红壤丘陵区人工林地生态学特征及其水土保持机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南方红壤丘陵区属于十分严重水土流失区,在该地区开展人工水土保持林建设是一项十分迫切的任务。2001年4月~2002年7月期间在浙江省兰溪市水土保持站,从人工水土保持林建成及其水土保持效应、人工林冠层截留降水规律、枯枝落叶的周年变化及其水文效应、人工林根系对土壤的抗冲增强效应、人工林地土壤物理特性的空间变化特征和人工林地小气候变化特征六个方面对南方红壤丘陵区人工水土保持林的生态学特征及其水土保持机理进行了研究,研究结果如下:
     1、人工水土保持林建成及其水土保持效应
     (1)各试验区树木高度的增加、树胸径的扩大和林冠郁闭度的升高总的趋势是一致的,均是随生长时间的延长而相应增加。但各区由于树木类型的不同,也表现出较大的差异,毛竹林年平均增高缓慢,树胸径维持在相对稳定的水平,落叶高峰期集中在4~5月;混交林树木的增高和树胸径的扩大也比较缓慢,郁闭度的周年变化与落叶周年变化规律一致;杉木林树高增加相对较快,而胸径的扩大相对较慢,周年平均郁闭度较低;柑橘树干较低,年际间变化不明显,生长主要集中表现为树冠的扩大和郁闭度的升高。
     (2)各试验区水土流失随林木的生长呈现出先迅速减少,而后缓慢减少,最后趋于稳定平衡的趋势。具体表现在水土流失的几个指标上:第一,毛竹林、混交林和杉木林植林3年后地表径流没有明显出现,常规柑橘林和密柑橘林在建成过程中对地表径流量减缓作用相对较弱,地表径流在植林6年以后将不再产生。第二,从土壤悬移质的动态变化来看,随林地建成时间的延长,悬移质产生量逐渐减少。不同试验区土壤悬移质的动态变化存在显著差异,大体上呈现出两类,一类是毛竹林、混交林和杉木林,它们悬移质的动态变化具有明显的分界点,大致以林木植上的第2年为界,第2年以前悬移质的总量占9年总量的93.7%以上,第2年以后悬移质的总量急剧减少,到第5年将没有悬移质产生。另一类是常规柑橘林和密柑橘林,它们悬移质变化的分界点为第3年,第3年以前的悬移质量为其9年总量的76.7%以上,第3年以后维持较为平缓的减少,第9年还有少量产生。第三,土壤推移质的动态变化与土壤悬移质的动态变化不同,各试验区的变化趋势相一致,第2年以后各试验区内推移质均没产生。第四,土壤的悬移质和推移质在土壤侵蚀量中所占比重的大小,决定它们对土壤侵蚀模数动态变化规律影响程度的轻重。从3年的土壤悬移质和土壤推移质的动态变化来看,在植林的第1年土壤侵蚀以推移质的形式为主,以后由以土壤推移质为主逐渐向以土壤悬移质为主过渡,到第3年以后土壤侵蚀在各试验区均以悬移质为主。
     2、不同人工林冠层截留降雨规律
     (1)林冠面截留具有以下几个特点,一是存在一个面饱和点,当降雨量低于面饱和点时,整个冠层面的降雨截留量逐渐增大而截留率逐渐减小,当降雨量超过面饱和点时,整个冠层的降雨截留量保持不变,而截留率迅速减小;二是林冠层面
    
    摘要一2一
    饱和点具有动态性,随林冠层郁闭度的增大,饱和点升高,随郁闭度减小,饱和点
    降低;三是降雨间隔时间越长,面截留降雨量越大,截留率越高,相反降雨间隔时
    间越短,面截留降雨量越小,截留率越低。
     (2)林冠层纵向截留具有以下4个特点:第一,延迟林内降雨开始的时间:第
    二,林内降雨结束时间延长;第三,降低开始30分钟(I3。)雨强;第四,减小降雨
    呈乳。
     (3)林冠层的横向截留表现出:在降雨量小于10mm情况下,冠层对降雨的截
    留量随距主干基部距离的增加截留量相对减少,各林型减少量大小的顺序依次为柑
    橘林、毛竹林、混交林和杉木林。降雨量大于Zomm情况下,它表现出随距主干基
    部距离的增加截留量相对增加,各林型截留增加量的大小顺序依次为杉木林、毛竹
    林、混交林和柑橘林。
    3、枯枝落叶的周年变化规律及其水文效应
     各试验区的落叶出现两个高峰期(5月和12月)。常绿树种毛竹林的落叶高峰
    主要集中在5月,杉木、柑橘和混交林的落叶高峰主要集中在12月。枯落物的周年
    分解变化规律从整体上可以看出,柑橘林的分解率>杉木林>毛竹林>混交林。从
    各试验区枯落物周年储蓄量变化动态来看,毛竹林的枯落物蓄积量在5月份达到最
    高,而其它各试验区枯落物的累积量高峰出现在12月份。各试验区枯落物的最大持
    水量的变化规律与它们各自周年储蓄量相一致。毛竹林枯落物的最大持水率在各个
    时期均为最高,在其它试验区中则表现出随季节推移枯落物的最大持水率先逐渐增
    大而后又逐渐减小.但它们的转折点所处的季节各不相同,混交林和杉木林的转折
    点在10月份,而柑橘林的转折点在7月份。
    4、人工林根系对土壤的抗冲增强效应研究
     (l)土壤剖面观测发现,根系密度随土层深度的增加急剧减少,各林地有效
    根系密度(直径簇1。。的根系)存在差别,毛竹林有65%分布在O一3Ocln土层,并且
    0一loc二最多,占总数33%;混交林集中在。一ZoC。土层中的根系,约占总根数的
    61%一72%;杉木地约有43%的根系分布于O~ZOC。土层;柑橘林根系分布以0一10。。
    为主,占其总量的45%。根干重的分布也具有和根系密度相同的变化规律
Soil and water loss is very serious in south red soil hilly region. It is very impendent mission for this region to construct soil and water conservation forest. The artificial soil and water conservation forest construction and its mechanism on soil and \vater conservation have been studied at lanxi experimental station of soil and water conservation in zhejiang province from Apr.2001 to Jun.2002. This study was consisted of artificial soil and water conservation forest construction and its hydrological effect, the law of forest crown intercepting rainfall , the annual change of litter and its hydrological effect , soil anti-scourability intensified effect by artificial forest root system .the dimensional variation characteristic of soil physical peculiarity and microclimate variation character of artificial forest. The results showed as fellows 1 The artificial soil and water conservation forest construction and its soil and water conservation effect
