土地质量高光谱遥感监测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土地资源作为资源与生态环境系统中的重要要素和诸多生态环境问题的集中体现者,土地资源利用是可持续发展最重要的组成部分。要进行土地资源的高效管理,必须进行土地质量的监测。随着土地资源管理从数量管理向质量管护和生态管护方向发展,对土地动态监测也提出了更高的要求,土地动态监测将从以往单一的土地数量监测向土地质量监测发展。通过采集、分析和解译一系列时相的定量化数据,获取土地质量的及时可靠的信息,探测土地质量的变化,而这些变化可能正是土地开始进化或退化的信号。及早识别土地质量变化上的任何不利趋势,对于土地资源管理决策,最终实现可持续土地利用具有重要意义。高光谱分辨率遥感将反映地物性质的光谱与确定其空间和几何关系的图像革命性地结合到了一起,在获取研究对象的影像的同时获得每个像元的光谱分布,定量分析地球表面生物物理化学过程和参数,为土地质量监测提供了一种新的技术手段,使得土地质量监测各指标的定量反演成为可能。
     本研究将高光谱分辨率遥感技术引入到土地质量监测中,探索将其应用于土地质量监测中的潜力。根据高光谱遥感的技术特点结合土地质量指标光谱特点,运用多元统计分析技术、基于光谱位置变量的分析技术等方法,通过对试验区不同土样的地面光谱特征分析和理化特性分析,选择高光谱遥感技术手段所能监测的若干直接或间接反映土地质量状况的光谱指标,初步建立土地质量指标的光谱指标模型,进行高光谱遥感土地质量监测的潜力研究,希望借助高光谱遥感这一新兴技术,达到提高土地质量监测的水平,扩展监测内容,降低调查成本,缩短调查周期,提高调查成果的科学性、客观性和稳定性的目的。
     从针对土地“维持生物活动、多样性和生产力”这一功能的土地质量出发,论文重点研究了利用高光谱遥感技术监测土壤有机质含量、水分含量、氧化铁含量等土地质量指标的方法。论文主要研究内容包括:第二章进行了野外波谱测量及其影响因素研究。论述了地物光谱测试时太阳高度角、太阳方位角、云、风、相对湿度、入射角与探测角、仪器扫描速度、仪器视场角、仪器的采样间隔和光谱分辨率、坡向、坡度、目标本身光谱特性等等各种因素对测量结果影响;第三、四、五章利用光谱特征提取、多元统计回归、光谱微分等技术分别对土壤有机质含量、水分含量、氧化铁含量这三个指标与土壤光谱反射特性之间进行了研究,分析了反射率的各种变换形式对这三个土壤理化指标的敏感程度,建立了反演模型;第六章进行了OMIS影像几何校正、辐射纠正和参数成图研究。与卫星遥感传感器相比,机载成像光谱仪具有平台姿态稳定性差、飞行高度低、视场角较大等特点,这些因素的结合使得图像几何畸变的图案十分复杂化,在详细分析OMIS图像存在的主要几何畸变的基础上提出了OMIS图像几何校正的处理流程。利用OMIS影像的辐射校正后生成的反射率图像,进行土壤有机质含量、水分含量、氧化铁含量指标的参数成图,并将建立的地面模型应用到影像中。
     论文的主要研究结论和创新点总结如下:
    
     卜王壤有机质含量与土壤光谱反射特性的关系及其有机质含量反演
     有矶质左研究的350一250Onm波长范围内并不存在吸收峰,但在这一波长范围内,光谱反射
    率与有机质含量呈负相关关系,在675nm附近的相关性最强。总体而言,在进行微分变换以前,
    可见光波段的有机质含量探测能力要比近红外波段要强,最敏感的区域在675nln附近:光谱微分
    变换以后,近红外波段要更敏感一些,反射率对数的一阶微分在2187nm处与有机质的相关性可
    达0.89,在本研究同类相关系数中的最大值。在研究的反射率的各种变换形式中,反射率的对数
    的一阶数分对土壤有机质含量最为敏感,这是由于反射率的对数变换减少了因光照条件变化的乘
    性因素豹影响,而光谱微分能去除部分线性或接近线性的背景、噪声光谱对目标光谱的影响。最
    后建立由849nm、168Inln、2187nm三个波段的反射率对数的一阶微分为自变量的回归方程,预
    测能力较强。
     2、土壤表面含水量与土壤光谱反射特性关系及其含水量反演模型
     在预测土壤含水量时,145Onln吸收峰比1925吸收峰要更为敏感有效,而.且前者的吸收峰位
    置与含水量高度相关,随着土壤含水量的增加吸收峰位置有向中红外方向偏移的现象,而19扑
    黝近的吸收峰则没有这种现象。研究结果发现土壤含水量与145Onm处的光谱吸收特征峰面积、
    位置和深度均存在良好的线性回归关系,说明利用地物光谱仪直接测量土壤光谱,从而对土壤表
    层含水量进行测定是可能的,可考虑将地物光谱仪进行改造,建立一种新型的专门用于测定土壤
    表层含水量测定仪器,有望达到野外实时、实地、全天候、大面积快速测量的目的。研究结果还
    表明,反射率的对数的一阶微分这一变换能大幅度增强光谱数据与土壤含水量之间的相关性,变
    换后担关系数的最大值从变换前的一0.52482提高到为一0.90068。
     3土壤氧化铁含量与土壤土壤光谱反射特性关系及其反演模型
     士_壤中氧化铁的含量与反射率呈负相关,氧化铁含量的增加,会导致土壤反射率一F降,这跟
    有澎I质是一样的,但是氧化铁对反射率的
Land resource is a key factor of environments system and a centralized reflection of many environments issues. Land resource utilization is the most important part of sustainable development. To manage land resource efficiently, we need to monitor land quality. With the development of land resource management transferred from quantity management to quality and ecology protection, it required more advanced approaches to dynamic land monitoring. Dynamic land monitoring will develop to land quality monitoring from land quantity monitoring. Access timely and reliable information of land quality by collecting, analyzing and interpreting of a serial temporary quantitive data, we can explore the change of land quality. These changes are exactly signals of land improvement or degradation. It is significant to land management decision, especially to achieve the goal of sustainable land use that we identify adverse trends on land quality changes in advance. High spectral resolution remote sensing integrated the spectr
