岷江干旱河谷整地造林植被恢复的长期效果评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱河谷是青藏高原一类特殊的山地生态系统,主要分布于金沙江、怒江、澜沧江和雅砻江中下游,大渡河和元江中游,岷江和白水江上游等河谷区。特殊的地质地貌、气候和植被等特征导致了干早河谷本身具有高度的脆弱性,在高强度人为干扰体的叠加作用下退化严重。目前干旱河谷的突出问题是植被覆盖率低,水土流失严重,生态恶化形势严峻。因此,恢复重建植被,提高植被覆盖率,防治水土流失,保护脆弱的山地生态环境是干旱河谷地区生态建设的一项紧迫任务,是国家和区域生态建设的重大需求之一。因此,过去在干旱河谷内开展了大量的以植被恢复、遏制生态退化为目标的科学研究。长期以来通过整地造林恢复重建植被的方法已在干旱河谷广为采用。保留带与造林带沿等高线交替配置、水平沟整地后在造林带内进行植树造林的恢复措施(以下简称“等高线水平沟整地造林”)在元江中游、金沙江中下游和岷江上游等干旱河谷地区一直被广泛应用于生态恢复,也在国家生态工程建设中得到一定的应用和推广。然而整地造林的长期成效还缺乏必要的监测和评价,整地造林的植被恢复实践是否能有效促进植被发育,提高植被覆盖率,并改善土壤水源涵养能力并不清楚。干旱河谷植被恢复重建过程中,传统造林实践长期效果的评价是认识干旱河谷可恢复性以及恢复能力的重要途径,可为恢复重建干旱河谷植被、科学有效保护干旱河谷提供理论支撑和实践基础。
     由于提高植被覆盖率是干旱河谷植被恢复重建最重要的目标之一,而植被盖度与群落生物多样性、土壤水源涵养能力等密切相关。同时,干旱河谷内土壤水分是限制土壤潜在性肥力向有效性肥力转化、影响植被生长与分布的主导因子。因此,本研究除采用岷江柏等树种的存活与生长状况作为评价指标外,植被盖度和土壤水分.物理性质也作为评价指标。
     选择岷江干旱河谷等高线水平沟整地(过去认为是干旱河谷内改善土壤水分状况最优的整地方式)的典型造林地段,调查研究了该区域内抗旱性强、栽植面积大的代表性目的造林树种岷江柏(Cupressus chengiana S.Y.Hu)多年(7-24a)后的保存、生长与结实状况,造林地内保留带、造林带的植被盖度和土壤物理性质,目的是评价干旱河谷乡土树种造林成效与整地造林的长期生态效果,并探讨了时空格局(海拔、坡向、坡度和造林时间)对植被恢复的影响。
     通过样方调查发现,岷江干旱河谷内,岷江柏后期死亡较为严重,造林树种总保存率呈现为下降趋势。至造林后16a时,造林树种总保存率仅为38%。
     采用树干解析结合年轮测量(WinDENDRO~(TM)2002b年轮分析系统)的方法对岷江柏年轮生长过程的研究发现,82%的样地岷江柏年轮生长表现为先增加后降低的趋势,不同样地岷江柏的衰退年龄出现在岷江柏生长4~14年之后。采用非线性趋势模型法拟合年轮生长的长期趋势,发现95%的样地岷江柏年轮生长过程可以采用不带常数的Quadratic模型y=b_1x+b_2x~2拟合(p<0.001),其中b_1=0.0494~1.1323,b_2=-0.0019~-0.1049,y为年轮宽度(mm),x为生长时间(a)。
     在SPSS 12.0中利用One-WayANOVA过程对岷江柏不同龄级高生长量的比较发现,68%的样地岷江柏的高生长表现为先增加后降低的趋势,不同样地岷江柏的衰退年龄出现在岷江柏生长4~18年之后。14%的样地表现为逐渐降低的趋势。
     采用收获法对岷江柏生物量的研究发现,岷江柏的地下生物量/地上生物量在0.12~0.29之间。岷江柏养分吸收功能较强的细根(<<0.5cm)和进行光合作用的叶占总生物量的比例较小;主干生物量占总生物量的比例最高,在30%以上;其次为叶和枝。各部分根中,根颈&根桩所占的比例最高,但其占总生物量的比例远小于地上各部分所占的比例。同时,不同年份栽植的岷江柏生物量的年平均积累量在0.011~1.335kg之间。
     研究区域内造林后10年生岷江柏(造林后8年)就已结实。因此,研究区域内岷江柏已出现提前结实现象。
     从造林后的长期保存率、年轮(直径)生长过程、高生长过程、生物量积累与分配、结实情况等综合分析都清楚的表明,在岷江干旱河谷内,岷江柏即使存活,植株仍然处于胁迫状态,进一步生长的可能性小,很快便发展成为“小老头树”。与天然岷江柏相比,人工栽植岷江柏较早的进入了生长衰退期。因此,岷江柏并不是岷江干旱河谷植被恢复与造林的理想树种。
     在SPSS 12.0中利用One-Way ANOVA过程分析了河谷内不同造林时间样地造林带植被盖度的差异,发现,随时间的推移,造林带内树木盖度和凋落物盖度显著增加,灌木盖度和草本盖度显著减少,植被总盖度和地衣苔藓盖度变化不明显。利用Independent-Samples T Test过程对同一样地内造林带和保留带植被盖度的比较发现,造林带内乡土植被总盖度、灌木盖度、草本盖度、地衣苔藓盖度均低于保留带。
