基于植被蒸散法的区域缺水遥感监测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古半干旱地区存在着严重的缺水问题。本文结合973子课题(G2000077907)——“定量遥感在西部生态环境建设中的应用示范研究”,以不同退化程度的草地为主要研究对象,围绕着区域缺水这个主题,从MODIS卫星遥感数据预处理、地表参数的遥感定量反演、到区域缺水遥感监测方法的改进开展了一系列的研究,主要工作包括以下几方面:
     从地表能量平衡原理入手,结合地面同步实测数据和气象数据,运用遥感蒸散法,建立了基于亚像元的半干旱地区区域双层蒸散模型(SRDEM);其中,考虑到叶面积指数与植被的几何粗糙度之间有密切关系,引入叶面积指数计算动力传输粗糙度长度,从而改进显热通量算法。并通过地表缺水指数研究区域缺水状况,实现对表层土壤水分的定量反演。
     地表缺水指数物理意义明确,定量精度较高,但涉及参数较多,且部分仍依赖于地面气象台站及同步观测的微气象资料,实时性相对较差。因此本次研究从分析植被冠层反射、发射光谱与植被冠层水的成因关系入手,直接运用卫星遥感参数——植被指数、植被组分温度、归一化植被水分指数,组成植被冠层水综合指数(VTWSI),以反演植被冠层水分含量。
     地表缺水指数是通过基于亚像元的双层蒸散模型提取的,它既考虑了土壤的水分蒸发,又考虑了植被的蒸腾。目前主要是通过建立地表缺水指数和实测土壤水分之间的经验关系式,提取土壤水分含量。考虑到半干旱地区植被冠层水主要由土壤水提供,但植被供水状况与植被水分实际状况之间存在着一定的“滞后”,而在监测区域缺水或旱情的实际应用中,人们更关心的是植被实际水分状况,但仅考虑植被冠层水对于半干旱地区的区域研究也是不够的。鉴于此,本文运用遗传规划算法,建立了地表缺水指数与植被冠层水分、表层土壤水分含量之间的定量关系。通过模拟值与实际值之间的对照分析及敏感性分析表明所建定量关系式是比较理想的,而且该定量关系在植被覆盖区不但考虑了土壤水,同时还加入了植被冠层水,说明能够应用到地表缺水的研究,从而改进了运用遥感蒸散法监测区域缺水的方法。
     运用MODIS卫星遥感数据定量反演了地表温度、植被/土壤组分温度、地表反照率、叶面积指数、植被覆盖度等地表参数,作为模型计算的输入。为满足基于亚像元尺度
    
    基于植被蒸散法的区域缺水遥感监测方法研究
    的双层蒸散模型需求,本文选择遗传算法利用MODIS热红外多波段数据,实现了基于
    亚像元尺度的植初土壤组分温度反演,为地表能量平衡、蒸散研究提供更精确的参数。
     云一直是图像处理、图像分析的一大障碍,由于本研究区常见多云天气,为使从
    遥感数据提取的参数更精确,在大气校正的前提下,进行云的检测分析是很有必要的。
    在云检测多种研究方法中,一般采用阐值法来提取云的信息。由于闽值法带有一定主
    观性,本文探讨了云检测指数和基于空间结构分析和神经网络的云自动检测算法,其
    检测结果较常规闭值法精度高、效果好。
Heavy deficit of water is a key problem in semi-arid area of the northwest China, Inner Mongolia. This article mainly studies different degraded degrees grasslands. Aiming at the topic of regional water deficit, this paper has developed methods in MODIS data preprocessing, remote sensing quantitative inversion of land surface parameters, and improvement of regional water deficit monitoring using remote sensing. Main subjects are as follows.
    According to surface energy balance theory, the semi-arid regional dual-layer evapotranspiration model (SRDEM) is established , using remote sensing monitoring of evapotranspiration at sub-pixel level, combined with the field measurement and meteorological data. Taking the relation between leaf area index and vegetation geometrical roughness into account, a leaf area index is introduced to compute the vegetation geometrical roughness so that the algorithm computing the sensible heat flux can be improved. The surface water deficit index (SWDI) is extracted using actual and potential evapotranspiration to study the regional water deficit condition. The regional soil water content is then assessed.
