用户名: 密码: 验证码:
典型黑土淀积层分布及蚀性特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东北典型黑土区是我国重要的商品粮基地,以最适宜耕作而闻名于世。由于土壤中有机质含量高,土壤颗粒间团聚力强,使得典型黑土蚀性较强,而典型黑土区土壤侵蚀现象严重,且多以沟蚀为主,为了探索典型黑土发生深沟侵蚀的潜在原因,通过对未经开垦的典型黑土的理化性质、蚀性特征进行分层测定,探明典型黑土淀积层的埋藏上限深度,并对淀积层土壤性质进行细致的描述、对比,指出淀积层土壤对典型黑土侵蚀的潜在威胁。分别测定不同坡位和不同开垦年限耕地土壤淀积层土壤水分-物理性质、化学性质及可蚀性特征等,查明不同坡位、不同开垦年限耕地土壤淀积层垂直分布及性质特征,将测定结果与未经干扰的天然黑土淀积层进行对比研究,分析地形因子和人为开垦干扰对典型黑土区淀积层埋藏上限及性质特征的影响,为探明加剧典型黑土区土壤侵蚀的潜在因素提供了基础数据。研究结果如下:
     未经干扰天然黑土的理化性质,结构性特征在垂直方向上呈现随土壤深度的增加而减弱的波动变化。经实地测量,未经干扰天然黑土层厚度<80cm,>80cm为淀积层,淀积层土壤质地不均,较上覆土层变化性强。81-130cm范围内淀积层土壤结构性差,有机质含量低,土壤紧实度高,持水性能较弱,团聚性低,肥力差,崩解现象明显,崩解速率高,土壤稳定性差。
     地形因子对对土壤的结构存在一定干扰,地势越高,土壤结构性越差,物理、化学性质越差,侵蚀能力弱。淀积层且随地势高低得不同其出现的临界深度也有所不同,其临界深度为:坡上<坡中上<坡中下<坡下。地势越高,其埋藏上限越浅,结构性越差,化学性质弱,土壤颗粒团聚性能弱,崩解现象增强,周期短,速率大。
     不同开垦年限耕地土壤的理化性质、渗透能力随开垦年限的增加而减弱,表层土壤均具有较强的渗透能力,21-40cm土壤渗透能力急剧下降,并开始出现不渗的现象。长期的耕作使耕作层土壤底部形成犁底层,随着开垦年限的增加淀积层临界深度呈增高趋势,开垦51年耕地其淀积层埋藏上限较未经开垦天然黑土提升近40cm,淀积层土壤性质也随着开垦年限的增加呈减弱趋势。
Typical black soil area in Northeast of China is an important commodity grain base. This place is known for the most suitable farming. The typical black soil has strong corrosion resistance due to the high content of soil organic matter and the strong cohesion between soil particles. However the soil erosion of typical black soil area is serious and the gully erosion is dominated in this region. In order to explore the potential erosion causes of deep gully erosion in typical black soil area, the physical-chemical properties and corrosion characteristics of uncultivated typical black soil were determined hierarchically. The upper limit depth of the typical black soil layer deposition was proved by the detailed description and comparison of the characteristics of the black soil layer deposition, consequently pointing out its potential threat to the typical black soil. The soil moisture-physical properties, chemical properties and erodibility characteristics of layer deposition in different slope positions and different years of land reclamation were separately investigated to find out the characteristics of vertical distribution and properties of the soil layer deposition in different slope positions and different years of land reclamation. Then the data was compared with the nature black soil layer deposition without interference. As well the effect of topographic factors and human disturbance on the upper limit depth and properties of the typical black soil area deposition layer soil was analyzed, in order to provide the basic data for the potential factors that increased soil erosion in typical black soil area.The results were shown as follows:
     In the vertical direction the physical-chemical properties and structural features of typical black soil without interference decreased with soil depth increased. Through the field measurements, the soil layer thickness of black soil without interference is less than 80cm; the soil layer thickness which is more than 80 cm is belong to deposition layer with its uneven soil texture and more variations than the upper soil layer; the soil layer at the thickness ranging from 81 to 130cm had the poor structure, low organic matter content, high soil compaction, less water holding capacity, low reunion, obvious disintegration phenomenon, poor soil fertility and poor soil stability.
     Topographic factors had a certain interference effect on the soil structure. With the terrain got higher, the soil structure and physical-chemical properties got even worse together with the poor anti-erosion. The position of deposition layer appeared different with the level of different terrain. The borderline depth is:upslope< up the middle-slope< down the middle-slope< down slope. With the terrain got higher, the upper limit of the layer got shallower accompanied with worse soil structure, worse physical-chemical properties, weaker aggregation behavior of soil particles, more obvious disintegration phenomenon, its shorter cycle and bigger velocity.
