小麦F-box蛋白基因TaFBA1的分离与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是禾本科小麦属的重要栽培作物,也是我国第二大粮食作物。全世界约有35%-40%的人口以小麦作为主要粮食。小麦生长过程中经常遭受干旱胁迫的危害而导致减产。干旱胁迫导致植物体内蛋白质损伤,细胞内无功能蛋白的积累增多,多种酶受到影响造成一系列生理生化代谢过程紊乱,甚至导致细胞、组织、器官或者植株的死亡。因此,胁迫条件下无功能蛋白质的及时清除成为植物抵抗逆境的重要机制,而泛素-26S蛋白酶体系统在清除这些无功能蛋白过程中起着至关重要的作用。泛素连接酶E3是泛素-26S蛋白酶体系统的关键酶,其中F-box蛋白是多亚基泛素连接酶E3的关键亚基,也是识别底物蛋白的特异组分,在泛素-26S蛋白酶体系统中居于关键部位。前人研究发现F-box蛋白在植物抗逆性中起着重要作用。
     本研究从抗旱小麦品种山农16中获得了泛素连接酶SCF复合体F-box亚基基因TaFBA1及其启动子区域,对其序列特征、表达模式进行了分析,构建了组成型和胁迫诱导型表达载体,转化烟草和拟南芥获得了转基因植株,对转基因植株的抗逆性及其生理机制进行了研究。主要结果如下:
     (1)利用同源克隆从小麦中分离到F-box基因TaFBA1(JN038382)。该基因cDNA全长为1334bp,基因的开放阅读框编码325个氨基酸,分子量约为36.6kDa,具有两个保守区F-box结构域和AMN1(Antagonist of mitotic exit network protein1)结构域。
     (2)利用Tail-PCR分离了TaFBA1基因的启动子区域(JQ065654),长度为1104bp;PlantCARE功能软件预测表明,该启动子区域含有茉莉酸甲酯、水杨酸、乙烯缺氧胁迫、胚乳表达、伤口、植物防御与抗性等响应元件以及参与干旱诱导的MYB结合位点。
     (3)将p35S-TaFBA1-GFP融合蛋白在洋葱表皮中瞬时表达。通过荧光显微镜观察到TaFBA1-GFP融合蛋白在细胞膜、细胞质和细胞核中都有分布。
     (4)qRT-PCR分析表明,TaFBA1基因在根、茎、叶、小穗中均有表达,其中叶片中表达最丰富,茎中最低。PEG、NaCl、MV等逆境胁迫条件均能诱导该基因的上调表达,同时外施ABA、MeJA、SA、ETH等激素也可诱导TaFBA1基因的上调表达。
     (5)构建了基因的原核表达载体pET-TaFBA1,并在大肠杆菌BL21中表达了融合蛋白。将诱导蛋白分离纯化并溶于PBS中获得抗原,免疫小白鼠制备了抗体。检测抗血清效价为1:1500。Western杂交表明,干旱诱导小麦叶片中TaFBA1蛋白的表达丰度提高。
     (6)将获得的TaFBA1基因编码序列与含有35S启动子的pBI121载体重组,构建了过表达载体pBI121-35S-TaFBA1。利用农杆菌介导的叶盘法转化烟草,获得过表达TaFBA1的转基因烟草植株。利用农杆菌介导的花序侵染法转化拟南芥,获得了过表达TaFBA1的拟南芥转基因植株。利用PCR对带卡那抗性的转基因烟草和拟南芥植株进行检测,结果证明成功地获得了过表达TaFBA1烟草和拟南芥植株。Western blot同样证实转基因烟草株系中TaFBA1蛋白的表达明显。
     (7)选择3个过量表达TaFBA1的转基因株系用于基因抗逆性功能研究。结果表明,干旱胁迫下过表达TaFBA1烟草植株比野生型植株萌发率较高,萌发较快;过表达TaFBA1烟草幼苗比野生型叶片数较多,侧根数较多,生长量较高,说明过表达TaFBA1提高了烟草的抗旱能力,维持了较好的生长势。干旱胁迫下,过表达TaFBA1烟草比野生型植株积累较少的ROS,相对电导率较低,丙二醛含量较少,说明过量表达TaFBA1基因在一定程度上缓解了干旱胁迫导致的活性氧胁迫,细胞受伤害程度较低,细胞膜完整性较好,膜透性受影响较小。干旱胁迫下过表达TaFBA1烟草比野生型植株相对含水量较高,气孔开度较大,光合速率较强,说明转基因植株根系发达,吸水能力强,维持较好的水分状况,从而能够维持较高的光合速率,增强了叶片的耐干旱能力。
     (8)检测了转基因植株的耐氧化胁迫能力。MV处理条件下,过表达烟草种子比野生型具有较高的萌发率;转基因幼苗失绿、根系受抑制程度较轻,生长情况较好;表明过表达TaFBA1的转基因烟草抗氧化胁迫能力较强。用MV处理叶圆片后发现,转基因株系相比野生型植株叶绿素含量较高,相对电导率较低、丙二醛含量较少,抗氧化酶SOD、POD、APX、CAT活性高且较稳定,积累ROS较野生型少,细胞受伤害程度较小,说明转基因烟草的抗氧化胁迫能力较强。进一步检测氧化胁迫相关基因表达发现,在正常情况和MV处理条件下,过表达TaFBA1均影响了氧化胁迫相关基因的表达。
     (9)观察了转基因株系整个生育期的生长发育表型。与野生型烟草相比,过表达TaFBA1转基因烟草叶片畸形率较高。同时发现,过表达TaFBA1转基因拟南芥比野生型生长减缓,植株矮小,叶片呈现明显皱缩,缺刻增多。
     (10)为了减轻过表达TaFBA1基因对植株表型造成的影响,同时保持TaFBA1基因的耐逆性功能,我们用胁迫诱导启动子RD29A代替35S启动子,构建了胁迫诱导表达载体pBI121-RD29A-TaFBA1,利用农杆菌介导的叶盘法转化烟草,获得胁迫诱导表达TaFBA1烟草植株。对诱导型转基因植株的初步观察研究发现,干旱和氧化胁迫条件下,胁迫诱导表达TaFBA1转基因烟草植株比野生型烟草的耐干旱和耐氧化胁迫能力较强,表型与野生型差异不明显。
     以上研究表明,TaFBA1基因不仅在植物抵抗干旱胁迫和氧化胁迫时具有重要作用,而且还可能与植物的生长发育相关。
Wheat is a monocots and an important crop from gramineae family, and the secondleading cereal crop in china. More than one third population in the world take wheat as themain food. Drought stress restrains wheat growth and yield. Drought stress may causevarious adverse effects on plant growth and development, such as dwarf plant, shorter rootlength, smaller leaf area and decreased biomass. Besides, proline content in leaf andelectrolyte permeation were significantly increased, associated with photosynthesis decreased,sometimes the whole plant is killed badly. The accumulation of waste proteins in cells wereincreased under stress conditions. Ubiquitination of proteins through ubiquitin/26Sproteasome system (UPS) is an important regulative manner in response to various abioticstresses in plants. Ubiquitin ligase E3, as a main determinant of substrate specificity in UPSwas involved in plant stress adaptability. F-box protein characterized by an F-box motif is asubunit of SCF complex, which works as determinant in substrate recognition. It is veryimpotant to investigate the relationship between F-box and stress tolerance in plants.