    um which reflects material features and the image which decides geometric relationship innovatively. Obtaining the spectra distribution of each pixel while acquiring the image of ground object and quantitatively analyzing the process of bio-physical and chemistry and parameters, it provides a new technology means for land quality monitoring and makes it possible to quantitative retrieval many land quality monitoring indicators.
    This paper applied hyperspectral remote sensing technique to land quality monitoring to explore its application potential in this field. According to the characteristics of hyperspectral remote sensing technique and spectral features of land quality indicators, we use multivariate statistics methods and approaches based on spectral position variables, select several spectral indicators which directly or indirectly reflect land quality, set up the retrieval models of land quality indicator, study the potential of applying hyperspectral remote sensing technique in land quality monitoring. Attempt to ameliorate land quality monitoring techniques, expand monitoring extents, decrease the self cost of survey, shorten the survey period, and make the results more scientific, objective and stable by this technique.
    From the view of the production function of land, this paper mainly study the methods of monitoring the land quality indicators (such as SOM, moisture, Fe2O3) by hyperspectral remote sensing technique. The main content of this paper includes: chapter 2 mainly discusses field spectral collection and its influence factors. The collection of accurate spectra in the field requires an awareness of the influences of the various sources of illumination, atmospheric characteristics and stability, winds, instrument field of view, target viewing and illumination geometry, instrument scanning time, and the spatial and temporal variability of the characteristics. Chapter 1 discussed how these factors influence spectrum measure result; The third, forth and fifth chapters studied the relationship between soil spectral
    IV
    
    
    reflection feature and three land qulity indicators (SOM, moisture and Fe2O3), analyzed the sensitive degree of various albedo transformation to this three soil phys-chemica! indicators, and set up retrieval model; The sixth chapter studied geometric rectification and atmospheric radiation correction of OMIS data and realized land quality parameter mapping.
    The main conclusions and innovation are:
    1. the relationship between SOM and soil spectral reflection features and retrieval model of SOM.
    SOM has no absorption peak in the region from 350nm to 2500mm in consideration, but in this wavelength region, spectral reflectance is negative correlation with SOM, and has high correlation in region around 675nm. As a whole, the detection ability of SOM in visible band is more powerful than in near infrared band. The most sensitive band is around 675nm. The ability in near infrared band is more sensitive after spectral derivative transformaton. The correlation coefficient between order
引文
1、Al-Abbas et al., Relating organic matter and clay content to multispectral radiance of soils, Soils Sci., 1972, 114, 477-485
    2、ngstrm, A., 1925. The Albedo of Various Surfaces of Ground. Geograf. Ann., 7: 323-342.
