中国野生华东葡萄泛素连接酶基因抗白粉病功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄白粉病菌(Uncinula necator [Schw.] Burr.)是危害葡萄生产的重要真菌病害之一。目前生产上栽培的主要是欧洲葡萄(Vitis vinifera. L)品种,这些品种品质优良且产量高,但抗病性差。我国具有丰富的野生葡萄种质资源,并携带大量的抗病基因。本研究以中国野生华东葡萄高抗白粉病株系白河35-1(Vitis pseudoreticulata Baihe35-1accession)为材料,克隆了泛素连接酶基因UIRP1基因及其启动子;研究了UIRP1基因及其启动子对病原菌的响应模式;分析了UIRP1基因的泛素连接酶活性及其亚细胞定位情况;筛选到一个与UIRP1相互作用的转录因子基因VpWRKY11;进一步分析了二者相互作用模式,并探讨了二者在植物抗病反应中的作用。主要获得了以下的研究结果:
     1、在中国野生华东葡萄白河35-1株系中克隆了UIRP1基因,该基因全长1068bp,ORF(开放阅读框)为723bp,编码240个氨基酸,其GenBank登录号为JF502034;生物信息学分析发现UIRP1基因N端存在一个C3HC4-type RING finger保守结构域,C端具有一个跨膜结构域。采用同源克隆的方法克隆了UIRP1基因启动子,长度为1182bp,预测分析发现其含有基本启动子元件和多个与抗病相关的顺式作用元件。
     2、对中国野生华东葡萄白河35-1株系接种白粉病诱导,发现UIRP1的表达量在接种病原菌后的12h、48h各呈现一次表达高峰,说明UIRP1的表达是受葡萄白粉病诱导的。将UIRP1基因启动子与GUS基因融合后瞬时转化葡萄叶片,发现UIRP1基因启动子的活性可以受葡萄白粉菌的诱导。
     3、中国野生华东葡萄UIRP1基因在大肠杆菌中表达,纯化后获得融合蛋白,采用体外泛素化试验分析是否具有泛素连接酶活性。结果发现UIRP1能与E1、E2以及泛素分子发生泛素化反应,UIRP1基因的RING finger结构域的保守氨基酸位点突变导致不能发生泛素化,如UIRP1-C30S、UIRP1-H47A,非保守氨基酸位点发生突变则不影响泛素化反应,如UIRP1-A66S。
     4、以中国野生华东葡萄泛素连接酶基因UIRP1为诱饵筛选文库,发现其与VpWRKY11相互作用;亚细胞定位试验发现中国野生华东葡萄泛素连接酶基因UIRP1定位在细胞核、细胞质与细胞膜上;双分子荧光互补试验再一次验证了泛素连接酶基因UIRP1与VpWRKY11相互作用,并且发现其相互作用发生在细胞核上。
     5、经在酵母体内与中国野生华东葡萄泛素连接酶基因UIRP1相互作用的VpWRKY11转录激活分析证明,它不具有转录激活活性,但其在植物活体内可以结合W-box顺式作用元件,具有转录激活活性;亚细胞定位试验表明中国野生华东葡萄VpWRKY11定位在细胞核;对中国野生华东葡萄白河35-1株系接种白粉病诱导,发现中国野生华东葡萄VpWRKY11是受葡萄白粉病诱导表达的基因。
     6、中国野生华东葡萄泛素连接酶基因UIRP1作用在VpWRKY11转录因子基因的上游,并以VpWRKY11转录因子为底物,依赖于26S蛋白酶体介导VpWRKY11转录因子的降解。中国野生华东葡萄泛素连接酶基因UIRP1降解负调控抗病因子VpWRKY11,导致其下游NPR1、AOS以及LOX2等抗病相关基因的高表达,最终提高植物的抗病性。
     综上所述,中国野生华东葡萄泛素连接酶基因具有抗葡萄白粉病的功能。
Grapevine powdery mildew (Uncinula necator [Schw.] Burr.) is one of the mostimportant fungal diseases that damages grapevine production. Vitis vinifera is currently onemajor species, which possesses good quality and high yield. However, most of them aresensitive to diseases. China has abundant wild grape species that contain some valuableresistant-gene resources. In this study, one powdery mildew-resistant accession Baihe35-1ofChinese wild Vitis pseudoreticulata was used as the material to clone Chinese wild Vitispseudoreticulata UIRP1gene and its promoter. The responsive pattern of UIRP1gene and itspromoter to pathogen have been analyzed, respectively. The ubiquitin ligase activity and thesubcellular localization of the UIRP1gene have also been investigated. A transcription factorgene VpWRKY11that interacts with UIRP1has been screened, and their interactive modelwere further analyzed, as well as their roles in plant disease-resistant reaction were alsoexplored. The main results are described as followings.