    (l)The trend of forest height increase, chest diameter widen, crown layer gloomy degree rise was in consistent. This is to say, they all increased with growing season. But ihere were difference among different forest types .For phyllostachys pubescens ,its height slow increase, chest diameter relative stabilization, fallen leaves peak in Apr. and may; For mixed forests, forest height increase and chest diameter widen is slow. The change of crown gloomy degree was in consistent to fallen leaves; For cunning lanceolate , the speed of forest height increase exceed to chest diameter widen. The crown gloomy degree keep in very low. For citrus reticulate, the trunk of tree was low and its growth mainly embodied forest crown widen and gloomy degree rise.
    (2)The soil and water loss took on firstly rapid decrease, then slow decrease, finally keeping steady state. This dynamic law was embodied with these indexes of soil and water loss as follows. First, for phyllostachys pubescens .mixed forests and cunning lanceolate , the earth surface runoff didn't obviously have appeared after three years since these forests were planted,but for normal citrus reticulate and dense citrus reticulate, the earth surface runoff didn't have appeared after six years since these forests were planted, because normal citrus reticulate and dense citrus reticulate impaired the earth surface runoff in the process of them construction comparatively slow. Second. As a whole soil suspended matter little by little reduced with time prolonging of forest development .In the same time there were difference in different forests. These differences were classified two kinds. One kind was phyllostachys pubescens .mixed forests and cunning lanceolate .The dynamic change of their suspended matter ha
    d a obvious dividing points that is second years after forests planted. Before dividing point, the quantity of suspended matter was 93.7% of nine years total quantity. After dividing
    
    
    
    
    
    point, suspended matter quantity rapidly reduced .At fifth year there wasn't suspended matter .The other kind was normal citrus reticulate and dense citrus reticulate. Their dividing points were at the third year.Before the dividing point, suspended matter quantity was 76.7% of nine years total quantity. After the dividing point, suspended matter slowly cut down. At ninth year there still was a little suspended matter. Third, the dynamic change of pushed matter differed in suspended matter, but all forest plots' were in consistent .After the second year, there weren't pushed matter in each forest plot. Fourth, the proportion of suspended matter and pushed matter in soil erosion total quantity decided their effect on the dynamic change law of soil erosion modulus. From the dynamic change of soil suspended matter and pushed matter in three years, the pushed matter was main in soil erosion at the first year. After the first year suspended matter took the place of pushed matter step by step. After the third suspended matter became main in soil erosion.