    3、Baret, F. and Guyot G., 1991, Potentials and limits of vegetation indices for LAI and APAR assessment, Remote sens. Environ.35:161-173.
    4、Baumgardner M. F., Stoner E. R., Silva L. F., Biehl, L. L., 1985. Reflective properties of soils. In: Brady, N.(Ed),Advances in Agronomy, 38. Academic Press, New York: 1-44.
    5、Baumgardner, M.F.L. F. Silva, L. L. Biehl, and E. R. Stoner, Reflectance properties of soils. Advances in Agronomy, 1985, 38, 1-44.
    6、Bedidi A., Cervelle B., Madeira J., et al. Moisture Effects on Visible Spectral Charateristics of Lateritic Soils. Soil Sci, 1992(153): 129-141.
    7、Bindraban P.S., J.J. Stoorvogel, D.M. Jansen, J. Vlaming, J.J.R. Groot. 2000. Land quality indicators for sustainable land management: proposed methods for yield gap and soil nutrient balance. Agriculture, Ecosystem and Environment 81:103-112.
    8、Blanchard M. B., Grealey R., Goettelman R., 1974: Use of visible, near-infrared, and thermal infrared remote sensing to study soil moisture, Proceedings of the Ninth International Symposium on Remote Sensing of Envionment. Ann. Arbor. Mich. Vol. 1, 693-900.
    9、Bower S. A., R. J. Hanks. 1965: Reflectance of Radiant Energy from Soils, Soil Sci. Am. J., 100(2):130-138.
    10、Bowers, S.A. and Hanks, R.J., 1965. Reflection of radiant energy from soils. Soil Science, 100(3): 130,138.
    11、Buol, S.W. "Soils" in Changes in Land Use and Land Cover: A Global Perspective [M]. University Press, Cambridge. p. 213.
    12、Choudhury B. J. Relationships between Vegetation Indices, Radiation Abosorption and Net Photosynthesis Evaluated by Sensitivity Analysis, Remote Sens. Environ., 1987, 22(2): 209-233
    13、Christensen, N. L., A. M., Bartuska, J. H. Brown, S. R. Carpenter, C. D'Antonio, R. Francis, J. F. Franklin, J. A. MacMahon, R. F. Noss, D. J. Parsons, C. H. Peterson, M. G. Turner, and R. G Woodmansee. 1996. The report of the Ecological Society of America committee on the scientific basis for ecosystem management. Ecological Applications 6:665-691.
    14、Cloutis E. A., Hyperspectral geological remote sensing: evaluation of analvtical techniques. Int. J. Remote Sensing, 1996, 17(12): 2215-2242.
    
    
    15、Conel J. E. Calibration of Data Using Ground-based Spectral Reflectance Measurements Proceedings of Airborne Imaging Spectrometer Data Analysis Workshop, 15 September, JPL Publication 85-41, Jet Propulsion Laboratory, Pasadena, Califorrnia, 1988, 184-185.
    16、Crosta A P, Souza C R de F. Evaluating AVRIS hyperspectral remote sensing data for geological mapping in Laterized Terranes, Cenrral Brazil, Proceedings of the Twelfth International Conference and Wordshops on Applied Geologic Remote Sensing, Denver, Colorado. 17-19 November 1997, Volume, 1997, Ⅱ: Ⅱ-430-Ⅱ-437
    17、Curtiss B. and S.L. Ustin (1988) Spectral changes in Ponderosa Pine associated with natural ozone exposure. Proc. U.S. Forest Service Forest Response Program Annual Meeting, Corpus Christi, Texas, February 23-26.
    18、Dale, V.H., S. Brown, R. A. Haeuber, N. T. Hobbs, N. Huntly, R. J. Naiman, W. E. Riebsame, M. G. Turner, and T. J. Valone. 2000. "Ecological Society of America Report: Ecological Principles and Guidelines for Managing the Use of Land." Ecological Applications. 10(3):639-670.
    19、David C. Hatchell. Analytical Spectral Devices, Inc. (ASD) Technical Guide(3rd Ed.), ASD, 1999.
    20、Dumanski, J. 1997. Criteria and indicators for land quality and sustainable land management. ITC Journal, 3/4: 216-221.
    21、Dumanski, J. and C. Pieri. 2000. Land quality indicators: research plan. Agriculture, Ecosystem and Environment 81:93-102.