    Surface water deficit index with clear definition and specific meanings has higher quantitative precision. But it refers to more parameters and some of them still rely on the meteorological observations of the surface weather station, which leads to limitation to real-time monitoring. Therefore, considering vegetation reflecting, emissive spectrum and the genetic relation of vegetation water, this research has introduced a vegetation water synthetical index (VTWSI) using parameters extracted from remote sensing data, vegetation index, normalized difference water index and vegetation component temperature, which can be used to inverse vegetation water content.
    The surface water deficit index is extracted based on the dual-layer evapotranspiration model, including soil water evaporation and vegetation transpiration. As vegetation water is
    
    
    mainly provided by soil water in semi-arid area, there is a time lag between the vegetation water provision condition and the vegetation water content. More attention has been paid to the vegetation water content in monitoring regional water deficit and ravages of drought, but it is not enough to only concern vegetation water content. Thus, this article establishes the remote sensing quantitative formula of regional water deficit using genetic plan based on surface water deficit index, surface soil water content and vegetation water content. The result shows that the quantitative formula is ideal in comparison between modeled and true values and through a sensitivity analysis. For vegetation area, the quantitative formula considers not only the soil water but also the vegetation water. It can be used to study surface water deficit, and to improve the method of regional water deficit monitoring using remote sensing.
    Parameters, such as land surface temperature, vegetation/soil component temperatures, albedo, leaf area index and vegetation coverage etc., are inversed quantitatively using MODIS data as the input of model. To meet the need of dual-layer evapotranspiration model, this study adopts genetic algorithm to inverse component temperatures using two infrared bands of MODIS data, which can provide more accurate parameters for land surface energy balance and evapotranspiration study.
    Cloud is a large obstacle to processing and analysis of remote sensing image, because it is often cloudy in this area. It is necessary to detect cloud for improving the parameters inversion precision using remote sensing data. Among numbers of cloud detection methods, threshold method is often used to extract cloud information. Considering some subjective factors of threshold methods, this study discusses the cloud detection index and an automatic cloud detection algorithm based on the texture and neural network. The detection result is more accurate and effective.
引文
[1] 马耀明,王介民.非均匀陆面上区域蒸发(散)研究概况[J].高原气象,1997,16(4):446—452.
    [2] Jackson R.D., et al. Plant canopy information extraction from composite scene reflectance of row crops[J]. Appl. Opt., 1979,18(22): 1892-1905.
    [3] Gardner B.R.,et al. Relationship between crop temperature and the physiological and phonological development of differentially irrigared crop[J]. Agron. J., 1981, 73(4): 459-468.
    [4] Jackson R.D. Advances in irrigation. In: D Hillel ed[M]. Academic Press, New York, 1982, 1: 43-85.
    [5] Hatfield J. L., et al. Evaluation of canopy temperature evapotranspiration models over various surfaces[J]. Agric. Forest Meteor.,1984, 32: 41-53.
    [6] Huband N.D.S., Monteith J.L. Radiative surface temperature and energy balance of a wheat crop, Ⅱ: Estimating fluxes of sensible and latent heat[J]. Boundary Layer Meteor, 1986, 9: 27-45.
    [7] Soer C.J.R. Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperature[J]. Rem. Sen. Env., 1980, 9:27-45.
    [8] Menenti M. Physical aspects and determination of evaporation in deserts applying remote sensing techniques[D]. Ph.D Thesis and Report 10(Special Issue). The Winand Staring Centre, Wageningen, the Netherlands, 1984: 202.
    [9] Menenti M., Lorkeers A. and Vissers M. An application of thematic mapper data in Tunesia, estimation of daily aplitude in near-surface soil temperature and descrimination on hypersaline soils[J]. ITC-Journal, 1986, 1: 35-42.
    [10] 冯晓明,赵英时.半干旱草场的多角度多波段反射率遥感模型[J].遥感学报,2004(待刊).