    2 the law of crown layer intercepting rainfall in different artificial
引文
1.朱显谟.黄土地区植被因素对于水土流失的影响[J].土壤学报,1960,8(2):8~12
    2.黄秉维.再谈森林的作用(四)[J].地理知识,1982,4(2):11~18
    3.崔启武.林冠对降水的截留作用[J].林业科学,1980,(2):9~14
    4.王佑民,刘秉正.黄土高原防护林生态特征[M].北京:中国林业出版社,1994,240~260
    5.王秋生.植被控制土壤侵蚀的数学模型及其应用[J].水土保持学报,1991,(4):68~72
    6.吴钦孝.黄土高原植被建设与持续发展[M].北京:科学出版社,1998,56~82
    7.郭忠升.水土保持植被建设的三个盖度:潜热盖度,临界盖度和有效盖度[J].中国水土保持,2000,(4):30~31
    8.郭忠升.最佳森林覆盖率的初步研究[J].西北林学院学报,1998,13(3):23~27
    9.郭忠升.水土保持有效覆盖率的初步研究[J].西北林学院学报,1997,12(1):97~100
    10.郭忠升.水土保持林有效覆盖效率及其确定方法的研究[J].土壤侵蚀与水土保持学报,1996,2(3):67~72
    11.高维森,王佑民.土壤抗蚀性研究综述[J].水土保持通报,1992,12(5):59~63
    12.郭廷辅.世界水土流失现状及水土保持进展状况[J].成都水利,1998,8(3):62~65
    13.刘震.从我国水土流失现状看水土保持生态建设战略布局[J].中国水土保持,2002,(6):2~4
    14.马世骏.展望90年代生态学[J].中国科学院院刊,1990,5(1):29~32
    15.李勇,徐晓琴,朱显谟等.黄土高原植物根系强化土壤渗透了的有效性[J].科学通报,1992,37(40):366~369
    16.李勇,徐晓琴,朱显谟等.黄土高原植物根系提高土壤抗冲性机制研究[J].中国科学(B辑),1992,22(3):254~259
    17.张一平,张克映.西双版纳热带地区不同植被覆盖地区径流特征[J].土壤侵蚀与水土保持学报,1997,3(4):25~30
    18.祝列克,面向21世纪必须高度重视国土安全.[J]南京林业大学学报,1999,23(2):6~10
    19.胡海波,项卫东.长江中下游环境特征与洪灾的关系[J].南京林业大学学报,1999,32(2):37~41
    20.叶镜中.森林生态学[M].北京:中国林业出版社,1994,13~14
    21.郭忠升.水土保持林有效覆盖率及其确定方法的研究[J].土壤侵蚀与水土保持学报,1996,2(3):67~72
    22.申洪源.我国水土流失现状及生态环境建设研究.哈尔滨师范大学自然科学学报,2001,17(2):104-108
    23.刘震.从我国水土流失现状看水土保持生态建设战略布局.中国水土保持,2002,(6):2-4
    24.张国红.我国水土流失现状及其治理对策的探讨.林业资源管理,1999,5:30-33
    25.云南统计局编.云南四十年[M].北京:中国统计出版社,1989,60~82
    26.史立新,彭培好,慕长龙.长江防护林(四川段)初期水土保持效益研究[J].水土保持通报,1997,17(6):14~22。
    27.S.C.Kostadinov et a1.森林覆盖率对小流域河川径流的影响[J].水土保持科技情报,1996,(1):20~21。
    28.小川滋.“森林和水”的研究现状及展望[J].水土保持科技情报,1996,(1):62~64
    29.杨吉华,张光灿,刘霞等.紫花苜蓿保持水土效益的研究[J].土壤侵蚀与水土保持学报,1997,3(2):91~96
    30.余新晓.森林植被减弱降雨侵蚀能量的数理分析[J].水土保持学报,1988,(3):2~7
    31.雷瑞德.华山松林冠层对降雨动能的影响[J].水土保持学报,1988,(2):11~15
    32.赵鸿雁等.油松人工林和天然山杨林林内降雨动能研究[J].西北水土保持所集刊,1994,
    
    (14):25~30
    33.刘向东.森林植被垂直截流作用与水土保持[J].水土保持研究,1994,(3):8~15
    34.王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究[J].水土保持通报,1996,16(5):1~20
    35.粱建民等.树冠截流降雨的观测试验研究[J].地理集刊第12号,1980,14~19
    36.刘向东等.黄土丘陵区油松人工林和山杨林林冠对降水的再分配及其对土壤水分的影响[J].西北水保所集刊,1991,(14):45~52