    22、Engman, E. T., 1991. Application of Microwave Remote Sensing of Soil Moisture for Water Resources and Agriculture. Rem. Sens. Environ., 35: 213-226.
    23、Escadafal (1994): Soil spectral properties and their relationships with environmental parameters-Examples from arid regions.-in: Hill und Mégier (Ed.): Imaging Spectrometry-A Tool for Environmental Observations, ECSC, EEC, EAEC, 71-87.
    24、FAO, 1976. A framework for land evaluation. Soils Bull. 32, Food and Agriculture Organization, United Nations, Rome, Italy.
    25、Fuan Tsai, William Philpot, 1998. Derivative Analysis of Hyperspectral Data, Remote Sensing of Environment. 66:41-51
    26、Galvao L. S., Vitorello I. 1998. Role of organic matter in obliterating the effects of iron on spectral reflectance and color of Brazilian tropical soils. International Journal of Remote Sensing, 19, 1969-1979.
    27、Goetz A. F. H., Srivastava V. Mineralogical Mapping in the Curite Mining District, Nevada. Procecdings of Airborne Imaging Spectiometer(AIS) Data Analysis Workshop, 8-10April, JPL Publication85-41, Jet Propulsion Laboratory, Pasadena, California, 1985, 22-31.
    
    
    28、Goward S. N., Hvemmrich K. F. Vegetation Canopy PAR Absorbtance and the Normalized Difference Vegetation Index: An Assessment Using the SAIL Model. Remote Snes. Environ., 1990, 32(1): 47-54.
    29、Green A. A., Craig M. D. (G. Vane, A. F. H. Goetz, Editors), Analysis of Aircraft Spectrometer Data with Logarithmic Residuals. Proceedings of the Airborne Imaging Spectrometer Workshop, JPL Publication 85-41, NASA-JPL, Pasadena, USA, 1985, 111-119.
    30、Green Robert O, et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ, 1998, 65: 227-248.
    31、Hamblin, A.P. 1995. Land quality indicators: when, how and for whom? Ecol. Econ. 12: 341-348.
    32、Hill J., Sommer S., Mehi W., Mégier J.(1995). Land degradation, soil erosion and desertification monitoring in Mediterranean ecosystems [J]. Remote Sensing Reviews, 12:107-130.
    33、Hoffer, R.M. and Johannsen, C.J., 1969. Ecological potential in spectral signatures analysis, Remote Sensing in Ecology. University of Georgia, Athens (Georgia), pp. 1-16.
    34、Hunt G. R. (1979) Near-infrared(1.3-2.4mm) spectral of alteration minerals-potential for use in remote sensing, Geophysics 44(12): 1974-1986.
    35、Hvete A. R. A Soil adjusted vegetation Index (SAVI), Remote Sens. Environ., 1988, 25(3): 295-309.
    36、Idso S. B., Jackson R. D., Reginato R. J., et al. the Dependence of Bare Soil Albedo on Soil Water Content. Journal of Applied Meteorology, 1975(14): 109-113.
    37、Irons J. R., Weismiller R. A., Petersen G. W. Soil reflectance [A]. In: Theory and Applications of Optical Remote Sensing (Asrar, G. Ed.) [C]. New York: John Wiley and Sons, 1989: 66-106.
    38、J.U. Hielkema, etc. Rainfall and Vegetation Monitoring in the Savanna Zone of the Democratic Republic of Sudan Using the NOAA Advanced Very High Resolution Radiometer. International Journal of Remote Sensing, 1986, 7(11): 1499-1513.
    39、Jong S De M. The analysis of spectroscopical data to map soil types and soil crusts of Mediterranean eroded soils. Soil Technology, 1992, 5:199~211
    40、Kamieli, A., Verehovsky, I., Hall, J. K., Oren, E. Geographic information system for semi-detailed mapping of soils in semi-arid region. Geocarto International 13 (3): 29-43, 1998.
    41、Krishnan P, et al. Reflectance technique for predicting soil organic matter[J]. Soil Sci. Soc Am. J, 1980, 44:1282~1285
    42、Krishnan P., J. D. Alexander, B. J. Butler and J. W. Hummel. 1980. Reflectance technique for predicting soil organic matter. Soil Sci. Soc. Am. J. 44: 1282-1285.
