蔡之军,顾掌根,等.锌对苦瓜不同生育期叶片保护系统的影响.[J].安徽农学通报, 2007,13(19):43-46.
    [235]王利英,杨振德,邓荣艳,等.几种园林植物对甲醛污染的反应研究[J].广西科学,2007,14(2): 163-166.
    [236]芦站根,赵昌琼,周文杰,等.光强对曼地亚红豆杉膜代谢及保护系统的影响[J].重庆大学学报, 2003,26 (8):89-92.
    [237]陈段芬,李宪松,邸葆,等.甲醛对5种花卉质膜透性和保护酶活性的影响[J].华北农学报, 2007,22(3):84-87.
    [238]马树华,王庆成,李亚藏,等.汽车尾气污染对四种北方阔叶树苗木膜脂过氧化和保护酶活性的影响[J].应用生态学报,2004,15(12):2330-2336.
    [239]张新慧,张恩和,王惠珍.连作对当归药材挥发油含量的影响[J].天然产物研究与开发,2009,21: 274-277.
    [240]方洪钜,吕瑞绵,刘国生,等.挥发油成分的研究Ⅱ——中国当归与欧当归主要成分的比较[J].药学学报,197,14(10):617.
    [241]董岩,魏兴国,崔庆新,等.当归挥发油化学成分分析[J].山东中医杂志,2004,23(1):43.
    [242]杜俊蓉,白波,余彦,等.当归挥发油研究新进展[J].中国中药杂志,2005,30(18):1400-1406.
    [243]李桂生,马成俊,李香玉,等.藁本内酯的稳定性研究及异构化产物的GC-MS分析[J].中草药, 2000,31:405-407.
    [244]Zhao ZG,DU GZ,Zhou XH ,et al.Variations with altitude in reproductive traits and res ource allocation of three Tibetan species of Ranunculaceae[J].Australian Journal of Botany,2006,54 (7):691-700.
    [245]Wielgolaski F E,K arlsen S R.Some views on plants in polar and alpine regions[J].Rev Environ Sci Biotechnol,2007,6:33-45.
    [246]刘华,臧润国,张新平,等.天山中部3种自然生境下天山雪莲的光合生理生态特性[J].林业科学, 2009,45(3):40-48.
    [247]李惠梅,师生波.不同海拔麻花艽植物光合特性的比较[J].安徽农业科学,2008,36(11):4799-4804.
    [248]刘群龙,宁婵娟,王朵,等.翅果油树净光合速率日变化及其主要影响因子[J].中国生态农业学报, 2009,17(3):474-478.
    [249]宋庆安,童方平,易霭琴,等.虎杖光合生理生态特性日变化研究[J].西北植物学报,2007,27(9): 1909-1914.
    [250]王学英,师生波,吴兵.西宁和海北麻花艽净光合速率和叶绿素荧光参数的日变化比较[J].西北植物学报,2005,25(12):2514-2518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700