    37.仪垂祥,刘开瑜,周涛.植被截留降水量公式的建立[J].土壤侵蚀与水土保持学报,1996,2:47~49
    38.余新晓.植被垂直减弱降雨作用与数量模型[J].水土保持研究,1998,1:5~9
    39.杜峰,程积民.植被与水土流失.四川草原,1999(2):6~11
    40.邹厚远.陕北黄龙山植被保持水土的研究[J].水土保持通报,1981,(2):7~13
    41.汪有科等.林地枯落物抗冲试验研究[J].西北水保所集刊,1991,(14):70~75
    42.吴钦孝等.黄土高原植被建设与持续发展[M].北京:科学出版社,1998:20~28
    43.王秋生.植被控制土壤侵蚀的数学模型及其应用[J].水土保持学报,1994,1:18~23
    44.郭忠升.水土保持林有效覆盖率及其确定方法的研究[J].土壤侵蚀与水土保持学报,1996,2(3):67~71
    45.蒋定生等编著.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社.1997,(4):8~26
    46.陈永宗主编.黄河粗泥沙来源几侵蚀产沙机理研究文集[M].北京:气象出版社,1989:80~88
    47.黄义端.我国几类主要地面物质抗侵蚀性能初步研究[J].中国水土保持,1980,(1):3~9
    48.吴彦,刘世全,付秀琴等.植物根系提高土壤水稳性团粒含量的研究[J].土壤侵蚀与水土保持学报,1997,3(1):45~49
    49.吴钦孝等.黄土高原植物根系提高土壤抗冲性能的研究[J].水土保持学报,1989,(3):11~16
    50.李会科,王忠林,贺秀贤.地埂花椒林根系分布及力学强度测定.水土保持研究,2000,7(1):38~41
    51.周跃,David Watts.高山峡谷云南松林土壤侵蚀控制的水文效应[J].土壤侵蚀与水土保持学报,1998,4(3):32~38
    52.杨吉华,于世高,高洪义等.紫花苜蓿保持水土效益的研究[J].土壤侵蚀与水土保持学报,1997,3(2):91~96;
    53.李勇,徐晓琴,朱显谟等.草类根系对土壤抗冲性的强化效应[J].土壤学报,1992,29(3):302~309
    54.廖植樨,邓键等.果树根系水土保持效能的植物学机理[J].北京农业工程大学学报:1995,15(3):32~37。
    55.李勇,朱显谟,田积莹.黄土高原植物根系提高土壤抗冲性的有效性[J].科学通报,1991,12:935~938。
    56.李勇,武淑霞,夏侯国风.紫色土区刺槐林根系对土壤结构的稳定作用[J].土壤侵蚀与水土保持学报,1998,4(2):1~7
    57.李勇.沙棘林根系强化土壤抗冲性的研究[J].水土保持学报,1990,4(3):15~20
    58.李勇,徐晓琴,朱显谟等.草类根系对土壤抗冲性的强化效应[J].土壤学报,29(3):302~309。
    59.解明曙.林木根系固坡力学机制研究[J].水土保持学报,1990,4(3):7~14
    60.李红卫,彭补出.三峡库区水土流失特点及其环境危害防治措施探讨[J].长江流域资源与环境,1993,2(4):331~339
    61.黄丽,丁树文,董舟等.三峡库区紫色土养分流失的试验研究[J].土壤侵蚀与水土保持学报,1998,4(1):8~13
    62.吴彦,刘世金,王金锡.植物根系对土壤抗侵蚀能力的影响[J].应用与环境生物学报,1997,3(2):119~124
    
    
    63.杨吉华,于世高,高洪义等.紫花苜蓿保持水土效益的研究[J].土壤侵蚀与水土保持学报,1997,3(2):91~96
    64.马树升,刘明香,刘稀松等.紫花苜蓿根系对提高土壤抗冲性能的研究[J].山东水利专科学校学报,1998,10(8):181~185
    65.李会科,王忠林,贺秀贤.地埂花椒林根系分布及力学强度测定[J].水土保持研究,2000,7(1):38~41
    66.李勇,武淑霞,夏侯国风.紫色土区刺槐林根系对土壤结构的稳定作用[J].土壤侵蚀与水土保持学报,1998,4(2):1~7
    67.廖植樨,邓键等.果树根系水土保持效能的植物学机理[J].北京农业工程大学学报,1995,15(3):32~37
    68.李勇,徐晓琴,朱显谟等.植物根系与土壤抗冲性[J].水土保持学报,1993,7(3):11~18
    69.刘国彬,蒋定生,朱显谟.黄土区草地根系生物力学特性研究[J].土壤侵蚀与水土保持学报,1996,2(3):21~28
    70.解明曙.乔灌木根系固坡力学强度的有效范围和最佳组构方式[J].水土保持学报,1990,4(1):18~23