    [11] 刘振华,赵英时,宋小宁.MODIS卫星数据地表反照率反演的简化模式,遥感技术与应用.(己录用)
    [12] 刘振华.基于遥感的区域土壤水反演方法研究[D].中国科学院博士学位研究生论文,2004,1:16-51.
    [13] 刘振华,赵英时.MODIS图像大气校正中MODTRAN与6S模型的应用研究[J].遥感学报,2002,
    
    6(Suppl.):217-222.
    [14] 赵英时等.遥感应用分析原理与方法[M].北京:科学出版社,2003.5.
    [15] 莫兴国,林忠辉,刘苏峡.基于Penman Monteith公式的双源模型的改进[J].水利学报,2000,5:6-11.
    [16] Brown K W, Rosenberg N J. A resistance model to predict evapotranspiration and its application to a sugar beetfield [J], Agronomy Journal, 1973, 65: 635~641.
    [17] Jackson, R. D., Reginato, R. J. and Idso, S. B., Wheat Canopy Temperature; A Practical Tool for Evaluating Water Requirements[Y]. Water Resour. Res., 1977, 13: 651-656.
    [18] 李付琴,田国良,隋洪智,李建军.用每日一次的热红外温度估算日蒸散[M].遥感动态研究,田国良主编,北京:科学出版社,1990.
    [19] Brown, K.W., Rosenberg, H. T.. A Resistance Model to Predict Evapotranspiration and Its Application to a Sugar Beetfield[J]. Agron. J., 1985, 65: 341-347.
    [20] 颜春燕,牛铮,王长耀等.非单一地表对AVHRR图像计算所得蒸散的影响分析[J].遥感学报,2001,5(2):81-85.
    [21] 陈云浩,李晓兵,史培军.中国西北地区蒸发散量计算的遥感研究[J].地理学报,2001,56(3):261-268.
    [22] Jackson R D, Idso S B, Reginato R J. Canopy temperature as a crop water stress indicator [J]. Water Resource Research, 1981, 17: 1133-1138.
    [23] Zhang R. A new model for estimating crop water stress based on infrared radiation information[J].Science in China B,1986,7:776—784.[张仁华.以红外辐射信息为基础的估算作物缺水状况的新模式[J].中国科学(B辑),1986,7:776-784.]
    [24] Moran M. S., Clarke T. R., Inoue Y., et al. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index [J]. Remote Sensing of Environment, 1994, 49: 246-263.
    [25] 江东,王乃斌,杨小唤,刘红辉.植被指数 -地面温度特征空间的生态学内涵及其应用[J].地理科学进展,2001,20(2):146-152.
    [26] Kahle A. B., Madura D.P., and Soha J.M.. Middle infrared multispectral aircraft scanner data: analysisfor geological applications[J]. Appl. Opt.,1980,19:2279-2290.
    [27] McMillia L. M.. Estimation of sea surface temperature from two infrared window
    
    measurement with different absorption [J]. Journal of Geophysical Research, 1975, 80: 5113-5117.
    [28] Becker F., Li Z. L.. Toward a local split window method over land surface[J]. International Journal of Remote Sensing, 1990a, 24: 693-698.
    [29] Wan Z., Dozier J.. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. IEEE Trans. Remote Sens., 1996, 34(4): 892-905.
    [30] Wan Z., Li Z.. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans. Remote Sens., 1997, 35(4): 980-996.
    [31] 刘玉洁,杨忠东等.MODIS遥感信息处理原理与算法[M].北京:科学出版社,2001:1-3.
    [32] 李小文,王锦地.地表非同温象元发射率的定义问题[J].科学通报,199944(15):1612-1617.
    [33] 陈良富,范闻捷,柳钦火.地表热辐射方向性研究进展[J].地理科学进展,2001,20(3):262-267.
    [34] 庄家礼,陈良富,徐希孺.地表组分温度反演[J].北京大学学报(自然科学版),2000,36(6):850-857.
    [35] 刘国华,包宏,李文超.用MATLAB实现遗传算法程序[J].计算机应用,2001(8):80-82.
    [36] 徐希孺,陈良富,庄家礼.基于多角度热红外遥感的混合像元组分温度演化反演方法[J].中国科学(D辑),2001,31(1):81-88.