    43、Kruse F. A. use of Airborne Imaging Spectrometer Data to Map Minerals Associated with Hydrother-mally Altered Rocksin the Northern Grapevine Mountains, Nevadaand California,
    
    Remote Sensing of Environment, 1988a, 24(1): 31-51.
    44、Kruse F. A., Calvin W. M., Seznec O. Automated Extraction of Absorption Features from Airborne Visible/Infrared Imaging Spectrom(AVIRIS) and Geophysical Environmental Research ImagingSpec-tromer(GERIS) Data. Proceedings of the Airborne Visible/Infrared ImagingSpectrometer(AVIRIS) Performance Evaluation Workshop, JPL Publication88-38, Jet Propulsion Laboratory, Pasadena, Cal-ifomia, 1988b, 62-75.
    45、Li X, Strahler A H. Geometric-Optical Bidirectional Reflectance Modeling of Mutual Shadowing Effects of Crowns in a Forest Canopy. IEEE Trans Geosci Remote Sens, 1992, 30:276-292
    46、Lubehenco, J. A., A. M. Olson, L. B. Brubaker, S. R. Carpenter, M. M. Holland, S. P. Hubbell, S. A.. Levin, J. A. MacMahon, P. A. Matson, J. M. Melillo, H. A. Mooney, C. H. Peterson, H. R. Pulliam, L. A. Real, P. J. Regal, and P. G Riser. 1991. The sustainable biosphere initiative: an ecological research agenda. Ecology 72:371-412.
    47、Madeira Netto, J., Spectral reflectance properties of soils, Photo-interpretation, 1996, 2, 59-76.
    48、Miller J. R., Hare E. W., Wu J. Quantitative Characterization of the Vegetation Red Edge Reflectance: An Inverted-Gaussian Reflectance Model. Int. J. Remote Sens., 1990, 11: 1775-1795.
    49、Miller J. R., Wu J., Boyer M. G. et al. Season Patterns in Leaf Reflectance Red Edge Characteristics. Int. J. Remote Sens., 1991, 12:1509-1523.
    50、Montgomery, O. L., An investigation of the relationship between spectral reflectance and the chemical, physical and genetic characteristics of soils, Purdue University, 1976.
    51、Muller E. Decamps H. Modeling Soil Moisture Reflectance. Remote Sens. Envir. 2000(76): 173-180.
    52、Mustard J F. Relationships of soil, grass, and bedrock over the Kaweah Serpentinite Melange through spectal mixture analysis of AVIRIS data[J], Remote Seas. Environ, 1993, 44:293~308
    53、Myneni R. B., Ross (Eds.) J. Photon Vegetation Interactions. Springer Verlag Berlin Heidelberg, 1991
    54、Myneni R. B., Ross (Eds.) J. Photon Vegetation Interactions. Springer Verlag Berlin Heidelberg, 1991.
    55、Nicholas J Middleton, David S G Thomas. World Atlas of Desertification (second edition) [M]. London: Arnold, 1997.
    56、Nicholas J Middleton, David S G Thomas. World Atlas of Desertification [M]. London: Arnold, 1992.
    57、Obukhov & Orlov (1964): in: Sov. Soil Sci., 2: 174-184, cited from Baumgardner et al. (1985): Reflectance properties of soils.- in: Adv. in Agrono my, 38: 1-44.
    58、Oldeman, L. R., Hakkeling, R. T. A., Sombroek, W. G. 1990. World Map of the Status of Human
    
    induced Soil Degradation: An Explanatory Note. 2nd revised ed [M]. ISRIC, Wageningen, the Netherlands.
    59、P. V. Narasimha Rao, et al. Relation Between Root Zone Soil Moisture and Normalized Difference Vegetation Index of Vegetation Fields, International Journal of Remote Sensing, 1993,14(3): 441-449.
    60、Palacios-Orueta A., Pinzon P. E., Ustin S. L. and Roberts D. A. 1998. Remote Sensing of soil Properties in the Santa Monica Mountains Ⅱ. Hierarchical Foreground and Background Analysis. Remote Sensing of Environment. 68, 138-151.
    61、Palacios-Orueta, A.P., and S.L. Ustin, 1996. Multivariate Statistical Classification of Soil Spectra. Remote Sensing of Environment 57 (2): 108-118.
    62、Peterson J. B., Robison B. E, Beck R. H., 1979: Predictability of change in soil reflectance on wetting machine processing of remotely sensed data, Proc. Purdue University. West Lafayeffe Ind. 264-274.