    71.杨维西,黄治江.黄土高原九个水土保持树种根的抗拉力[J].中国水土保持,1988,947~49
    72.樊巍,卢琦,高喜荣.果农复合系统根系分布格局与生长动态研究[J].生态学报,1999,19(6):860~863
    73.吴钦孝,刘向东,苏宁成等.山杨次生林枯枝落叶蓄积量及其水文作用[J].水土保持学报,1992,6(1):71~76
    74.汪有科,吴钦孝,赵鸿雁等.林地枯落物抗冲机理研究[J].水土保持学报,1993,7(1):75~80
    75.赵鸿雁,吴钦孝,刘向东.油松枯落物的水土保持作用研究[J].中国水土保持,1993 11:36~37
    76.王佑民.中国林地枯落物持水保土作用研究概况[J].水土保持学报,2000,14(2):108~11
    77.赵鸿雁,吴钦孝,刘国彬.黄土高原森林植被水土保持机理研究[J].林业科学,2001,37(5):140~143
    78.赵鸿雁,吴钦孝,刘向东.油松人工林林冠层的水文作用[J].中国水土保持,1993 2:40~43
    79.杜峰,程积民.植被与水土流失[J].四川草原,1999,2:6~11
    80.李勇.沙棘林根系强化土壤抗冲性的研究[J].水土保持学报,1990,4(3):15~20
    81.李勇,徐晓琴,朱显谟.黄土高原植物根系提高土壤抗冲性机制初步研究[J].中国科学B辑.19923:254~259
    82.侯喜禄,白岗栓:曹清玉.刺槐、拧条、沙棘林土壤入渗及抗冲性对比试验[J].水土保持学报,1995,9(3):90~95
    83.吴钦孝,李勇.黄土高原植物根系提高土壤抗冲性能的研究[J].水土保持学报,1990,4(1):11~16
    84.李勇,吴钦孝,朱显谟等.黄土高原植物根系提高土壤抗冲性能的研究[J],水土保持学报,1990,4(1):1~10
    85.中野秀章(李云森译).森林水文学[M].北京:中国林业出版社.1983,23~30
    86.卢秀琴,解云杰.曹树森.植被是防治水土流失的“保护伞”[J].黑龙江水利科技,2000:3:116~117
    87.马雪华主编.森林水文学[M].北京:中国林业出版社,1993:124~130
    88.杨茂生.陈海滨、高甲荣.秦岭辛家山林区锐齿化林水源涵养功能的若干特点[J].西北林学院学报,1991,6(1):1~8
    89.刘向东,吴钦孝,赵鸿雁.黄土丘陵油松人工林和山杨林水文作用效应研究[J].中国科学院西北水土保持研究所集刊,199l,14:9~20
    
    
    90.朱劲伟,崔启武,史继德等.红松林和采伐迹地的水量平衡分析[J].生态学报,1982,2(2):335~343
    91.刘文耀.滇中长绿阔叶林和云南松林水文作用的初步研究[J].植物生态学与地植物丛刊,1991,15(2):162~168
    92.中野秀章.森林水文学(李云森译)[M].北京:中国林业出版社.1983,69~72
    93.赵鸿雁,吴钦孝.山杨林的水文水保作用研究[J].人民黄河,1994,17(4):27~29
    94 赵鸿雁,吴钦孝等.黄土高原人工油松林枯枝落叶截留动态研究[J].自然资源学报,2001,16(4):381~385
    95.郑郁善,杨伦增.南方山地红壤区杉木毛竹复层林水源涵养功能研究.福建林学院学报,1995,15(4):325~330
    96.郝占庆,王力华.辽东山区主要森林类型地土壤涵养水性能的研究[J].应用生态学报,1998,9(3):273~241
    97.王佑民.中国林地枯落物持水保土作用研究概况[J].水土保持学报,2000,14(4):108~113
    98.王库.岌岌草水土保持功能的初步研究[J].水土保持研究,2001,8(2):157~159
    99.查小春,唐克丽.黄土丘陵林区开垦地土壤抗冲性的时间变化研究[J].水土保持通报,2001,21(2):8~11
    100.刘国彬.黄土高原草地土壤抗冲性及其机理研究[J].土壤侵蚀与水土保持学报,1998,4(1):93~96
    101.蒋定生,范兴科.黄土高原水土流失严重地区土壤抗冲性的水平和垂直变化规律研究[J].水土保持学报,1995,9(2):1~8
    102.周佩华,武春龙.黄土高原土壤抗冲性的试验研究方法探讨[J].水土保持学报,1993,7(1)29~34
    103.廖植樨.邓健,王芝芳等.果树根系水土保持效能的植物学机理[J].北京农业工程大学学报,1995,15(3):31~37
    104.李育才.面向21世纪的林业发展战略[M].北京:中国林业出版社,1996,76~108。
    105.邓宏海.森林生态敬能经济评价的理论和方法[J].林业科学,1985,21(1):61~67.