    [37] 田庆久,郑兰芬,童庆禧.基于遥感影像的大气辐射校正和反射率反演方法[J].应用气象学报,1998,9(4):456-461.
    [38] 何立明,阎广建,王锦地,李小文.利用A T S R-2数据提取地表组分温度[J].遥感学报,2002,6(3):161-167.
    [39] 陈良富,庄家礼,徐希孺.用多角度遥感数据反演混合像元组分温度的可行性分析[J].地理研究,2000,19(2):172-179.
    [40] 张熙川,赵英时.应用线性光谱混合模型快速评价土地退化的方法研究[J].中国科学院研究生院学报,1999,16(2):169-176.
    [41] 陈良富,庄家礼,徐希孺.热红外遥感中通道间信息相关性及其陆面温度反演的影响[J].科学通报,1999,44(19):2122-2127.
    [42] 刘强.地表组分温度反演方法及遥感像元的尺度结构[D].中国科学院博十研究生学位论文,2002.6.
    
    
    [43] 李召良,StollM.P.,张仁华等.利用ASTR数据分解土壤和植被温度的研究[J].中国科学(E),2000b,30(增刊):27-38.
    [44] 何立明,阎广建,王锦地,李小文.利用ASTR-2数据提取地表组分温度[J].遥感学报,2002,6(3):161-167.
    [45] 王锦地,李小文,孙晓敏,刘强.用热辐射方向性模型反演非同温像元组分温度[J].中国科学(E),2000,30(增刊):54-60.
    [46] 庄家礼,陈良富,徐希孺.利用遗传算法优化神经网络实现混合像元组分温度的反演[J].遥感学报,4(增刊):31-37.
    [47] 徐希孺,范闻捷,陈良富.开放的复杂目标热辐射特性的矩阵表达式[J].中国科学(D),2001b,31(12):1046-1051.
    [48] 徐希孺,陈良富,庄家礼.基于多角度热红外遥感的混合像元组分温度演化反演方法[J].中国科学(D),2001a,31(1):82-88.
    [49] 刘德辉,梁珍海,李荣锦.蒸发研究的概况与进展.江苏林业科技,1998,25(4):54-57.
    [50] Bowen, I. S.. The ratio of heat losses by conduction and by evaporation from any water surface[J]. Phys. Rev., 1926, 27(6): 779-787.
    [51] 吕达仁,陈佐忠,王庚辰,等.内蒙古半干旱草原气候-生态相互作用问题——IMGRASS计划初步结果[J].地学前缘,2002,9(2):307-320.
    [52] 姜恕.草原生态系统试验地的设置及其植被背景.草原生态系统研究(第三集)[M],北京:科学出版社,1988,1-12.
    [53] 陈佐忠.锡林河流域地形及气候概况.草原生态系统研究(第三集)[M],北京:科学出版社,1988,13-22.
    [54] 汪久文,蔡蔚祺.锡林河流域土壤的发生类型及其性质的研究.草原生态系统研究(第三集)[M],北京:科学出版社,1988,23-83.
    [55] 李博,雍世鹏,李忠厚.锡林河流域植被及其利用.草原生态系统研究(第三集)[M],北京:科学出版社,1988,84-183.
    [56] 姜恕.中国科学院内蒙古草原生态系统定位站的建立和研究概述.草原生态系统研究(第一集)[M],北京:科学出版社,1985,1-11.
    [57] 王荣,唐伶俐,戴昌达.MODIS数据在测量地物辐射亮度和反射率特性中的应用[J].遥感信息,2002(3):21-25.
    
    
    [58] Monteith J. L. Principles of Environmental Physics [M]. London: Edward Aronld, 1973.
    [59] Shuttleworth, W. J. and Wallace, J.S.. Evaporation from sparce crops an energy combination theory [J]. Q J. Meteor. Soc. 1985, 111: 839-855.
    [60] 肖青.机载遥感数据的定量化研究[D].中国科学院博士研究生学位论文,2002:105-107.
    [61] 郭广猛.关于MODIS卫星数据的几何校正方法[J].遥感信息,2002(3):26-28.