    63、Pieri, C., J. Dumanski, A. Hamblin, A. Young. 1995. Land quality indicators. World Bank Discussion Paper no. 315, World Bank, Washington, DC.
    64、Price J. C. 1993. Estimating leaf area index from satellite data. IEEE Trans. Geosci. Remote Sensing 31(3), 727-734.
    65、Price, J.C., 1998. An Approach for Analysis of Reflectance Spectra. Remote Sensing of Environment 64:316-330.
    66、Rast M. S., Hook J., Elvidge C. D. An Evaluation of Techniques for the Extraction of Mineral Absorption Features from High Spectral Resolution Remote Sensing Data. Photogrammetric Engineering and Remote Sensing, 1991, 57(10): 1303-1309.
    67、Resmini R G, et al. Mineral mapping with hyperspectral digital Imagery collection experiment (HYDICE) sensor data at Cuprite, Nevada, USA, Int J. Remote Sensing, 1997, 18(7): 1553-1570
    68、Roberts D. A., Amaguchi Y. Y. Calibration of Airborne Imaging Spectrometer Data to Percent Reflectance Using Field Spectral Measurements. Proceedings of the Nineteenth International Symposium on Remote Sensing of Environment, Ann ARBOR, MICHIGAN, October, 1985, 21-25
    69、Rock, B.N., D.L. Williams, D.M. Moss, G.N. Lauten, and M. Kim, 1994. High-Spectral Resolution Field and Laboratory Optical Reflectance Measurements of Red Spruce and Eastern Hemlock Needles and Branches. Remote Sensing of Environment 47: 176-189.
    70、Schmugge, T. J., Jackson, T. J., and McKim, H. L., 1980. Survey of Methods for Soil Moisture Determination. Water Resour. Res., 16(6): 961-979
    71、Siegal B S, Goetz F H. Effect of vegetation on rock and soil type discrimination. Photogrmmetric
    
    Engineering and Remote Sensing, 1997(43): 191~196
    72、Stone E R, Baumgardner M F. Characteristic variations in reflectance of surface soils[J], Soil Sci Soc, 1981,45:1161~1165
    73、Stoner (1979): Ph.D. dissertation, Purduē University, West Lafayette, Indiana, cited from Baumgardner et al. (1985): Reflectance properties of soils.- in: Adv. In Agronomy, 38: 1-44.
    74、Stoner E R, et al. Atlas of soil Reflectance Properties. Purdue University, Indiana, 5, 1980
    75、Stoner E. R., et al., Atlas of Soil Reflectance Properties, Purdue University, Indiana, 5, 1980.
    76、Stoner, E. R. et al., 1981: Characteristic Variantins in Reflectance of Surface Soils, Soil Sci. Am. J., 45:1161-1165.
    77、Stoner, E.R. and Baumgardner, M.F., 1980. Physiochemical, site and bidirectional reflectance factor characteristics of uniformly moist soils. 111679, LARS, Purdue University, USA.
    78、Tripathy G K, et al. Monitoring of desertification process in Karnataka state of India using multi-temporal remote sensing and ancillary information using GIS [J]. INT.J. Remote Sensing, 1996,17(12): 2243-2257
    79、Valle H F Del, et al. Status of Desertification in the Patagonian Region: Assessment and Mapping from Satellite Imagery [J]. Arid Soil Research and Rehabilitation, 1998(12): 95-122.
    80、Vane Gregg, Goetz Alexander F H. Terrestrial imaging spectrometry current status, future trends, Remote sensing of Environment, 1993, 44, 117-126
    81、Vane Gregg, Goetz Alexander F H. Terrestrial imaging spectrometry: current status, future trends, Remote Sens. Environ, 1993, 44:117-126
    82、Vermote E. F., et al, Second simulation of the satellite signal in the solar spectrum, 6S: An Overview, IEEE Trans. Geosci. & Remote Sensing, Vol. 35, No. 3, May 1997
    83、Wander M.M. and Drinkwater. 2000. Fostering soil stewardship through soil quality assessment. Applied Soil Ecology. 15:61-73
    84、Wessman C. A., Aber J. D., Peterson D. L. An Evaluation of Imaging Spectrometry for Estimating Forest Canopy Chemistry Int. J. Remote Sensing, 1989, 10:1293-1316.
    85、波谱测量规程,中华人民共和国国家军用标准[S],GJB 4029-2000.1-21.