    106.廖坡.温亚力.浅论森林资源及其经济评价[J],林业科学,1989,21(5):459~465.
    107.戴广翌.高岚.艾运胜.对森林资源价值经济评价的研究[J].林业经济,1998,(2):63~71.
    108.车克钧,傅解恩,贺红元.祁连山水源涵养林综合效能的计量研究[J].林业科学,1992,28(4):290~296
    109.李建文,肖文发,车克钓.祁连山北坡森林综合效益评价与计量研究[J].世界林业研究,1998,11(2):45~56.
    110.车克钧,傅辉思,王金叶.祁连山水源林生态系统结构与功能的研究[J].林业科学,1998,34(5):29~33
    111.车克钧,辉思,贺红元.祁连山水源林效益研究[J].林业科学,1992,28(6):544~549.
    112.贺庆棠.气象学[M].北京:中国林业出版社.1984,163~193.
    113.马雪华,田大伦,李承彪等.森林生态系统定位研究方法[M].北京:中国科学校术出版社.1994.246~256
    114.王万忠.黄土地区降雨特性与土壤流失关系的研究(Ⅲ)[J].水土保持研究,1984,(2):2~8
    115.赵兴实等.黑土侵蚀区土壤理化特性及抗冲侵蚀性能初探[J].水土保持,1981:(6):2~7
    116.蒋定生.黄土区不同利用类型土壤抗冲刷能力的研究[J].土壤通报,1979,1(4):23~30
    117.李勇,吴钦孝.黄土高原植物根系提高土壤抗冲性能的研究[J].水土保持通报,1990(1):1~5
    118.吴普特,周佩华.黄土丘陵沟壑区(Ⅲ)土壤抗冲性研究[J].水土保持学报,1993,7(3):19~25
    119.吴钦孝,李勇.黄土高原植物根系提高土壤抗冲性能的研究[J].水土保持学报,1990(1):11~
    
    16
    120.汪有科,吴钦孝.林地枯落物抗冲试验研究[M].西北林水保集刊,1991,14:56~62
    121.刘秉正等.刺槐林地土壤抗冲性的试验研究[J].西北林学院,1984,(1):22~27
    122.郭培才等.黄土高原沙棘林地土壤抗蚀抗冲性能的研究[J].西北林学院,1989,(1):17~23
    123.周佩华等,黄土高原土壤抗冲性的试验研究方法探讨[J].水土保持学报,1993,(1):29~34
    124.山西农业大学主编.土壤学[M].农业出版社,1993,66~70
    125.林成谷主编,土壤学[M],农业出版社,1981,80~90
    126.朱祖祥主编,土壤学[M],农业出版社,1983,73~85
    127.查轩,唐克丽,张科利等,植被对土壤特性及土壤侵蚀的影响研究[J].水土保持学报,1992,6(2):52~58
    128.单建平等,国外对树木细根的研究动态[J].生态学杂志,1 992,11(4):46~49
    129.鲁素芸等编译.植物根际生态学与根病生物防治进展[M].中国人民大学出版,1990,50~73
    130.李阳兵,谢德体.不同土地利用方式对岩溶山地土壤团粒结构的影响[J].水土保持学报,2001,15(4):122~125
    131.陈爱玲,陈青山等.杉木建柏混交林土壤肥力的研究[J].南京林业大学学报,2001,25(3):43~46
    132.孙力达,朱金兆主编.水土保持林体系综合效益研究与评价[M].中国科学技术出版社,1995,70~90
    133.吴正雄.树根力与坡面稳定关系之研究[J].中华水土保持学报,1993,24(2):23~37
    134.刘秉正,吴发启.土壤侵蚀[J].西安:陕西人民出版社,1997,23~35
    135.刘运河,唐德富.水土保持[M].哈尔滨:黑龙江科学技术出版社,1998,54~67
    136.叶志义,阳小成.陡坡地退耕还林模式[J].重庆大学学报:自然科学版,2002,25(6):81~84
    137.李新平,王兆骞等红壤坡耕地人工模拟降雨条件下植物篱笆水土保持效应及机理研究[J].水土保持学报,2002,16(2):36~40
    138.申元村.三峡库区植物篱坡地农业技术水土保持效益的研究[J].土壤侵蚀与水土保持学报,1998,4(2):61~66
    139.田积莹,黄义端.子午岭连家砭地区土壤物理特性与土壤抗侵蚀性能指标的初步研究[J].土壤学报,1964,12(3):278~296
    140.朱显谟.黄土地区植被因素对水土流失的影响[J].土壤学报,1960,8(2):110~121
    141.蒋德麒,朱显谟.水土保持[M].中国农业科学院土壤肥料研究所,中国.农业土壤学编著委员会.中国农业土壤论文集.上海:上海科学技术出版社.1962,10~40
    142. LaI R..Agroforestry system and soil surface management of a tropical alfial:Ⅰ water runoff, soil erosion and nutrient loss[J]. Agroforestry system,1989,8:97~111