     In the present study, we isolated and characterized an F-box gene, TaFBA1, fromTriticum aestivum L. cv. Shannong16with stronger drought resistance. Sequence comparisonand expression analysis were analyzed. The full-length TaFBA1cDNA was subcloned intothe expression vector pBI121downstream of the CaMV35S promoter or RD29A promoter toform pBI121-35S-TaFBA1or pBI121-RD29A-TaFBA1constructs. The constructs weretransferred into arabidopsis plants and tobacco plants mediated by Agrobacteriumtumefaciens. And further functional analysis on the transgenic plants were analyzed in thiswork. The main results are listed as follows:(1) We isolated an F-box gene from wheat, named TaFBA1(GenBank ID: JN038382). TheTaFBA1contains a978bp open reading frame (ORF), and encodes a325amino acidspolypeptide of molecular weight36.6kDa. There are two conserved regions, an F-box motif and an AMN1(Antagonist of mitotic exit network protein1)motif in this protein.
     (2) We also isolated the promoter region of TaFBA1(GenBank ID: JN065654). The promoterfragment length is1104bp. Promoter sequence analyzed by PlantCARE showed that it hasTATA-box, CAAT-box and some cis-acting elements such as MYB binding site, cis-actingregulatory elements involved in MeJA, SA response, some light-induced responsive elementsand other transcription factor-binding sites.
     (3) p35S-TaFBA1-GFP fusion protein was constructed and transiently expressed in onionepidermal cells. It was observed with fluorescence microscope that the TaFBA1-GFP fusionprotein was found in the membrane, cytoplasm and nucleus.
     (4) qRT-PCR showed that TaFBA1mRNA was expressed in the leaves, stems, roots andspikes, and the transcript level in the leaves was higher than that in the roots and spikes, andin the stems, its expression level was minimal. NaCl, PEG and MV stresses led to asignificant increase of TaFBA1transcript level in wheat leaves. And exogenous application ofABA, SA, MeJA and ETH also increased the TaFBA1mRNA in wheat leaves.
     (5) A recombinant of prokaryotic expression vector pET-TaFBA1was constructed andtransformed to E.Coli. BL21. The strong induced fusion protein bands were collected intophosphate buffer (PBS) solution and were used to immunize mice to obtain antiserum. Thevalue of antibody reaches1:1500. Western blot analysis revealed the presence of the strongpositive protein signals corresponding to TaFBA1in transgenic plants. The results showedthat the expression of TaFBA1at protein level was induced by drought stresses and changedwith the treatment.
     (6) The full-length TaFBA1cDNA was subcloned into the expression vector pBI121downstream of the CaMV35S promoter to form pBI121-35S-TaFBA1constructs. Theconstructs were first introduced into Agrobacterium tumefaciens LBA4404and GV3101bythe freezing transformation method under the kanamycin selection pressure. The transgenicplants were verified by PCR and qRT-PCR. It was indicated that the TaFBA1gene had beenrecombined into tobacco and arabidopsis genome and the transgenic plants were obtained.
     (7) Compared to WT plants, overexpression of TaFBA1transgenic plants showed higherresistance to drought stress by increasing germination rate, leaf number, lateral number, rootlength and growth vigor. Under drought stress, the MDA content, ROS accumulation, relative electrical conductivity of transgenic plants were obviously lower than those of WT plants.These results showed that overexpression of TaFBA1alleviated the permeability ofmembrane, cell damage degree and oxidative damage under drought stress. Furthermore, netphotosynthetic rate (Pn) and relative water content (RWC) in WT and transgenic plantsdecreased markedly under drought stress, the decrease of Pn and RWC was more slower intransgenic plants compare to WT. The results indicated that overexpression of TaFBA1maintained high photosynthetic rate and strengthened the stress resistence of plants.