     1. UIRP1gene was cloned from Chinese Wild V. pseudoreticulata accession Baihe35-1.The gene is1068bp in length with723bp opening read frame (ORF), encoding240aminoacids, and its GenBank accession number is JF502034. Bioinformatics analysis showedUIRP1gene possesses a C3HC4-type RING finger conserved motif at N-terminus and atransmembrane domain at C-terminus. The promoter of UIRP1gene was cloned usinghomology cloning method, in which is1182bp in length. Prediction analysis demonstratedthat UIRP1gene promoter contains the basic promoter elements and a plurality of cis-elements related to disease resistance.
     2. Inoculation with powdery mildew in Chinese Wild V. pseudoreticulata accessionBaihe35-1displayed the expression of UIRP1present two peaks in12hpi and48hpi,respectively, suggesting the expression of UIRP1is induced by powdery mildew. Thepromoter of UIRP1was fused with GUS, and transiently transform into grapevine leaves, theresults showed the activity of UIRP1promoter is induced by powdery mildew.
     3. The Chinese Wild V. pseudoreticulata UIRP1gene was expressed in Escherichia coli, and further purified to obtain the fusion protein. In vitro ubiquitination assay were conductedto analyze whether or not it possess ubiquitin ligase activity. The results showed UIRP1hasthe ubiquitin ligase activity, and mutation in conserved amino acid of the RING finger motifcould not occur ubiquitination. In contrast, mutation in non-conserved amino acid of theRING finger motif could not interfer the ubiquitination.
     4. Chinese Wild V. pseudoreticulata ubiquitin ligase gene UIRP1was used as the bait toscreen the library, and obtain its interactive protein VpWRKY11. Subcellular localizationdisplayed that UIRP1gene localized in nucleus, cytoplasm and cell membrane. Bimolecularfluorescence complementation (BiFC) assays further showed UIRP1interaction withVpWRKY11in the nucleus.
     5. The activation activity of VpWRKY11, which interacts with Chinese Wild V.pseudoreticulata ubiquitin ligase gene UIRP1, has no transcription in yeast. But VpWRKY11can combine the W-box cis-element, and has the transcription activation activity in planta.Result from subcellular localization assay showed VpWRKY11gene localized in nucleus.Inoculation with powdery mildew in Chinese Wild V. pseudoreticulata accession Baihe35-1showed the expression of VpWRKY11was induced by powdery mildew.
     6. The Chinese Wild V. pseudoreticulata ubiquitin ligase gene UIRP1acts in theupstream of the VpWRKY11, and UIRP1degrades VpWRKY11protein, and this degraderely on26S protease. The Chinese Wild V. pseudoreticulata ubiquitin ligase gene UIRP1negatively degrades and regulated VpWRKY11, and resulted in high expression of NPR1、AOS and LOX2disease-resistant related genes, therefore improving plant resistance.
     In conclusion, the ubiquitin ligase gene of Chinese Wild Vitis pseudoreticulata possessthe grape powdery mildew resistant function.
引文
Ang, L. and Deng, X.(1994). Regulatory hierarchy of photomorphogenic loci: allele-specific andlight-dependent interaction between the HY5and COP1loci. The Plant Cell6,613-628.
    Azevedo, C., Sadanandom, A., Kitagawa, K., Freialdenhoven, A., Shirasu, K. and Schulze-Lefert, P.(2002b). The RAR1interactor SGT1, an essential component of R gene-triggered disease resistance.Science295,2073-6.
    Bedford, L., Paine, S., Sheppard, P. W., Mayer, R. J. and Roelofs, J.(2010). Assembly, structure, andfunction of the26S proteasome. Trends In Cell Biology20,391-401.