    86、卜兆宏.土壤波谱反射特性测试及其数据处理方法的实验研究.土壤专报,1980:第40号.
    87、陈述彭,童庆禧,郭华东主编.遥感信息机理的研究[M].北京:科学出版社,1998:139-233
    88、陈述彭,童庆禧,郭华东主编.高光谱分辨率遥感信息机理与地物识别.见:遥感信息机理研究.北京:科学出版社,1998,4(1):67-72
    89、陈述彭,童庆禧,郭华东主编.高光谱分辨率遥感信息机理与地物识别.见:遥感信息机理研究.北京:科学出版社.1998.4(1):67-72
    90、陈述彭著.遥感应用.见:地学的探索(合订本),第三卷.北京:科学出版社,1990,162-168
    
    
    91、程烨,新一轮国土资源大调查“土地资源监测与调查工程”发展历程与前景展望,中国土地科学,2002,16(3):4-9.
    92、戴昌达.中国主要土壤光谱反射特性分类与数据处理的初步研究[A].遥感文选[M],北京:科学出版社,1981:315~323
    93、傅伯杰,陈利顶,马诚.土地可持续利用评价的指标体系与方法[J].自然资源学报,1997,12(2):112-118
    94、傅肃性.遥感专题分析与地学图谱[M].北京:科学出版社,2002
    95、高峰,朱启疆.植被冠层多角度遥感研究进展[J]地理科学,1997,17(4):347-355
    96、高尚武,王葆芳等.中国沙质荒漠化土地监测评价指标体系[J].林业科学,1998,34(2):1-10.
    97、宫鹏.遥感生态测量学进展[J].自然资源学报,1999,14(4):313-317.
    98、郭德友等译.1986:土壤多光谱反射比的研究和应用.农业遥感,科学出版社.
    99、郭小方.成像光谱遥感地质研究的理论基础和数据生成处理方法技术研究[D]:[博士论文]北京:北京大学,1998.
    100、郭旭东,河北省遵化县土地利用变化与土壤养分变化,中国科学院生态环境研究中心博士学位论文,2000年6月.
    101、胡宝新,李小文等.大倾角光学遥感中大气点扩散函数的近似模拟.中国图像图形学报,1996,1(1):19-28.
    102、胡著智,王慧麟,陈钦峦编著.遥感技术与地学应用[M].南京:南京大学出版社,1999:54-60
    103、黄昌勇主编,土壤学,2001,北京:中国农业出版社.
    104、黄昌勇主编,土壤学,2001,北京:中国农业出版社.
    105、季耿善,徐彬彬.1987.土壤粘土矿物反射特性及其在土壤学上的应用.土壤学报,24(1):67-76.
    106、孔祥元,梅是义,控制测量学[M].北京:测绘出版社,1991:266-316
    107、冷疏影,李秀彬.1999.土地质量指标体系国际研究的新进展.地理学报,54(2):177-185.
    108、李瑞阳,朱子豪.遥测与地理信息系统于台湾土地利用管理之应用[J],中国土地科学,2002,16(6):28-35.
    109、李树楷.遥感图像对地定位研究[M].北京:测绘出版社,1991
    110、李秀彬,全球环境变化研究的核心领域[J].地理学报,1996,51(6):553~558.
    111、刘纪远,布和敖斯尔.应用遥感和地理信息系统技术开展中国土地利用变化研究[M],遥感新进展与发展战略,中国科学技术出版社,1996年
    112、刘银年,薛永祺,王建宇等.实用型模块化成像光谱仪[J],红外与毫米波学报,2002,21(1):9-13
    113、马荣华,胡孟春,毛端谦,黄杏元.基于RS与GIS的海南西部土地沙化/土地退化动态趋
    
    势研究[J].生态科学,2000,19(2):19-23.
    114、梅安新,彭望碌等.遥感导论[M].北京:高等教育出版社,2001.14-45
    115、牛铮,朱重光,王长耀.斜视角度下大气交叉辐射影响分析.遥感学报,1997,1(2):88-93.
    116、牛铮.植被二向反射特性研究新进展[J]遥感技术与应用,1997,12(3),27-31
    117、彭德福等.1985:农业资源光谱数据的分类识别.自然资源研究的理论和方法,科学出版社.
    118、浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.12-22.
    119、浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
    120、浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.12-22.
    121、浦瑞良.森林生物化学与CASI高光谱分辨率遥感数据的相关分析.遥感学报,1997,1(2):115-123.