     (8) Overexpression of TaFBA1in tobacco conferred resistance to methyl viologen (MV)induced oxidative stress. Under MV treatments, the growth of TaFBA1-overexpressingtobacco plants was better than the WT plants, which including more green cotyledons andlonger root length. In addition, TaFBA1-overexpressing tobacco plants showed less ROSaccumulation and higher activities of antioxidant enzymes (SOD, APX, CAT and POD)compared to WT plants under MV treatments. Furthermore, the expression levels ofROS-related genes were changed by overexpressed TaFBA1.
     (9) Compared to WT plants, overexpression of TaFBA1transgenic plants showed highproportion of abnormal leaves. At the same time, transgenic arabidopsis plants exhibiteddecelerated growth and abnormal leaves compared to WT.
     (10) For further research, The expression vector pBI121-RD29A-TaFBA1was constructed,and the constructs was transferred into tobacco plants mediated by Agrobacteriumtumefaciens LBA4404under the kanamycin selection pressure. The transgenic plants wereverified by PCR. It was indicated that the TaFBA1gene had been recombined into tobaccogenome and the stress-induced expression of TaFBA1transgenic plants were obtained. Wefound that stress-induced expression of TaFBA1transgenic plants showed higher resistance todrought stress and oxidative stress compare to WT plants.
     In conclusion, TaFBA1plays an important role in the biological processes related toplant growth and development, adaptation to drought stress and oxidative stress.
引文
陈建明,余应年。真核泛素缀合途径研究进展。中国病理生理杂志,2000,16(2):175-178
    范云,刘兵,王宏斌,王树启,王金发。胡萝卜抗冻蛋白基因的克隆及其在E.coli中的表达。中山大学学报,2002(3):26-29
    韩志勇,王新其,沈革志。反向PCR克隆转基因水稻的外源基因旁侧序列。上海农业学报,2001,17(2):27-32
    侯学文,郭勇。泛素与植物逆境响应。植物生理学通讯,1998,34:474-478
    李维,张义正。黄孢原毛平革菌基因启动子的分离与鉴定。生物工程学报,2000,16(5):599-602
    李竹红,刘德培,梁植权。改进的反向PCR技术克隆转移基因的旁侧序列。生物化学与生物物理进展,1999,26(6):600-603
    刘国琴,樊卫国。果树对水分胁迫的生理响应。西南农业学报,2000,13(1):101-106
    路静,赵华燕,何奕昆,宋艳茹。高等植物启动子及其应用研究进展。自然科学进展,2004,14(8):856-862
    秘彩莉,刘旭,张学勇。F-box蛋白质在植物生长发育中的功能。遗传,2006,28(10):1337-1342
    倪晓光,赵平。泛素-蛋白酶体途径的组成和功能。生理科学进展,2006,37(3):255-258
    宁约瑟,王国梁,谢旗。泛素连接酶E3介导的植物干旱胁迫反应。植物学报,2011,46(6):606-616
    王爱国,罗广华。植物的超氧物自由基与羟胺反应的定量关系。植物生理学通讯,1990,6:55-57
    王高鸿,黄久常。蛋白质的选择性降解。生命科学,1999,11:24-30
    王新国,张国华。用衔接头PCR克隆新的胡萝卜Ⅱ型转化酶基因启动子。中国生物学与分子生物学报,2001,17(1):61-65
    赵世杰,史国安,董新纯(主编)。植物生理学实验指导。中国农业科学技术出版社,北京,2002:58
    朱经春,王台,陈克成。泛肽系统的组成和功能(一)系统组成、底物识别与蛋白质泛肽化。植物学通报,1999a,16(3):208-218
    朱经春,王台,陈克成。泛肽系统的组成和功能(二)生物学功能及在生物技术中的应用前景。植物学通报,1999b,16(4):359-364
    朱玉贤,李毅(主编)。现代分子生物学。高等教育出版社,北京,2002
    Alché J. D., Butowt R., Castro A. J., Rodriguez-Garcia I.. Ubiquitin and ubiquitin-conjugatedproteins in the olive (Olea europaea L.) pollen. Sexual Plant Reproduction,2000,12:285-291
    Allen R. D., Webb R. P., Schake S. A.. Use of transgenic plants to study antioxidant defenses.Free Radical Biology and Medicine,1997,23:473-479
    Aono M., Saji H., Fujiyama K., Sugita M., Kondo N., Tanaka K.. Decrease in activity ofglutathione reductase enhanced paraquat sensitivity in transgenic Nicotiana tabacum.Plant Physiology,1995,107:645-648
    Babbs C. F., Pham J. A., Coolbaugh R. C.. Lethal hydroxyl radical production inparaquat-treated plants. Plant Physiology,1989,90:1267-1270
    Bachmair A., Novatchkova M., Potuschak T., Eisenhaber F.. Ubiquitylation in plants: apost-genomic look at a post-translational modification. Trends in Plant Science,2001,6:463-470
    Bai C., Sen P., Hofmann K., Ma L., Goebl M., Harper J. W., Elledge S. J.. SKP1connectscycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box.Cell,1996,86:263-274
    Bartoli C.G., Simontacchi M., Tambussi E., Beltrano J., Montaldi E., Puntarulo S.. Droughtand watering-dependent oxidative stress: effect on antioxidant content in Triticumaestivum L. leaves. Journal of Experimental Botany,1999,50:375-383
    Binder B. M., Walker J. M., Gagne J. M., Emborg T.J., Hemmann G., Bleecker A. B., VierstraR.D., The Arabidopsis EIN3binding F-box proteins EBF1and EBF2have distinct butoverlapping roles in ethylene signaling. Plant Cell,2007,19:509-523
    Bowler C., Van Montagu M., lnzc D.. Superoxide dismutase and stress tolerance. AnnualReview of Plant Physiology and Plant Molecular Biology,1992,43:83-116