    Bent, A. F. and Mackey, D.(2007). Elicitors, effectors, and R genes: the new paradigm and a lifetimesupply of questions. Annual Review of Phytopathology45,399-436.
    Bhoj, V. and Chen, Z.(2009). Ubiquitylation in innate and adaptive immunity. Nature458,430-437.
    Boller, T. and He, S. Y.(2009). Innate immunity in plants: an arms race between pattern recognitionreceptors in plants and effectors in microbial pathogens. Science324,742-744.
    Boter, M., Amigues, B., Peart, J., Breuer, C., Kadota, Y., Casais, C., Moore, G., Kleanthous, C.,Ochsenbein, F. and Shirasu, K.(2007). Structural and functional analysis of SGT1reveals that itsinteraction with HSP90is required for the accumulation of Rx, an R protein involved in plant immunity.The Plant Cell19,3791-804.
    Boyes, D. C., Nam, J. and Dangl, J. L.(1998). The Arabidopsis thaliana RPM1disease resistancegene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitiveresponse. Proceedings of the National Academy of Sciences95,15849-15854.
    Cao, Y., Yang, Y., Zhang, H., Li, D., Zheng, Z. and Song, F.(2008). Overexpression of a rice defense‐related F‐box protein gene OsDRF1in tobacco improves disease resistance through potentiation ofdefense gene expression. Physiologia Plantarum134,440-452.
    Cheng, M. C., Hsieh, E. J., Chen, J. H., Chen, H. Y. and Lin, T. P.(2012). Arabidopsis RGLG2,functioning as a RING E3ligase, interacts with AtERF53and negatively regulates the plant drought stressresponse. Plant Physiology158,363-375.
    Cheung, M., Zeng, N., Tong, S., Wing-Yen Li, F., Zhao, K., Zhang, Q., Sai-Ming Sun, S. and Lam, H.(2007). Expression of a RING-HC protein from rice improves resistance to Pseudomonas syringae pv.tomato DC3000in transgenic Arabidopsis thaliana. Journal of Experimental Botany58,4147-59.
    Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nürnberger, T., Jones, J. D., Felix, G. andBoller, T.(2007). A flagellin-induced complex of the receptor FLS2and BAK1initiates plant defence.Nature448,497-500.
    Craig, A., Ewan, R., Mesmar, J., Gudipati, V. and Sadanandom, A.(2009). E3ubiquitin ligases andplant innate immunity. Journal of Experimental Botany.60,1123-32.
    Dahan, J., Etienne, P., Petitot, A. S., Houot, V., Blein, J. P. and Suty, L.(2001). Cryptogein affectsexpression of α3, α6and β120S proteasome subunits encoding genes in tobacco. Journal of ExperimentalBotany52,1947-1948.
    Deng, X., Caspar, T. and Quail, P.(1991). cop1: a regulatory locus involved in light-controlleddevelopment and gene expression in Arabidopsis. Genes&Development5,1172-82.
    Deshaies, R. and Joazeiro, C.(2009). RING domain E3ubiquitin ligases. Annual Review ofBiochemistry78,399-434.
    Deslandes, L., Olivier, J., Theulières, F., Hirsch, J., Feng, D. X., Bittner-Eddy, P., Beynon, J. andMarco, Y.(2002). Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by therecessive RRS1-R gene, a member of a novel family of resistance genes. Proceedings of the NationalAcademy of Sciences99,2404-2409.
    Dhawan, R., Luo, H., Foerster, A., Abuqamar, S., Du, H., Briggs, S., Scheid, O. and Mengiste, T.(2009). HISTONE MONOUBIQUITINATION1interacts with a subunit of the mediator complex andregulates defense against necrotrophic fungal pathogens in Arabidopsis. The Plant Cell21,1000-19.
    Dielen, A., Badaoui, S., Candresse, T. and German-retana, S.(2010). The ubiquitin/26S proteasomesystem in plant-pathogen interactions: a never-ending hide-and-seek game. Molecular Plant Pathology11,293-308.
    Dodds, P. N. and Rathjen, J. P.(2010). Plant immunity: towards an integrated view of plant–pathogeninteractions. Nature Reviews Genetics11,539-548.