     The physical-chemical properties and the infiltration capacities of different reclamation time soil decreased with the increasing years of reclamation. The surface soil had stronger permeability, the soil permeability capacity sharply declined in the layer depth ranging from 21 to 40cm and even stop infiltrating. Long-term farming made the bottom layer of soil became tillage pan. With the increase of reclamation years, the depth of deposition layer tended to increase. Compared with typical black soil without reclamation, the buried limit depth of deposition layer under 51 years reclamation was up to 40cm, but the nature of the soil in layer deposition decreased with the reclamation years increasing.
引文
[1]周江红,林洪涛.东北黑土区水土流失状况调查、分析及对策.水土保持科技情报,2003(4):43-44
    [2]孟宪民,崔保山,邓伟等.松嫩流域特大洪灾的醒示:湿地功能的再认识[J].自然资源学报,1999,14(1):14-21
    [3]李宝林,周成虎.东北平原西部沙地的气候变异与土地荒漠化[J],自然资源学报,2001,16(3):234-239
    [4]范昊明,蔡国强,陈光,等.世界三大黑土区水土流失与防治比较分析.自然资源学报,2005,20(3):387-393
    [5]何万云.黑龙江土壤.北京:农业出版社,1992.52-62
    [6]朱祖祥.土壤学.北京:农业出版社,1983.297-299
    [7]Spaargaren O.C. World Refrerence Base for Soil Resources. ISRIC FAO, Wageningen Rome,1994:94-98
    [8]锺骏平,张凤荣译.美国土壤系统分类.土壤系统分类.乌鲁木齐:新疆大学出版社,1994
    [9]龚子同.中国土壤系统分类:理论、方法、实践.北京:科学出版社,1999
    [10]张之一.关于黑土分类和分布问题的探讨.黑龙江八一农垦大学学报,2005,17(1):5-8
    [11]解运杰,王岩松,王玉玺.东北黑土区地域界定及其水土保持区划探析.水土保持通报,2005,25(1):48-50
    [12]崔海山,张柏.吉林省黑土资源生态分类.华中师范大学学报,2005,39(2):278-282
    [13]陆继龙.我国黑土地退化问题及可持续农业.水土保持学报,2001,15(2):53-56
    [14]范昊明,蔡强国,王红闪.中国东北黑土区土壤侵蚀环境.水土保持学报,2004,18(2):66-70
    [15]李发鹏,李景玉,徐宗学.东北黑土区土壤退化及水土流失研究现状.水土保持研究,2006,13(3):50-54
    [16]史奕,陈欣,闻大中.东北黑土团聚体水稳定性研究进展.中国生态农业学,2005,13(4):95-98
    [17]沈波,范建荣,潘庆宾,回莉君.东北黑土区水土流失综合防治试点工程项目概况.中国水土保持,SWCC,2003(11):7-8
    [18]刘绪军,景国臣,齐恒玉.克拜黑土区沟壑冻融侵蚀主要形态特征初探.水土保持科技情报,1999(1):28-30
    [19]张宪奎,等.黑龙江省土壤流失方程的研究.水土保持通报,1992,12(4):1-9
    [20]李士文.刍议黑土侵蚀区土壤侵蚀演变规律及对策.水土保持科学理论与实践.北京:中国林业出版社,1992
    [21]王玉玺,解运杰,王萍.东北黑土区水土流失成因分析.水土保持科技情报,2002(3):27-29
    [22]艳芬,马超群.东北黑土资源极其农业可持续利用研究.干旱区资源与环 境,2003,17(4):24-28
    [23]解运杰,刘凤飞,白建宏,孙雪文.基于GIS技术的黑龙江省典型土壤有效土层厚度调查研究.水土保持研究,2005,12(6):252-253
    [24]解运杰,王玉玺,张韬鹏.基于GIS技术的东北黑土区土壤侵蚀本底数据库创建.黑龙江水利科技,2002,(4):3-8
    [25]Terrence J. Toy, George R. Foster, Kenneth G. Renard. Soil erosion[M]. John Wiley & Sons, Inc., New York,2002:25
    [26]Woodburn R., Kozachyn J.A study of relative erodibility of a group of Mississippi Gully Soils[J]. Trans Am Geophys Union,1956,37:749-753
    [27]Farres P.J, Cousen S.M. An improved method of aggregate stability measurement[J]. Earth Surface Processes Landforms,1985,10:321-329
    [28]Mel N., Scott R. A field investigation into the effects of progressive rainfall-induced soil seal and crust development on runoff and erosion rates:The impact of surface cover[J]. Geomorphology,2007,87(4):378-390
    [29]胡刚,伍永秋,刘宝元,等.GPS和GIS进行短期沟蚀研究初探——以东北漫川漫岗黑土区为例.水土保持学报,2004,18(4):16-19