    Bradford M. M.. A rapid and sensitive method for the quantification of microgram quantitiesof protein using the principle of protein-dye binding. Annals of Biochemistry,1976,72:248-254
    Cao Y., Yang Y., Zhang H., Li D., Zheng Z. and Song F.. Overexpression of a ricedefense-related F-box protein gene OsDRF1in tobacco improves disease resistancethrough potentiation of defense gene expression. Physiologia plantarum,2008,134:440-452
    Cardozo T., Pagano M.. The SCF ubiquitin ligase: insights into a molecular machine. Naturereviews Molecular cell biology,2004,5:739-751
    Chae E., Tan Q. K., Hill T. A., Irish V. F.. An Arabidopsis F-box protein acts as atranscriptional co-factor to regulate floral development. Development,2008,135:1235-1245
    Ciechanover A.. The ubiquitin-proteasome pathway: on protein death and cell life. EMBOJournal,1998,17:7151-7160
    Ciechanover A.. The ubiquitin-proteasome protealytic pathway. Cell,1994,79:13-21
    Connellv C., Hieter P.. Budding yeast SKP1encodes an evolutionarily conserved kinetochoreprotein required for cell cycle progression. Cell,1996,86:275-285
    Coux O., Tanaka K., Goldberg A. L.. Structure and functions of the20S and26S proteasomes.Annual Review Biochemistry,1996,65:801-847
    del Pozo J. C., Dharmasiri S., Hellmann H., Walker L., Gray W. M., Estelle M..AXR1-ECRl-dependent conjugation of RUB1to the Arabidopsis Cullin AtCULl isrequired for auxin response. Plant Cell,2002,14:421-433
    del Pozo J. C., Estelle M.. The Arabidopsis cullin AtCULl is modified by the ubiquitin-relatedprotein RUB1. Proceedings of the National Academy of Sciences of the United States ofAmerica,1999,96:15342-15347
    Deshaies R.. SCF and Cullin/Ring H2-based ubiquitin ligases. Annual review of cell anddevelopmental biology,1999,15:435-467
    Devoto A., Nieto-Rostro M., Xie D., Ellis C., Harmston R., Patrick E., Davis J., Sherratt L.,Coleman M., JG T.. COI1links jasmonate signalling and fertility to the SCFubiquitin-ligase complex in Arabidopsis. Plant Journal,2002,32:457-466
    Devoto A., Ellis C., Magusin A., Chang H. S., Chilcott C., Zhu T., Turner J. G.. Expressionprofiling reveals COI1to be a key regulator of genes involved in wound-and methyljasmonate-induced secondary metabolism, defence, and hormone interactions. Plantmolecular biology,2005,58:497-513
    Dharmasiri N., Dharmasiri S., Estelle M.. The F-box protein TIR1is an auxin receptor. Nature,2005,435:441-445
    Dill A., Thomas S. G., Hu J., Steber C. M., Sun T. P.. The Arabidopsis F-box proteinSLEEPY1targets gibberellin signaling repressors for gibberellin-induced degradation.Plant Cell,2004,16:1392-1405
    Farras R., Ferrando A., Jasik J., Kleinow T., Okresz L., Tiburcio A., Salchert K., del Pozo C.,Schell J., Koncz C.. SKP1-SnRK protein kinase interactions mediate proteasomal bindingof a plant SCF ubiquitin ligase. EMBO Journal,2001,20:2742-2756
    Figueroa P., Gusmaroli G., Serino G., Habashi J., Ma L., Shen Y., Feng S., Bostick M., CallisJ., Hellmann H., Deng X. W.. Arabidopsis has two redundant Cullin3proteins that areessential for embryo development and that interact with RBX1and BTB proteins to formmultisubunit E3ubiquitin ligase complexes in vivo. Plant Cell,2005,17:1180-1195
    Fodor I., Krasnikova O. V., Berets E., Shubochkina E. A., Bo sar D.. Cloning, structure andfeatures of a Saccharomyces cerevisiae DNA fragment causing the expression of reportergenes. Molekuliarnaia biologiia,1990,24:1411
    Fonseca S., Chico J., Solano R.. The jasmonate pathway: the ligand, the receptor and the coresignalling module. Current opinion in plant biology,2009,12:539-547
    Gagne J. M., Downes B.P., Shiu S. H., Durski A. M., Vierstra R. D.. The F-box subunit of theSCF E3complex is encoded by a diverse superfamily of genes in Arabidopsis.Proceedings of the National Academy of Sciences of the United States of America,2002,99:11519-11524
    Gao Y., Zhao Y., Li T., Liu Y., Ren C., Wang M.. Molecular cloning and expression analysisof an F-box protein gene responsive to plant hormones in Brassica napus. MolecularBiology Reports,2010,37:1037-1044.