    Dong, C., Agarwal, M., Zhang, Y., Xie, Q. and Zhu, J.(2006a). The negative regulator of plant coldresponses, HOS1, is a RING E3ligase that mediates the ubiquitination and degradation of ICE1.Proceedings of the National Academy of Sciences103,8281-8286.
    Dong, W., Nowara, D. and Schweizer, P.(2006b). Protein polyubiquitination plays a role in basal hostresistance of barley. The Plant Cell18,3321-31.
    Durrant, W. and Dong, X.(2004). Systemic acquired resistance. Annual Review of Phytopathology42,185-209.
    Eulgem, T. and Somssich, I. E.(2007). Networks of WRKY transcription factors in defense signaling.Current Opinion In Plant Biology10,366-371.
    Fu, D., Ghabrial, S. and Kachroo, A.(2009). GmRAR1and GmSGT1are required for basal, Rgene-mediated and systemic acquired resistance in soybean. Molecular Plant-microbe Interactions22,86-95.
    Gadoury DM, Seem RC, Pearson RC, Wilcox WF, Dunst RM.(2001) Effects of powdery mildew onvine growth, yield and quality of Concord grapes. Plant Disease85,137-140.
    Gallastegui, N. and Groll, M.(2010). The26S proteasome: assembly and function of a destructivemachine. Trends In Biochemical Sciences35,634-642.
    Goritschnig, S., Zhang, Y. and Li, X.(2007). The ubiquitin pathway is required for innate immunity inArabidopsis. The Plant Journal49,540-551.
    Hondo, D., Hase, S., Kanayama, Y., Yoshikawa, N., Takenaka, S. and Takahashi, H.(2007). TheLeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defenseresponse via the jasmonic acid-dependent signaling pathway in tomato. Molecular Plant-microbeInteractions20,72-81.
    Hubert, D. A., Tornero, P., Belkhadir, Y., Krishna, P., Takahashi, A., Shirasu, K. and Dangl, J. L.(2003). Cytosolic HSP90associates with and modulates the Arabidopsis RPM1disease resistance protein.The EMBO Journal22,5679-5689.
    Issuree PD, Pushparaj PN, Pervaiz S, and Melendez AJ.(2009) Resveratrol attenuates C5a-inducedinflammatory responses in vitro and in vivo by inhibiting phospholipase D and sphingosine kinaseactivities. The Federation of American Societies for Experimental Biology Journal23,2412-2424.
    Jang, I., Henriques, R., Seo, H., Nagatani, A. and Chua, N.(2010). Arabidopsis PHYTOCHROMEINTERACTING FACTOR Proteins Promote Phytochrome B Polyubiquitination by COP1E3Ligase in theNucleus. The Plant Cell22,2370-83.
    Jang M, Cai LN, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR,Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM.(1997) Cancer Chemopreventive activity of resveratrol, anutural product derived from grapes. Science275,218-220.
    Jefferson, R.(1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant MolecularBiology Reporter5,387-405.
    Jones, J. and Dangl, J.(2006). The plant immune system. Nature444,323-329.
    Journot-Catalino, N., Somssich, I. E., Roby, D. and Kroj, T.(2006). The transcription factorsWRKY11and WRKY17act as negative regulators of basal resistance in Arabidopsis thaliana. The PlantCell18,3289-3302.
    Kawasaki, T., Nam, J., Boyes, D., Holt III, B., Hubert, D., Wiig, A. and Dangl, J.(2005). A duplicatedpair of Arabidopsis RING-finger E3ligases contribute to the RPM1-and RPS2-mediated hypersensitiveresponse. The Plant Journal44,258-270.
    Kim, K. C., Lai, Z., Fan, B. and Chen, Z.(2008). Arabidopsis WRKY38and WRKY62transcriptionfactors interact with histone deacetylase19in basal defense. The Plant Cell20,2357-2371.
    Lai, Z., Vinod, K., Zheng, Z., Fan, B. and Chen, Z.(2008). Roles of Arabidopsis WRKY3andWRKY4transcription factors in plant responses to pathogens. BMC Plant Biology8,68-75.
    Lee, B. J., Kwon, S. J., Kim, S.-K., Kim, K.-J., Park, C.-J., Kim, Y. J., Park, O. K. and Paek, K.-H.(2006). Functional study of hot pepper26S proteasome subunit RPN7induced by Tobacco mosaic virusfrom nuclear proteome analysis. Biochemical And Biophysical Research Communications351,405-411.