     在SPSS 12.0中利用Independent-Samples T Test过程对河谷内保留带和造林带土壤物理性质的比较发现,造林带土壤水分-物理性质不如保留带。造林带土壤自然含水量、饱和含水量、毛管含水量、总孔隙度均小于保留带,而造林带土壤容重和毛管孔隙度要大于保留带。
     在R 2.9.0 for Windows中利用典范相关分析研究了时空格局对造林树种保存状况、岷江柏生长状况、保留带和造林带植被发育、植被盖度相对降低率、保留带和造林带土壤质量的影响。发现,随着造林时间的延长,造林树种总保存率、岷江柏直径年生长量下降,保留带和造林带植被的发育和土壤质量呈退化趋势。高海拔、较阴的坡向和低坡度有利于植被的发育。高海拔地段和较为向阳的坡向土壤质量较高。
     综合分析表明,选择乡土树种岷江柏等高线水平沟整地后造林未能取得理想的植被恢复效果,长期(7-24年)而言岷江柏未能适应干旱河谷现有的土壤、气候条件,不仅保存状况较差,保存率低且呈下降趋势,无论高生长还是年轮(直径)生长都表现出下降趋势,也出现提前结实现象,成为“小老头树”;而同时,等高线水平沟整地的造林恢复措施没有促进植被发育,改善土壤水源涵养能力,相反却降低了造林带植被覆盖率,恶化了造林带土壤质量。因此,等高线水平沟整地造林措施在岷江干旱河谷特殊的气候、环境条件下,并不是最有效的植被恢复措施。
     水资源状况是干旱河谷植被恢复必须首先考虑的问题,高强度的整地措施和栽植蒸腾作用较强的林木会加剧土壤的干化,也不利于植被的发育和林木的生长。同时,考虑到植物间的竞争和干旱河谷土壤水分含量较低,干旱河谷植被恢复中,人工干预的使用应特别谨慎,并应加强对土壤水分的研究。今后,河谷内的植被恢复应该在明确其影响因子和机理的基础上,尽量减少高强度整地的人为干扰,考虑筛选灌草等乡土植物作为目的植物。通过促进自然植被的更新和发育,提高植被盖度,改善土壤质量,最终实现植被和土壤的良性发展。
Background:The dry valley is a special kind of mountain ecosystem on the Tibetan Plateau, and discontinuously distributed in the valley of the middle and lower reaches of Jinshajiang River, Nujiang River,Lancangjiang River and Yalongjiang River,the middle reaches of Daduhe River and Yuanjiang River,the upper reaches of Minjiang River and Baishuijiang River.Due to the bad vulnerability of dry valley which has root in its own special geological,climatic and vegetation feature and serious anthropogenic disturbances,the ecosystem is severely degrading in the dry valley.Nowadays,the principal problem of the dry valley is that the vegetation cover is low,the soil and water loss is serious and the ecological degradation is severe.Thus,restoring and rehabilitating the vegetation,heightening the vegetation cover,preventing and controlling the soil and water loss,protecting the fragile mountain ecological environment has become the main work of ecological construction in the dry valley and also the important requirement of the national and regional ecological construction.