    Glickman M. H.. Getting in and out of the proteasome. Seminars in Cell&DevelopmentalBiology,2000,11:149-158
    Goldstein G., Scheid M., Hammerling U., Schlesinger D. H., Niall H. D., Boyse E. A..Isolation of a polypeptide that has lymphocyte-differentiating properties and is probablyrepresented universally in living cells. Proceedings of the National Academy of Sciencesof the United States of America,1975,72:11-15
    Gray W. M., del Pozo J. C., Walker L., Hobbie L., Risseeuw E., Banks T., Crosby W. L.,Yang M., Ma H., Estelle M.. Identification of an SCF ubiquitin-ligase complex requiredfor aulin response in Arabidopsis thaliana. Genes&Development,1999,13:1678-1691
    Gray W. M., Hellmann H., Dharmasiri S., Estelle M.. Role of the Arabidopsis RING-H2protein RBXl in RUB modification and SCF function. Plant Cell,2002,14:2137-2144
    Guerra D., Mastrangelo A. M., Lopez-Torrejon G., Marzin S., Schweizer P., Stanca A. M.,del Pozo J. C., Cattivelli L., Mazzucotelli E.. Identification of a protein networkinteracting with TdRF1, a wheat RING ubiquitin ligase with a protective role againstcellular dehydration. Plant physiology,2012,158:777-789
    Guo H., Ecker J. R.. Plant responses to ethylene gas are mediated bySCFEBF1/EBF2-dependent proteolysis of EIN3transcription factor. Cell,2003,115:667-678
    Hartel H., Haseloff R. F., Ebert B., Rank B.. Free radical formation in chloroplasts. Methylviologen action. Journal of Photochemistry and Photobiology B: Biology,1992,12:375-387
    He Y., Gan S.. Identical promoter elements are involved in regulation of the OPR1gene bysenescence and jasmonic acid in Arabidopsis. Plant Molecular Biology,2001,47:595-605
    Hellmann H., Estelle M.. Plant development: regulation by protein degradation. Science,2002,297:793-797
    Hellmann H., Hobbie L., Chapman A., Dharmasiri S., Dharmasiri N., del Pozo C., ReinhardtD., Estelle M.. Arabidopsis AXR6encodes CUL1implicating SCF E3ligases in auxinregulation of embryogenesis. EMBO Journal,2003,22:3314-3325
    Hemavathi, Upadhyaya C. P., Akula N., Young K. E., Chun S. C., Kim D. H., Park S. W..Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to variousabiotic stresses. Biotechnology Letters,2010,32:321-330
    Hirano K., Ueguchi-Tanaka M., Matsuoka M.. GID1-mediated gibberellin signaling in plants.Trends in Plant Science,2008,13:192-199
    Hoopen R., Manteuffel R., Dolezel J., Malysheva L., Schubert I.. Evolutionay conservation ofkinetocliore protein sequences in plants. Chromosoma,2000,109:482-489
    Hu Z., Keceli M. A., Piisil M., Li J., Survila M., Heino P., Brader G., Palva E. T., Li J..F-box protein AFB4plays a crucial role in plant growth, development and innateimmunity. Cell Research,2012,22:777-781
    Huang S. H., Jong A. Y., Yang W., Holcenberg J.. Amplification of gene ends from genelibrary by PCR with single-sided specificity. Methods Molecular Biology,1993,15:357-363
    Jain M., Nijhawan A., Arora R., Agarwal P., Ray S., Sharma P., Kapoor S., Tyagi A. K.,Khurana J. P.. F-box proteins in rice. Genome-wide analysis, classification, temporal andspatial gene expression during panicle and seed development, and regulation by light andabiotic stress. Plant Physiology,2007,143:1467-1483.
    Jia Y., Hanyan G., Xiansheng W., Quanjia C., Shubing S., Jusong Z., Lin M., Hua Z., Hao M..Molecular cloning and characterization of an F-box family gene CarF-box1from chickpea(Cicer arietinum L.). Molecular Biology Reports,2011,39:2337–2345
    Jones D. H., Winistorfer S. C.. Sequence specific generation of a DNA panhardle permitsPCR amplication of unknown flanking DNA. Nucleic acids research,1992,20:595-600
    Kawakami T., Chiba T., Suzuki T., Iwai K., Yamanaka K., Minato N., Suzuki H., ShimbaraN., Hidaka Y., Osaka F.. NEDD8recruits E2-ubiquitin to SCF E3ligase. EMBO Journal,2001,20:4003-4012
    Kepinski S., Leyser O.. The Arabidopsis F-box protein TIR1is an auxin receptor. Nature,2005,435:446-451
    King R.W., Jackson P.K. and Kirschner M.W.. Mitosis in Transition Review. Cell,1994,79:563-571
    Kipreos E. T., Pagano M.. The F-box protein family. Genome Biology,2000,1:3002
    Kisselev A. F., Songyang Z., Goldberg A. L.. Why does threonine, and not serine, function asthe active site nucleophile in proteasomes? Journal of Biological Chemistry,2000,275:14831-14837
    Koops P., Pelser S., Ignat M., Klose C., Marrocco-Selden K., Kretsch T.. EDL3is an F-boxprotein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana.Journal of Experimental Botany,2011,62:5547-5560
    Kostova Z., Wolf D. H.. For whom the bell tolls: protein quality control of the endoplasmicreticulum and the ubiquitin-proteasome connection. EMBO Journal,2003,22:2309-2317