    Lee, H. K., Cho, S. K., Son, O., Xu, Z., Hwang, I. and Kim, W. T.(2009). Drought stress-inducedRma1H1, a RING membrane-anchor E3ubiquitin ligase homolog, regulates aquaporin levels viaubiquitination in transgenic Arabidopsis plants. The Plant Cell21,622-641.
    Li, J., Brader, G. and Palva, E. T.(2004). The WRKY70transcription factor: a node of convergence forjasmonate-mediated and salicylate-mediated signals in plant defense. The Plant Cell16,319-331.
    Lipka, U., Fuchs, R. and Lipka, V.(2008). Arabidopsis non-host resistance to powdery mildews.Current Opinion in Plant Biology11,404-411.
    Lu, D., Lin, W., Gao, X., Wu, S., Cheng, C., Avila, J., Heese, A., Devarenne, T. P., He, P. and Shan, L.(2011). Direct ubiquitination of pattern recognition receptor FLS2attenuates plant innate immunity.Science332,1439-42.
    Luna, E., Bruce, T. J., Roberts, M. R., Flors, V. and Ton, J.(2012). Next-generation systemic acquiredresistance. Plant Physiology158,844-853.
    Mazeyrat, F., Mouzeyar, S., Courbou, I., Badaoui, S., Roeckel-Drevet, P., Tourvieille de Labrouhe, D.and Ledoigt, G.(1999). Accumulation of defense related transcripts in sunflower hypocotyls (Helianthusannuus L.) infected with Plasmopara halstedii. European Journal of Plant Pathology105,333-340.
    Mbengue, M., Camut, S., de Carvalho-Niebel, F., Deslandes, L., Froidure, S., Klaus-Heisen, D.,Moreau, S., Rivas, S., Timmers, T. and Herve, C.(2010). The Medicago truncatula E3Ubiquitin LigasePUB1Interacts with the LYK3Symbiotic Receptor and Negatively Regulates Infection and Nodulation.The Plant Cell22,3474-88.
    Miao, Y. and Zentgraf, U.(2010). A HECT E3ubiquitin ligase negatively regulates Arabidopsis leafsenescence through degradation of the transcription factor WRKY53. The Plant Journal63,179-188.
    Miura, K., Jin, J. B., Lee, J., Yoo, C. Y., Stirm, V., Miura, T., Ashworth, E. N., Bressan, R. A., Yun,D.-J. and Hasegawa, P. M.(2007). SIZ1-mediated sumoylation of ICE1controls CBF3/DREB1Aexpression and freezing tolerance in Arabidopsis. The Plant Cell19,1403-1414.
    Nürnberger, T. and Kemmerling, B.(2009). PAMP-triggered basal immunity in plants. Advances inBotanical Research51,1-38.
    Nandi, D., Tahiliani, P., Kumar, A. and Chandu, D.(2006). The ubiquitin-proteasome system. Journalof Biosciences31,137-155.
    Nickell, S., Beck, F., Scheres, S. H., Korinek, A., F rster, F., Lasker, K., Mihalache, O., Sun, N., Nagy,I. and Sali, A.(2009). Insights into the molecular architecture of the26S proteasome. Proceedings of theNational Academy of Sciences106,11943-11947.
    Peart, J. R., Lu, R., Sadanandom, A., Malcuit, I., Moffett, P., Brice, D. C., Schauser, L., Jaggard, D. A.,Xiao, S. and Coleman, M. J.(2002). Ubiquitin ligase-associated protein SGT1is required for host andnonhost disease resistance in plants. Proceedings of the National Academy of Sciences99,10865-10869.
    Pratelli, R., Guerra, D. D., Yu, S., Wogulis, M., Kraft, E., Frommer, W. B., Callis, J. and Pilot, G.(2012). The ubiquitin E3ligase LOSS OF GDU2is required for GLUTAMINE DUMPER1-induced aminoacid secretion in Arabidopsis. Plant Physiology158,1628-1642.