    [62] 赵忠明,朱重光.遥感图象中薄云的去除方法[J].环境遥感,1996,11(3):195-199.
    [63] 盛永伟,肖乾广.应用气象卫星识别薄云覆盖下的水体[J].环境遥感,1994,9(4):247-255.
    [64] 赖格英,辜晓青.基于ERDAS IMAGINE的遥感图象去云方法[C].GIS协会第六届年会论文集(1),成都,2001:565-569.
    [65] 杨俊泉,沈建中,莫伟华,等.NOAA卫星图像云点检测的三维统计图集合判别[J].国土资源遥感,1997(12):54-59.
    [66] Hutchison K. D., Etherton B. J., Topping P. C.,et al.. Cloud Top Phase Determination from the Fusion of Signatures in Daytime AVHRR Imagery and HIRS Data[J]. International Journal of Remote Sensing, 1997, 18(15): 3245-3262.
    [67] 谈建国,周红妹,陆贤,杨崇俊.NOAA卫星云图检测和云修复业务应用系统的研制和建立[J].遥感技术与应用,2000,15(4):228-231.
    [68] Shin D., Pollard J.K., Muller J-P.. Cloud detection from thermal infrared images using a segmentation technique[J]. International Journal of Remote Sensing, 1996, 17(14): 2845-2856.
    [69] Streit R.L., Luginbuhl T.E.. Maximum likelihood training of probabilistic neural networks[J]. IEEE Transactions Neural Networks, 1994,5(5):764-783.
    [70] Karner O., Girolamo L. D.. On automatic cloud detection over ocean[J]. International Journal of Remote Sensing, 2001, 22(15): 3047-3052.
    [71] Price J.C.. Land surface temperature measurements from the split window channels of the NOAA-7 AVHRR[J]. J. Geophys. Res., 1984, 79: 5039-5044.
    [72] 刘国华,包宏,李文超.用MATLAB实现遗传算法程序[J].计算机应用,2001,8:80-82.
    [73] 庄家社.利用遗传算法和神经网络反演混合像元组分温度[D].北京大学博士学位论文,
    
    2000.5:36-49.
    [74] 杨毅.接收函数方法与中国及邻区上地幔间断面的研究[D].中国科学技术大学研究生院(北京)博士学位论文,2002.6:81-85.
    [75] Mühlenbein H. and Schlierkamp-Voosen D.. Predictive Models for the Breeder Genetic Algorithm: Ⅰ. Continuous Parameter Optimization[J]. Evolutionary Computation, 1993, 1(1): 25-49.
    [76] Kung E. C., Bryson R.S., Lenschow D.H.. study os a continental surface albedo on the basis of flight measurements and structure of the Earth s surface cover over North America [J]. Monthly Weather Review, 1964, 92(12): 534-563.
    [77] 陈建绥.中国地表反照率的分布及变化[J].地理学报,1964,30(2):85-93.
    [78] 陆渝蓉,高国栋.我国辐射平衡各分量的计算方法及时空分布特征(Ⅰ)[J].南京大学学报(自然科学版),1976,(2):89-110.
    [79] 祝昌汉,朱福康,刘玉洁.青藏高原晴空行星应照率与地面反照率关系的研究[J].气象学报,1993,51(1):58-65.
    [80] 李小文,高峰,刘强等.新几何光学核的验证以及用核驱动模型反演地表返照率(之一)[J].遥感学报,2000,4(Suppl):1-7.
    [81] Jacobowitz H., Tinghe R. J., et al., The earth radiation budget derived from the Nimbus-7 ERB experiment[J]. Journal of Geophysical Research, 1984, 89: 4997-5010.
    [82] Kandel R., Viollier M., Raberanto P., et al.. The ScaRaB earth radiaton budget dataset[J]. Bulletin of the American Meteorology Society, 1998,79:765-783.
    [83] Liang S.,Alan H., et al.,Retrieval of Land Surface Albedo from Satellite Observations: A Simulation Study[J]. Journal of Applied Meteorology, 1999, 38:712-725.
    [84] Knap W. H., Reumer, C. H., and Oerlemans J., Narrowband to broadband conversion of Landsat TM glacier albedos[J3. Int. J. Remote Sensing, 1999, 20 (10):2091-2110.