    Kumar A., Paietta J. V.. The sulfur controller-2negative regulatory gene of neurospora crassaencodes a protein with beta-transducin repeats. Proceedings of the National Academy ofSciences,1995,92:3343-3347
    Lechner E., Achard P., Vansiri A., Potuschak T., Genschik P.. F-box proteins everywhere.Current Opinion in Plant Biology,2006,9:631-638
    Lee D. H., Goldberg A. L.. Proteasome inhibitors: valuable new tools for cell biologists.Trends in Cell Biology,1998,8:397-403
    Lee H. K., Cho S. K., Son O., Xu Z., Hwang I., Kim W.T.. Drought stress-induced Rma1H1,a RING membrane-anchor E3ubiquitin ligase homolog, regulates aquaporin levels viaubiquitination in transgenic Arabidopsis plants. Plant Cell,2009,21:622-641
    Li F. N., Johnston M.. Grr1of Saccharomyces cerevisiae is connected to the ubiquitinproteolysis machinery through Skp1: coupling glucose sensing to gene expression and thecell cycle. EMBO Journal,1997,16:5629-5638
    Li F., H Y., Feng Y., Xing S., Zhao M., Chen Y., Wang W.. Expression of wheat expansindriven by the RD29Promoter in tobacco confers water-stress tolerance without impactinggrowth and development. Journal of Biotechnology,2012,163(3):281-291
    Li Q., Yin H., Li D., Zhu H., Zhang Y., Zhu W.. Isolation and Characterization of CMO GenePromoter from Halophyte Suaeda liaotungensis K.. Journal of Genetics and Genomics,2007,34:355-361
    Liu Y. G., Whittier R. F.. Thermal asymmetric interlaced PCR: automatable amplification andsequencing of insert end fragments from P1and YAC clones for chromosome walking.Genomics,1995,25:674-681
    Lyzenga W. J., Stone S. L.. Abiotic stress tolerance mediated by protein ubiquitination.Journal of Experimental Botany,2012,63(2):599-616
    Maldonado-Calderón M.T., Sepúlveda-García E., Rocha-Sosa M.. Characterization of novelF-box proteins in plants induced by biotic and abiotic stress. Plant Science,2012,185:208-217
    Manzano C., Ramirez-Parra E., Casimiro I., Otero S., Desvoyes B., De Rybel B., BeeckmanT., Casero P., Gutierrez C., del Pozo J. C.. Auxin and epigenetic regulation of SKP2B, anF-box that represses lateral root formation. Plant physiology,2012,160:749-762
    Más P., Alabadí D., Yanovsky M. J., Oyama T., Kay S. A.. Dual role of TOC1in the controlof circadian and photomorphogenic responses in Arabidopsis. Plant Cell,2003,15:223-236
    McClellan C., Chang C.. The role of protein turnover in ethylene biosynthesis and response.Plant Science,2008,175:24-31
    Meng L., Mohan R., Kwok B. H., Elofsson M., Sin N., Crews C. M.. Epoxomicin, a potentand selective proteasome inhibitor, exhibits in vivo antiinflammatory activity.Proceedings of the National Academy of Sciences of the United States of America,1999,96:10403-10408
    Mito T., Seki M., Shinozaki K.. Generation of chimeric repressors that confer salt tolerance inArabidopsis and rice. Plant Biotechnology Journal,2010,9:736-746
    Mittler R.. Oxidative stress, antioxidants and stress tolerance. Trends in plant science,2002,7:405-410
    Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V. B., Vandepoele K., Gollery M.,Shulaev V., Breusegem F. V.. ROS signaling: the new wave? Trends in plant science,2011,16:300-309
    Mockaitis K., Estelle M.. Auxin receptors and plant development: a new signaling paradigm.Annual Review of Cell and Developmental Biology,2008,24:55-80
    Moore K., Roberts L. J.. Measurement of lipid peroxidation. Free radical research,1998,28:659-671
    Mudgil Y., Shiu S. H., Stone S. L., Salt J. N., Goring D. R.. A large complement of thepredicted Arabidopsis ARM repeat proteins are members of the U-box E3ubiquitin ligasefamily. Plant Physiology,2004,134:59~66
    Neve R. L., West R. W., Rodriguez R. L.. Eukaryotic DNA fragments which act as promotersfor a plasmid gene. Nature,1979,277:324-325
    Ni W., Xie D., Hobbie L., Feng B., Zhao D., Akkara J., Ma H.. Regulation of flowerdevelopment in Arabidopsis by SCF complexes. Plant physiology,2004,134:1574-1585
    Ohh M., Kim W. Y., Moslehi J.J., Chen Y., Chau V., Read M. A., Kaelin W. G.. An intactNEDD8pathway is required for Cullin-dependent ubiquitylation in mammalian cells.EMBO Reports,2002,3:177-182
    Patton E. E., Willems A. R., Sa D., Kuras L., Thomas D., Craig K. L., Tyers M.. Cdc53is ascaffold protein for multiple Cdc34/Skpl/F-box proteincomplexes that regulate celldivision and methionine biosynthesis in yeast. Genes Development,1998,12:692-705
    Perales L., Pe arrubia L., Cornejo M. J.. Induction of a polyubiquitin gene promoter bydehydration stresses in transformed rice cells. Journal of plant physiology,2008,165:159-171
    Pickart C. M.. Mechanisms underlying ubiquitination. Annual Review of Biochemistry,2001,70:503-533