    QI, Y., TSUDA, K., GLAZEBROOK, J. and KATAGIRI, F.(2011). Physical association of pattern‐triggered immunity (PTI) and effector‐triggered immunity (ETI) immune receptors in Arabidopsis.Molecular Plant Pathology12,702-708.
    Qin, F., Sakuma, Y., Tran, L.-S. P., Maruyama, K., Kidokoro, S., Fujita, Y., Fujita, M., Umezawa, T.,Sawano, Y. and Miyazono, K.-i.(2008). Arabidopsis DREB2A-interacting proteins function as RING E3ligases and negatively regulate plant drought stress–responsive gene expression. The Plant Cell20,1693-1707.
    Qiu, D., Xiao, J., Ding, X., Xiong, M., Cai, M., Cao, Y., Li, X., Xu, C. and Wang, S.(2007).OsWRKY13mediates rice disease resistance by regulating defense-related genes in salicylate-andjasmonate-dependent signaling. Molecular Plant-microbe Interactions20,492-499.
    Rodriguez, S., Petersen, M. and Mundy, J.(2010). Mitogen-activated protein kinase signaling in plants.Annual Review of Plant Biology61,621-649.
    Schwessinger, B. and Zipfel, C.(2008). News from the frontline: recent insights into PAMP-triggeredimmunity in plants. Current Opinion In Plant Biology11,389-395.
    Smalle, J. and Vierstra, R.(2004a). The ubiquitin26S proteasome proteolytic pathway. Plant Biology55,555-90.
    Smalle, J. and Vierstra, R. D.(2004b). The ubiquitin26S proteasome proteolytic pathway. AnnualReview of Plant Biology55,555-590.
    Spoel, S. H. and Dong, X.(2012). How do plants achieve immunity? Defence without specializedimmune cells. Nature Reviews Immunology12,89-100.
    Spoel, S. H., Koornneef, A., Claessens, S. M. C., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J.,Buchala, A. J., Métraux, J. P., Brown, R. and Kazan, K.(2003). NPR1modulates cross-talk betweensalicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. The PlantCell15,760-770.
    Spoel, S. H., Mou, Z., Tada, Y., Spivey, N. W., Genschik, P. and Dong, X.(2009).Proteasome-mediated turnover of the transcription coactivator NPR1plays dual roles in regulating plantimmunity. Cell137,860-872.
    Suty, L., Lequeu, J., Lan on, A., Etienne, P., Petitot, A.-S. and Blein, J.-P.(2003). Preferentialinduction of20S proteasome subunits during elicitation of plant defense reactions: towards thecharacterization of “plant defense proteasomes”. The International Journal of Biochemistry&Cell Biology35,637-650.
    Takahashi, A., Casais, C., Ichimura, K. and Shirasu, K.(2003). HSP90interacts with RAR1and SGT1and is essential for RPS2-mediated disease resistance in Arabidopsis. Proceedings of the National Academyof Sciences100,11777-11782.
    Takizawa, M., Goto, A. and Watanabe, Y.(2005). The tobacco ubiquitin-activating enzymes NtE1Aand NtE1B are induced by tobacco mosaic virus, wounding and stress hormones. Molecules and Cells19,228-231.
    Tamura, K., Dudley, J., Nei, M. and Kumar, S.(2007). MEGA4: molecular evolutionary geneticsanalysis (MEGA) software version4.0. Molecular Biology and Evolution24,1596-1599.
    Trujillo, M., Ichimura, K., Casais, C. and Shirasu, K.(2008). Negative regulation of PAMP-triggeredimmunity by an E3ubiquitin ligase triplet in Arabidopsis. Current Biology18,1396-1401.
    Trujillo, M. and Shirasu, K.(2010). Ubiquitination in plant immunity. Current Opinion in PlantBiology13,402-408.
    Van Den Burg, H., Tsitsigiannis, D., Rowland, O., Lo, J., Rallapalli, G., MacLean, D., Takken, F. andJones, J.(2008). The F-box protein ACRE189/ACIF1regulates cell death and defense responses activatedduring pathogen recognition in tobacco and tomato. The Plant Cell20,697-719.
    Vance, R. E., Isberg, R. R. and Portnoy, D. A.(2009). Patterns of pathogenesis: discrimination ofpathogenic and nonpathogenic microbes by the innate immune system. Cell Host&Microbe6,10-21.