    [30]Michel J.P.,Dirk G. The role of wind and splash erosion in inland drift-sand areas in the Netherlands.Geomorphology,2007,88(1-2):179-192
    [31]Lopez M.V.,Dios Herrero J.M., Hevia G.G., et al. Determination of the wind-erodible fraction of soils using different methodologies.Geoderma,2007,139(3-4),407-411
    [32]张之一,张元福.白浆土、黑土、草甸土土壤颗粒组成及微团聚体比较研究.黑龙江八一农垦大学学报,1988,(2):9-20
    [33]张宪奎.黑龙江省土壤流失方程的研究.水土保持通报,1992,12(4):1-9
    [34]王金平,张秀茵.黑龙江哈尔滨黑土水分状况与养分供应的关系.土壤通报,1979,(6):7~9
    [35]陈立新.土壤实验实习教程.哈尔滨:东北林业大学出版社,2005:98-101
    [36]王风,李海波,韩晓增,等.黑土水稳性团聚体测定方法研究.农业系统科学与综合研究,2007,32(2):138-140,145
    [37]林业部科技司.森林生态系统定位研究方法.北京:中国科学技术出版社,1994:60-63
    [38]王恩姮,柴亚凡,陈祥伟.大机械作业对黑土区耕地土壤结构性特征的影响.应用生态学报,2008,19(2):351-356
    [39]李靖.土壤中有机质的作用.平原大学学报,1999,16(4):54-55
    [40]蒋端生,陈志阳.土壤有机质和侵蚀对土壤松紧度的影响.湖南环境生物职业技术学院学报,2001,7(2):41-43
    [41]蔡晓明,尚玉昌.普通生态学[M].北京:北京大学出版社,1995
    [42]誉如坤.土壤-植物营养学原理与施肥[M].北京:化学工业出版社,1998
    [43]蒋定安,成杰民.近10年来宜兴市水稻土表层土壤pH及B、Cu、Zn、Mn有效态含量 的变化[J].南京农业大学学报,1997,20(4):111-113
    [44]潘根兴,成杰民,高建琴.活化率作为苏南土壤环境重金属污染冲击的指标[J].南京农业大学学报,1999,27(2):46-49
    [45]林毅,梁颁捷,朱其清.三明烟区土壤pH值与土壤有效养分的相关性.烟草科技,2003(6):35-37
    [46]李学垣.土壤化学[M].北京:高等教育出版社,2001:213-216
    [47]蒋实,徐争启,张成江.四川省万源市土壤pH值测定及土壤酸碱度分析.安徽农业科学,2009,37(25):12105-12108
    [48]谷会岩,金靖博,陈祥伟.采伐干扰对大兴安岭北坡兴安落叶松林土壤化学性质的影响.土壤通报,2009,40(2):272-275
    [49]陈洪松,邵明安.黄土区坡地土壤水分运动与转化机理研究进展.水科学进展,2003,14(4):513-519
    [50]Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant and Soil,2002,41:155-176
    [51]袁俊吉,蒋先军,胡宇,等.不同植被覆盖对养分在土壤水稳性团聚体中分布特征的影响.水土保持学报,2009,23(6):112-117,122
    [52]卢金伟,李占斌.土壤团聚体研究进展[J].水土保持研究,2002,9(1):81-85.
    [53]陈恩凤,周礼恺,武冠云.微团聚体的保肥供肥性能及其组成比例在评判土壤肥力水平中的意义[J].土壤学报,1994,31(1):18-25
    [54]Yoder R E. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses[J]. Journal ofthe American Society of Agronomy,1936,28:337-351
    [55]张保华.长江上游典型区域森林土壤结构体形成和稳定性机制分析[J].聊城大学学报:自然科学版,2007,20(1):12-17
    [56]石辉.转移矩阵法评价土壤团聚体的稳定性[J].水土保持通报,2006,26(3):91-95
    [57]李阳兵,谢德体.不同土地利用方式对岩溶山地土壤团粒结构的影响[J].水土保持学报,2001,15(4):22-125
    [58]Bronick C J, Lal R. Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractionson two soils in northeastern Ohio, USA[J]. Soil & Tillage Research,2005,81:239-252
    [59]郑子成,李廷轩,张锡洲,等.不同土地利用方式下土壤团聚体的组成及稳定性研究.水土保持学报,2009,10,23(5):228-236
    [60]周虎,吕贻忠,杨志臣,等.保护性耕作对华北平原土壤团聚体特征的影响[J].中国农业科学,2007,40(9):1973-1979
    [61]丁文峰,丁登山.黄土高原植被破坏前后土壤团粒结构分形特征[J].地理研究,2002,21(6):700-706
    [62]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899
    [63]于君宝,王金达,刘景双等.典型黑土pH值变化对微量元素有效态含量的影响研究.水土保持学报,2002,6,16(2):93-95
    [64]王恩姮,赵玉森,陈祥伟,等.机械压实对黑土区耕作区团聚体的影响.土壤通报,2009,8,40(4):756-760
    [65]柴亚凡,王恩姮,陈祥伟.未经干扰黑土的土壤贮水能力及水分入渗特征.水土保持学报,2007,21(3):158-192
    [66]Dao T H. Tillage and Winter Wheat Residue Management Effects on Water Infiltration and Storage.Soil Science Society of America Journal.1993,157:1586-1594
    [67]周启友,岛田纯.土壤水空间分布结构的时间稳定性.土壤学报,2003,40(5):683-690

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700