    143. LaIR .Agroforestry system and soil surface management of a tropical alfial: Ⅱ Effect on soil physical and mechanical properties[J]. Agroforestry system, 1995,8:197~215
    144. Mapa,R B,Cumasena H P M. Effect of alley cropping on soil aggregate stability of a tropical alfisol[J]. Agroforestry system, 1995,32:237~245
    145. Ghosh.S P, Mohan Kumar B M et al .Productivity ,soil fertility and soil erosion under cassava based agroforestry system[J] .Agroforestry system,1989,8:67~80
    146. Manzi A,Plantos. Implentation of the ISBA parameterization scheme for land surface processes in a GCM-an annual cycle experiment [J].Journal of Hydrology. 1994,155(3-4):353~387
    147. Mintz Y, Wallce G K.Global field of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature[J].J. Appl.Metero.,1993,32(8):1035~1334
    
    
    148. Bouttier F,Mahforf J F,Noithan J. Sequential assimilation of soil moisture from atmospheric low level parameters .Part I: sensitivity and calibration studied[J] J.Appl.Meteorol, 1993,32(8) :1335-1351
    149. Dolman A J,Gregory D. The parameterization of rainfall interception in GCM.Q.J.K.Meterorol.Soc.l992,118(505) :455-467
    150. Lockwood J G,Sellers P J. Some simulation model results of the effect of vegetation change on the near-surface hydroclimate[J] .In: variations in the Global water budget ,Boston Reidel Publishing company.1983,453-477
    151. R C Ward,Robinson.Principles of Hydrology (thired edition) [M].McGraw-Hill Book Company(UK)Limited,London.l990:189-231
    152. R P C Morgan. Soil Erosion and Conservation[M]. (2nd edition) Londonman science Technical. New York,1995,198-03
    153. F M Kelliher,D Whitchead,D S Pollock. Rainfall interception by trees and splash in a young Pinus radiate D.Don stand[J]. Journal of Hydrology, 1992,131:187?04
    154. Z Teklehainmanot ,P G Jarvis,D C Lddger. Rainfall interception and boundary layer conductance in relation to tree spacing [J].Journal of Hydrology,1991,123:261-78
    155. Gholz H.L.Litterfall decomposition and nitrogen and phosphorus dynamics in a chronosegnence of slash pine(p.elliottii), plantation[J]. Forest science,1985,31(2) :463-478.