    [85] Liang S., Alan H., et al., Retrieval of Land Surface Albedo from Satellite Observations: A Simulation Study, Journal of Applied Meteorology, 1999, 38:712-725
    [86] 张佳华,符淙斌.生物量估测模型中遥感信息与植被光合参数的关系研究[J].测绘学报,1999,28(2):128-132.
    [87] Zhang R H, Kuusk A, Gang C, Strahler A and Li X W. A new quantitative way for deterring
    
    leaf area index and net primary productivity in regional scale[J]. The Journal of Chinese Geography, 1996, 6(4): 1-17.
    [88] Andres Kuusk. A Multispectral Canopy Reflectance Model[J]. Remote Sensing of Enviroment. 1994,50:75-82.
    [89] John C. Price. On the information content of soil reflectance spectra[J]. Remote Sensing of Eenviroment 1990, 33: 113-121
    [90] Gutman G., Ignatov A.. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. International Journal of Remote Sensing, 1998, 19: 1533-1543.
    [91] 辛晓洲.用定量遥感方法计算地表蒸散.中国科学院遥感应用研究所博士学位论文,2003(6):20-74.
    [92] 潘志强,刘高焕.黄河三角洲蒸散的遥感研究.地球信息科学,2003,3:91-96.
    [93] Allen R.G., Bastiaanssen W.. Evapotranspiration on the Watershed Scale Using the SEBAL Model and Landsat Images. Paper for presentation at the 2001 ASAE Annual International Meeting Sponsored by ASAE, Sacramento, California, USA, July 30-August 1, 2001.
    [94] 张仁华,1996.实验遥感模型及地面基础[M].北京:科学出版社,223-226.
    [95] 申双和,崔兆韵.棉田土壤热通量的计算.气象科学,1999,19(3):276-281.
    [96] Su, Z.. The surface energy balance system(SEBS)for estimation of turbulence heat fluxes[J]. Hydrology and Earth System Sciences, 2002, 6: 85-99.
    [97] Friedl M.A.. Modeling land surface fluxes using a sparse canopy model and radiometric surface temperature measurements. J. Geophys. Res., 1995,100: 25435-25446.
    [98] Bastiaanssen W.G. M., Menenti M., and Feddes R.A., et al.. A remote sensing surface energy balance algorithm for land (SEBAL)1. Formulation. Journal of Hydrology, 1998, 212-213: 198-212.
    [99] Gupta R.K.,Prasad T.S., and Yijayan D.. Estimation of roughness length and sensible heat flux from WiFS and NOAA AVHRR data. Adv. Space Res., 2002,29(1):33-38.
    [100] 黄妙芬,刘素红,朱启疆.应用遥感方法估算区域蒸散量的制约因子分析.干旱区地理,2004,27(1):100-105.
    
    
    [101] 谢贤群.遥感瞬时作物表面温度估算农田全日蒸发散总量[J].环境遥感.1991,6(4):253-259.
    [102] Jackson R.D., Idso S.B., and Reginato R. J.. Canopy temperature as a crop water stress indicator[J]. Water Resource Research, 1981, 17: 1133-1138.
    [103] 朱治林,孙晓敏,张仁华.淮河流域典型地面水热通量的观测分析[J].气候与环境研究,2001,6(2):214-220.
    [104] Su Hongbo, Zhang Renhua, Tang Xinzhai, et al., A Simplified Method to Separate Latent and Sensible Heat Fluxes Using Remotely Sensed Data. Sydney: International Geoscience and Remote Sensing Symposium (IGARSS), 2001(7): 3175-3177.
    [105] 陈巧.单时相NOAA/AVHRR资料监测土壤湿度的研究[D].四川农业大学硕士学位论文,2003(6):12-15,48-56.
    [106] 申广荣,田国良.基于GIS的黄淮海平原旱灾遥感监测研究[J].农业工程学报,1999,15(1):188-191.
    [107] Huete A. R.. A soil adjusted vegetation index (SAVI) [J]. Remote Sensing of Environment, 1988, 25: 295-309.