    Porat R., Pengzhe L., O′Neill S. D.. Arabidopsis SKP1, a homologue of a cell cycle regulatorgene, is predominantly expressed in meristematic cells. Planta,1998,204:345-351
    Potuschak T., Lechner E., Parmentier Y., Yanagisawa S., Grava S., Koncz C., Genschik P..EIN3-dependent regulation of plant ethylene hormone signaling by two arabidopsis F-boxproteins: EBF1and EBF2. Cell,2003,115:679-689
    Qiao H., Wang H., Zhao L., Zhou J., Huang J., Zhang Y., Xue Y.. The F-box proteinAhSLF-S2physically interacts with S-RNases that may be inhibited by the ubiquitin/26Sproteasome pathway of protein degradation during compatible pollination in Antirrhinum.Plant Cell,2004,16:582-595
    Querido E., Blanchette P., Yan Q., Kamura T., Morrison M., Boivin D., Kaelin W. G.,Conaway R. C., Conaway J. W., Branton P. E.. Degradation of p53by adenovirus E4orf6and E1B55K proteins occurs via a novel mechanism involving a Cullin-containingcomplex.Genes Development,2001,15:3104-3117
    Rajjou L., Duval M., Gallardo K., Catusse J., Bally J., Job C., Job D.. Seed germination andvigor. Annual Review of Plant Biology,2012,63:507-533
    Ren C., Pan J., Peng W., Genschik P., Hobbie L., Hellmann H., Estelle M., Gao B., Peng J.,Sun C., Xie D.. Point mutations in Arabidopsis Cullin1reveal its essential role injasmonate response. Plant Journal,2005,42:514-524
    Ren H., Santner A., del Pozo J. C., Murray J. A., Estelle M.. Degradation of thecyclin-dependent kinase inhibitor KRP1is regulated by two different ubiquitin E3ligases.Plant Journal,2008,53:705-716
    Rinehart J. A., Petersen M. W., John M. E.. Tissue-specific and developmental regulation ofcotton gene FbL2A (demonstration of promoter activity in transgenic plants). Plantphysiology,1996,112:1331-1341
    Risseeuw E. P., Daskalchuk T. E., Banks T. W., Liu E., Cotelesage J., Hellmann H., EstelleM., Somers D. E., Crosbv W.L.. Protein interaction analysis of SCF ubiquitin E3ligasesubunits from Arabidopsis. Plant Journal,2003,34:753-767
    Rivett A.J.. The multicatalytic proteinase. Multiple proteolytic activities. Journal ofBiological Chemistry,1989,264:12215-12219
    Rouillon A., Barbey R., Patton E. E., Tyers M., Thomas D.. Feedback-regulated degradationof the transcriptional activator Met4is triggered by the SCFMet30complex. EMBO Journal,2000,19:282-294
    Sairam P.K., Srivastava G.C.. Changes in antioxidant activity in sub-cellular fractions oftolerant and susceptible wheat genotypes in response to long term salt stress. PlantScience,2002,162:897-904
    Salomons F. A., K. ács, Dantuma N. P.. Illuminating the ubiquitin/proteasome system.Expermental Cell Research,2010,316:1289-1295
    Sasaki A., Itoh H., Gomi K., Ueguchi-Tanaka M., Ishiyama K., Kobavashi M., Jeong D. H.,An G., Kitano H., Ashikari M., Matsuoka M.. Accumulation of phosphoylated repressorfor gibberellin signaling in an F-box mutant. Science,2003,299:1896-1898
    Schultz T. F., Kiyosue T., Yanovsky M., Wada M., Kay S. A.. A role for LKP2in thecircadian clock of Arabidopsis. Plant Cell,2001,13:2659-2670
    Schwager K. M., Calderon-Villalobos L. A., Dohmann E. M., Willige B.C., Knierer S., NillC., Schwechheimer C.. Characterization of the VIER F-box protein genes fromArabidopsis reveals their importance for plant growth and development. Plant Cell,2007,19:1163-1178
    Schwechheimer C., Willige B.. Shedding light on gibberellic acid signalling. Current opinionin plant biology,2009,12:57-62
    Shen H., Zhu L., Bu Q.Y., Huq E.. MAX2affects multiple hormones to promotephotomorphogenesis. Molecular plant,2012,5:224-236
    Shen W. H., Parmentier Y., Hellmann H., Lechner E., Dong A., Masson J.,Granier F.,Lehiniec L., Estelle M., Genschik P.. Null mutation of AtCULl causesarrest in early embryogenesis in Arabidopsis. Molecular Biology of the Cell,2002,13:1916-1928
    Shinozaki K., Yamaguchi-Shinozaki K., Seki M.. Regulatory network of gene expression inthe drought and cold stress responses. Current opinion in plant biology,2003.6:410-417
    Shinozaki K., Yamaguchi-Shinozaki K.. Gene networks involved in drought stress responseand tolerance. Journal of experimental botany,2007,58:221-227
    Skowyra D., Koepp D. M., Kamura T.,Conrad M. N., Conaway R. C., Conaway J. W.,Elledge S. J., Harper J. W., Reconstitution of G1cyclin ubiquitination with complexescontaining SCFGrr1and Rbx1. Science,1999,284(5414):662-665
    Smalle J., Kurepa J., Yang P., Babiychuk E., Kushnir S., Durski A., Vierstra R. D.. Cytokiningrowth responses in Arabidopsis involve the26S proteasome subunit RPN12. Plant Cell,2002,14:17-32
    Smalle J., Vierstra R. D.. The ubiquitin26S proteasome proteolytic pathway. Annual Reviewof Plant Biology,2004,55:555-590