    156. Ellison W D. Soil erosion studies-Part I[J]. Agricultural Engineering, 1947,28:145?46
    157. Gussak V B.A device for the rapid determination of erodibility of soil and some results of its application[J]. Soil science,1926,21:79?4
    158. Alderman J K. The erodibility of Granular Marerial[J]. Journal of Agricultural Engineering Research.1956,136-142
    159. Subhash chandler,S K DE. A Simple laboratory apparatus to measure relative erodibility of soils[J]. Soil Science,1978,125(20:115 ?21
    160. Shuttleworth WJ.Evaporation models in the Global water budget[J].Ibid.1983,147-171
    161. Jackson I J. Relationship between rainfall parameters and interception by tropical forest[J].Journal fHydrology,l975,24:215-238
    162. Mahendrappa M K,D G O Kingston. Prediction of throughfall quantities under different forest stands Canadian Forest[J].Journal of Research. 1982,12(3) :474?81
    163. Potter C S. Stemflow nutrient inputs to soil in a successionall hardwood forest [J].Plant and soil,1992,71:87-101
    164. Waldron L.J, Dakessian S .Effect of grass, legume and tree root on soil shearing resistance [J].soil sci.AM.J.,1982,46?2
    165. Vogt K A et al. Production, turnover ,and nutrient dynamics of above-and belowground detritus of world forests [M]. Advances in Ecological Research, 1983,15:303-78
    166. Meyer L D,Line D E ,Harmon W C.Size characteristics of sediment from agricultural soils [J] J.Soil and Water Cons.,1992,47(l):107-111
    167. Young R A, Olness A E, Mutchler C K et al. Chemical and physical enrichments of sediment from cropland .Erosion and soil Productively [J] . Society of Agricultural Engineers,1985,107-116。
    168. Scott D.F..Soil wettability in forested catchment in south Africa; as measured by different methods and as affected by vegetation cover and soil characteristics [J]. Journal of Hydrology,2000,231-231:87-04
    
    
    169. Adams.S.,Strain.B.R.,Adams.M.S.. Water repellent soils, fire, and annual plant cover in a desert scrub community of south eastern California [J].Ecology,51(4) :696-700
    170. Jamison. V.C..Resistance of wetting in the surface of sandy soils under citrus trees in central Florida and its effect upon penetration and the efficiency of irrigation [M] .soil science society of America proceedings. 1946,11:103-107
    171. L.Descroix,D.Viramontes,M.Vauclin.lnflence of soil surface features and vegetation on runoff and erosion in the Western SierraMadre(Durango,North West Mexico) [J].Catena,2001,43:115-135
    172. Francisco L.B.. Asuncion R.D. ,Jose M.F.. Vegetation and soil erosion under a semi-arid Mediterranean climate :a case study from Murcia [J].Geomorphology,1998,24:51-58
    173. M.J.Kirkby,N.J.Cox. A climatic index for soil erosion potential including seasonal and vegetation factors [J].Catena,l995,25:333-52
    174. A.P.Mackey ,G.Smail.Spatial and temporal variation in litter fall of Aricennia marina(Forssr) Vierh. In the Brisbane river Queensland ,Austrialia [J].Aquatic Botany,1995,52:133-142
    175. Maria. J.M,Francisco Domingo.Litter decomposition in four woody species in a Mediterranean climate:weight loss,N and P D ynamics [J].Annals of Botany ,2000,86:1065-071
    176. E.Z..Nyakatawa,K.C.Reddy,K.R.Sistani.Tillage,cover cropping ,and poultry litter effects on selected soil chemical properties [J].Soil and Tillage Research,2001,58:69-71
    177. Ericroose,Francois Ndayizigiye.Agroforestry,water and soil fertility management to fight erosion intropical mountains of Rwanda [J].Soil technology,l997,11:109-19
    178. M.Sorriso-valvo,R.B.Bryan,A.Yair.Impact of afforestation on hydrological response and sediment production in a small calabrian catchment [J].Catena,l995,25:89-04
    179. J.Doland Nichols,Martha.E..Intercropping legume trees with native timber trees rapidly restores cover to eroded tropical pastare whithout fertilization [J].Forest Ecology and management,2001,152:195-09
    180. G.Y. Zhou,J.D.Morris,J.H.Yan,Z.Y. Yu.Hydrological impacts of reafforestation with eucalypts and indigenous species:a case study in southern china [J].Forest Ecology and management,2001,167:209?22
    181. Corleu.R.T..Environmental forestry in Hong Kong [J].Forest Ecology and Management, 1999,116:93?05
    182. Gash.J.H.C.An application of the rutter model to the estimation of the interception loss from Thotford forest [J]. Journal of Hydrology,l978,38:49-8
    183. Huang .L.J., Li.G.S. ,Yu .Z.Y The temperature humidity characteristics of the different types of artificial forests in XiaoLiang, Guangdong. tropical subtrop [J]. Forest Ecosystem.l984,2:115-21.
    184. Lee.R. Forest Hydrology [M].Columbia university press,New youk.1980,153?56
    185. Yu.Z.Y.Ecology of the rehabilitation of vegetation on tropical coastal eroded land in Guangdong, Chin [J].Journal of Environmental Science ,1995,7:74-84
    186. Yu.Z.Y.Rehabilitation of eroded tropical coastal land in Guangdong,Chin [J].Journal of Tropical Forest Science. 1994,7:28-8
    187. Yu.Z.Y.,Zhou G.Y. Comparative study on surface runoff for three types of vegetation in XiaoLiang experimental station [J].Acta. Phytoecological sinica. 1996,4:355-62
    188. Zhou G.Y. A comparative study on the characteristics of precipitation surface soil erosion in bare land and Eucalyptus forest land of north tropic region [JJ.Acta. Geo. sinica. 1997,52:491-99

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700