    122、实用型模块化成像光谱仪(OMIS).http://www.ers.ac.cn/hkygq/OMIS.html
    123、舒守荣,陈建,邓仁达.遥感反射光谱测试与应用研究[M].北京:科学出版社,1988
    124、孙家捅,舒宁,关泽群.遥感原理、方法和应用[M].北京:测绘出版社,1997:160-216
    125、孙武,李森.土地退化评价与监测技术路线的研究[J].地理科学,2000,20(2):92-96]
    126、田国良.土壤水分的遥感监测方法,环境遥感,1991,6(2):89-98.
    127、田庆久,闵祥军.植被指数研究进展.地球科学进展,1998,13(4):327-333
    128、田庆久,张良培,郑兰芬,童庆禧.成像光谱遥感定标模型的分析与评价.遥感技术与应用,1996,Vol.11,No.3:16-21
    129、田庆久,遥感信息定量化理论、方法与应用,http://www.idlworld.com/thesisl.htm,2000,11
    130、田庆久.机载成像光谱遥感器场地外定标规范的初步研究[J].遥感技术与应用,1999,14(1):15-19
    131、童庆禧.中国典型地物波谱及其特征分析[M].北京:科学出版社,1990
    132、王长耀 牛铮等.对地观测技术与精细农业[M].北京:科学出版社,2001.38-81
    133、王峰,史文中,程朋根.遥感图像纠正误差的局部变形改正.武汉大学学报信息科学版,2001,26(5):425-429
    134、王晋年,郑兰芬,童庆禧.成像光谱图像吸收鉴别模型与矿物填图研究[J].环境遥感,1996,11(1):20-30
    135、王晋年,郑兰芬,童庆禧.成像光谱图像吸收鉴别模型与矿物填图研究.环境遥感,1996,11(1):20-30.
    136、王静,张继贤,何挺,李海涛.基于3S技术的耕地退化监测与评价技术方法探讨.测绘科学,2002,27(4):45-49.
    137、徐彬彬,季耿善.宁芜土壤遥感研究的主要成果[J].土壤专报,1987,41号,5~8
    138、徐彬彬,季耿善.土被合成光谱及其应用的初步研究[J].土壤专报,1987,41号,101~106
    
    
    139、徐彬彬等,土壤光谱反射特性与理化性状的相关分析,土壤专报,第41号,科学出版社,1986
    140、叶荣华,范文义,龙晶,王君厚等.高光谱技术在荒漠化监测中的应用研究[M],北京:中国林业出版社,2001
    141、余涛,田国良.热惯量法在监测土壤表层水分变化中的研究.遥感学报,1997,1(1):24-31.
    142、张兵,时空信息辅助下的高光谱数据挖掘,中国科学院遥感应用研究所博士学位论文,2002年12月.
    143、张良培,李德仁,童庆禧,郑兰芬.鄱阳湖地区土壤、植被光谱混合模型的研究[J].测绘学报,1997,26(1),72~76
    144、张桃林,王兴祥.2000.土壤退化研究的进展与趋向.自然资源学报,15(3):280-284.
    145、张宗贵,王润生.基于谱学的成像光谱遥感技术发展与应用.国土资源遥感,2000,第3期:17-24.
    146、赵其国,孙波,张桃林.土壤质量与持续环境Ⅰ.土壤质量的定义及评价方法[J].土壤,1997,(3):113-120.
    147、郑兰芬,王晋年.成像光谱遥感技术及其图像光谱信息提取分析研究.环境遥感,1992,7(1):49-58.
    148、郑威,陈述彭主编.资源遥感纲要[M].北京:中国科学技术出版社,1995:51-127
    149、朱永豪,邓仁达,卢亚非等.不同湿度条件下黄棕壤光谱反射率的变化特征及其遥感意义[J].土壤学报,1984,21(2):194~202
    150、朱永豪等.不同湿度条件下黄棕壤光谱反射率的变化特性及其遥感意义,土壤学报,1984,21(2),194-201.
    151、朱振福等译.《遥感定量方法》[M]北京:科学出版社,1981.
    152、朱震达.中国土地荒漠化的概念、成因与防治[J].第四纪研究,1998,(2)145-155.
    153、佐藤幸男著.雨富好文主编.信号处理入门.北京:科学出版社,2001,27-33.
    154、[日]遥感研究会编.刘勇卫等译.遥感精解[M].北京:测绘出版社,1993:174-180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700