    Somers D. E., Kim W.Y., Geng R.. The F-box protein ZEITLUPE confers dosage-dependentcontrol on the circadian clock, photomorphogenesis, and flowering time. Plant Cell,2004,16:769-782
    Souer E., Rebocho A.B., Bliek M., Kusters E., de Bruin R.A., Koes R.. Patterning ofinflorescences and flowers by the F-box protein double top and the leafy homologaberrant leaf and flower of petunia. Plant Cell,2008,20:2033-2048
    Spiegelman V. S., Slaga T.J., Pagano M., Minamoto T., Ronai Z., Fuchs S.Y.. Wnt/β-cateninsignaling induces the expression and activity of βTrCP ubiquitin ligase receptor.Molecular cell,2000,5:877-882
    Stirnberg P., van De Sande K., Leyser H.O.. MAX1and MAX2control shoot lateralbranching in Arabidopsis. Development,2002,129:1131-1141
    Stone S. L., Callis J.. Ubiquitin ligases mediate growth and development by promotingprotein death. Current opinion in plant biology,2007,10:624
    Strader L. C., Ritchie S., Soule J. D., McGinnis K. M., Steber C. M.. Recessive-interferingmutations in the gibberellin signaling gene SLEEPY1are rescued by overexpression of itshomologue, SNEEZY. Proceedings of the National Academy of Sciences of the UnitedStates of America,2004,101:12771-12776
    Takahashi N., Kuroda H., Kuromori T., Hirayama T., Seki M., Shinozaki K., Shimada H.,Matsui M.. Expression and interaction analysis of Arabidopsis Skpl-related genes. PlantCell physiology,2004,45:83-91
    Vierstra R. D., Langan S. M., Haas A. L.. Purification and initial characterization of ubiquitinfrom the higher plant, Avena sativa. Journal of Biological Chemistry,1985,260:12015-12021
    Vierstra R. D.. Proteolysis in plants: mechanisms and functions. Plant Molecelar Biology,1996,32:275-302
    Vierstra R. D.. The ubiquitin/26S proteasome pathway, the complex last chapter in the life ofmany plant proteins. Trends in Plant Science,2003,8:135-142
    Vierstra R. D.. The ubiquitin-26S proteasome system at the nexus of plant biology. NatureReviews Molecular Cell Biology,2009,10:385-397
    Voges D., Zwickl P., Baumeister W.. The26S proteasome: a molecular machine designed forcontrolled proteolysis. Annual Review of Biochemistry,1999,68:1015-1068
    Wang X., Feng S., Nakayama N., Crosby W. L., Irish V., Deng X.W., Wei N.. The COP9signalosome interacts with SCF UFO and participates in Arabidopsis flower development.Plant Cell,2003,15:1071-1082
    Woo H. R., Chung K. M., Park J. H., Oh S. A., Ahn T., Hong S. H., Jang S. K., Nam H. G..ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell,2001,13:1779-1790
    Xie D. X., Feys B. F., James S., Nieto-Rostro M., Turner J. G.. COI1: an Arabidopsis generequired for jasmonate-regulated defense and fertility. Science,1998,280:1091-1094
    Yamaguchi-Shinozaki K., Shinozaki K.. Transcriptional regulatory networks in cellularresponses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology,2006,57:781-803
    Yan Y. S., Chen X. Y., Yang K., Sun Z. X., Fu Y. P., Zhang Y. M., Fang R. X..Overexpression of an F-box protein gene reduces abiotic stress tolerance and promotesroot growth in rice. Molecular Plant,2011,4:190-197
    Yang M., Hu Y., Lodhi M., McCombie W. R., Ma H.. The Arabidopsis SKP1-LIKE1gene isessential for male meiosis and may control homologue separation. Proceedings of theNational Academy of Sciences of the United States of America,1999,96:11416-11421
    Yoshimura K., Miyao K., Gaber A., Takeda T., Kanaboshi H., Miyasaka H., Shigeoka S..Enhancement of stress tolerance in transgenic tobacco plants overexpressingChlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant Journal,2003,37:21-33
    Zhang H., Kobayashi R., Galaktionov K., Beach D.. pl9Skp1and p45Skp2are essentialelements of the cyclin A-CDK2S phase kinase. Cell,1995,82:915-925
    Zhang Y., Xu W., Li Z., Deng X. W., Wu W., Xue Y.. F-box protein DOR functions as anovel inhibitory factor for abscisic acid-induced stomatal closure under drought stress inArabidopsis. Plant Physiology,2008,148:2121-2133
    Zhao D., Yang M., Solava J., Ma H.. The ASK1gene regulates development and interactswith the UFO gene to control floral organ identity in Arabidopsis. Gene Development,1999,25:209-223
    Zhao D., Yu Q., Chen M., Ma H.. The ASK1gene regulates B function gene elpression incooperation with UFO and LEAFY in Arabidopsis. Development,2001,128:2735-2746
    Zheng N., Schulman B. A., Song L., Miller J. J., Jeffrey P. D., Wang P., Chu C., Koepp D. M.,Elledge S. J., Pagano M., Conaway R. C., Conaway J.W., Harper J. W., Pavletich N. P.,Structure of the Cul1–Rbx1–Skp1–F-boxSkp2SCF ubiquitin ligase complex. Nature,2002,416:703-709
    Zhu J.K.. Salt and drought stress signal transduction in plants. Annual Review of PlantBiology,2002,53:247-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700