    Vierstra, R.(2009). The ubiquitin-26S proteasome system at the nexus of plant biology. NatureReviews Molecular Cell Biology10,385-397.
    Wang, Y., Liu, Y., He, P., Chen, J., Lamikanra, O. and Lu, J.(1995). Evaluation of foliar resistance toUncinula necator in Chinese wild Vitis species. Vitis34,159-164.
    Xiao, S., Brown, S., Patrick, E., Brearley, C. and Turner, J. G.(2003). Enhanced transcription of theArabidopsis disease resistance genes RPW8.1and RPW8.2via a salicylic acid–dependent amplificationcircuit is required for hypersensitive cell death. The Plant Cell15,33-45.
    Xiao, S. and Chye, M.-L.(2011). Overexpression of Arabidopsis ACBP3enhances NPR1-dependentplant resistance to Pseudomonas syringe pv tomato DC3000. Plant Physiology156,2069-2081.
    Xiong, L., Lee, H., Huang, R. and Zhu, J. K.(2004). A single amino acid substitution in theArabidopsis FIERY1/HOS2protein confers cold signaling specificity and lithium tolerance. The PlantJournal40,536-545.
    Xu, W., Yu, Y., Ding, J., Hua, Z. and Wang, Y.(2010). Characterization of a novel stilbene synthasepromoter involved in pathogen-and stress-inducible expression from Chinese wild Vitis pseudoreticulata.Planta231,475-487.
    Yang, J., Lin, R., Sullivan, J., Hoecker, U., Liu, B., Xu, L., Deng, X. W. and Wang, H.(2005). Lightregulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling inArabidopsis. The Plant Cell17,804-821.
    Yang, Y., Li, R. and Qi, M.(2000). In vivo analysis of plant promoters and transcription factors byagroinfiltration of tobacco leaves. The Plant Journal22,543-551.
    Yee, D. and Goring, D.(2009). The diversity of plant U-box E3ubiquitin ligases: from upstreamactivators to downstream target substrates. Journal of Experimental Botany.60:1109-1121.
    Yu, D., Chen, C. and Chen, Z.(2001). Evidence for an important role of WRKY DNA binding proteinsin the regulation of NPR1gene expression. The Plant Cell13,1527-1540.
    Yu, Y. H., Xu, W. R., Wang, S. Y., Xu, Y., Li, H. E., Wang, Y. J. and Li, S. X.(2011). VpRFP1, a novelC4C4-type RING finger protein gene from Chinese wild Vitis pseudoreticulata, functions as atranscriptional activator in defence response of grapevine. Journal of Experimental Botany62,5671-5682.
    Zeng, L., Vega-Sanchez, M., Zhu, T. and Wang, G.(2006). Ubiquitination-mediated proteindegradation and modification: an emerging theme in plant-microbe interactions. Cell Research16,413-426.
    Zhang, J. and Zhou, J. M.(2010). Plant immunity triggered by microbial molecular signatures.Molecular plant3,783-793.
    Zheng, Z., Qamar, S. A., Chen, Z. and Mengiste, T.(2006). Arabidopsis WRKY33transcription factoris required for resistance to necrotrophic fungal pathogens. The Plant Journal48,592-605.
    Zhu, Z., Shi, J., Cao, J., He, M. and Wang, Y.(2012). VpWRKY3, a biotic and abiotic stress-relatedtranscription factor from the Chinese wild Vitis pseudoreticulata Plant Cell Reports31,2109-20.
    Zipfel, C.(2008). Pattern-recognition receptors in plant innate immunity. Current Opinion inImmunology20,10-16.
    Zipfel, C.(2009). Early molecular events in PAMP-triggered immunity. Current Opinion in PlantBiology12,414-420.
    贺普超主编.葡萄学.北京:中国农业出版社,1999.
    王跃进,贺普超.(1997)中国葡萄属野生种叶片抗白粉病遗传研究.中国农业科学30:19-25.
    张今今,王跃进,王西平,杨克强和杨进孝.(2003).葡萄总RNA提取方法的研究.果树学报20,178-181.
    张剑侠,王跃进,徐炎.(2001)中国野生葡萄及其F1代抗白粉病的遗传表现.中国农业科学34:610-614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700