    [108] Qi J., Chehbouni A., Huete A. R., et al. A modified soil adjusted vegetation index [J]. Remote Sensing of the Environment, I994, 48:119-126.
    [109] Mcfeeters S. K.. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features [J]. International Journal of Remote Sensing, 1996, 17: 1425-1432.
    [110] 徐建春,赵英时,刘振华.利用遥感和G I S研究内蒙古中西部地区环境变化[J].遥感学报,2002,6(2):142-149.
    [111] BO-Cai G. NDWI-A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water From Space [J]. Remote Sensing of Environment, 1996, 58: 257-266.
    [112] Zarco-Tejada P. J., Rueda C. A., Ustin S. L.. Water content estimation in vegetation with MODIS reflectance data and model inversion methods [J]. Remote Sensing of Environment, 2003, 85: 109-124
    [113] Jacquemoud S., Baret F. PROSPECT:A Model of Leaf Optical Properties Spectra [J]. Remote Sensing of the Environment, 1990, 34: 75-91.
    
    
    [114] Jacquemoud S., Bacour C., Poilvé H., et al. Comparison of four radiative transfer models to simulate plant canopies reflectance-Direct and inverse mode[J]. Remote Sensing of Environment, 2000, 74: 471-481.
    [115] Jacquemoud S. Inversion of the PROSPECT+SAIL canopy model from AVIRIS equivalent spectra: Theoretical study[J]. Remote Sensing of Environment, 1993, 44: 281-292.
    [116] Pietro C., Nadine G., Stephane F., et al. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1 Theroretical approach [J]. Remote Sensing of Environment, 2002, 82: 188-197.
    [117] Pietro C., Stephane F., Jean-Marie G., et al. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2 Validation and applications [J]. Remote Sensing of Environment, 2002, 82: 198-207.
    [118] 王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999,35-142.
    [119] 唐涛,蔡庆华,潘文斌.地统计学在淡水生态学中的应用[J].湖泊科学,2000,12(3):280-288.
    [120] 李书全,寇纪凇,李敏强.遗传规划方法探讨[J].决策与决策支持系统,1996,6(1):92-95.
    [121] 黄光球,桂中岳.确定矿体真实品位估计公式的遗传规划方法[J].中国钼业,1997,21 (6):10-15.
    [122] 赵新昱,陈文伟,牛晓丽.遗传算法和遗传规划对比研究[J].系统工程与电子技术,2000,22(12):84-87.
    [123] 王春峰,康莉.基于遗传规划方法的商业银行信用风险评估模型[J].系统工程理论与实践,2001,2:73-79.
    [124] 柏延臣.遥感信息提取的不确定性和尺度效应研究[D].中国科学院研究生院博士学位论文,2002(4):88-100.
    [125] 王安志,裴铁瑶.森林蒸散测算方法研究进展与展望[J].应用生态学报,2001,12(6):933-937.
    [126] 吕厚荃,于贵瑞.几种实际蒸散计算方法在土壤水分模拟中的应用[J].资源科学,2001,23(6):85-90
    [127] Friedl M. A. Forward and inverse modeling of land surface energy balance using
    
    surface temperature measurements[J]. Remote Sensing Environment, 2002, 79: 344-354.
    [128] Schultz, G.A.. Hydrological modeling based on remote sensing information[J]. Adv. Space Res., 1993,13(5):149-166.
    [129] Hall F G. Satellite Remote Sensing of Surface Energy Balance: Success, Failure, and Unsolved Issues in FIFE [J]. J Geophy Res, 1992, 97: 19061-19089.
    [130] Kustas, W.P., Daughtry C.S.T.. Estimation of the soil heat flux/net radiation ratio from multispectral data. Agric. For. Meteorol., 1990,49:205-223.
    [131] Brunal J P. Estimation of sensible heat flux from measurement of surface temperature and air temperature at two meters: application to determine actual evaporation rata[J], Agric. Forest Meteo. 1989, 46: 179-191.
    [132] Penman H.L.. Natural evaporation from open water, bare soil and grass [J]. Proc. Roy. Soc, 1948, 82: 171-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700