     Therefore,many scientific researches to restore the vegetation and control the ecological degradation were carried out in the past and the method afforestation with site-preparation to restore and rehabilitate the vegetation has long been used in the dry valley.The pattern of vegetation restoration "preserved belts alternating with sylvicultural belts along contours and afforestation in sylvicultural belts after the site-preparation of level trench" was broadly applied into ecological restoration in the dry valley of the middle reaches of Yuanjiang River,the middle and lower reaches of Jinshajiang River and the upper reaches of Minjiang River and also the ecological engineering of China.But due to lack of inspection and evaluation on long-term effects of afforestation with site-preparation,it has not been fully understood that,under the condition of harsh climate and poor soil of the dry valley,whether or not it was a promising measure in promoting vegetation development and improving the ability of water conservation of soil.The evaluation on long-term effects of traditional afforestation facilitates understanding the possibility and capability of restoration of the dry valley and provides the academic support and practical foundation for restoring and rehabilitating the vegetation in the dry valley and protecting the dry valley rationally and effectively.
     Aim and Methods:We chose the survival and growth of planted trees Cupressus chengiana S. Y.Hu and other trees,vegetation cover and soil water-physical property as the indices of evaluation on long-term effects of afforestation in the dry valley with considerations as follows.Firstly,C. chengiana was long considered as a perfect drought-resistance tree and planted in a large area. Meanwhile,heightening the vegetation cover was one of the most important objectives of vegetation restoration and rehabilitation in the dry valley and the vegetation cover closely correlated with community biodiversity and the ability of water conservation of soil and other ecological services.At last,the soil water was a dominant factor that limited the transformation of potential fertility of soil into actual fertility and affected the growth and distribution of the vegetation.
     The present study aiming at evaluating ecological effects of afforestation by planting a native trees(C.chengiana ) with site-preparation of contour trench was conducted at 26 sample plots with different planting years(7-24 a) at 10 afforestation demonstration areas in the dry valley of Minjiang River in Maoxian County,Sichuan,Southwestern China.We investigated the survival and growth of planted trees C.chengiana and other trees(conservation rate,height and tree ring growth process,canopy coverage,biomass allocation and fecundity),vegetation coverage(in its totality, tree,shrub,herb,lichen/moss,and litter) and soil physical properties(natural moisture capacity,soil bulk density,saturated moisture capacity,capillary moisture capacity,total porosity,and capillary porosity) in preserved and sylvicultural belts.We also analyzed the impact of the spatial-temporal pattern(altitude,aspect,slope and afforestation time) on vegetation restoration.
     Important findings:1) There was still a high mortality of planted trees C.chengiana during 7~16 years after afforestation.The percentage of all survival trees gradually decreased with time, and only 38%trees were alive at 16 years after afforestation.
     2) The tree ring growth of planted trees C.chengiana was analysed by stem analysis with tree ring measurement(WinDENDRO~(TM)2002b).It was found that,the tree ring growth of planted trees C.chengiana first gradually increased and then gradually decreased in 82%of sample plots,and at 5~15 years after trees C.chengiana were planted the significant decline for tree ring growth had been observed.The long-term trend of tree ring growth was fitted by non-linear trend model including Linear,Logarithmic,Inverse,Quadratic,Cubic,Power,Compound,S,Logistic,Growth and Exponential Model with or without constant.The result was that the Quadratic Model y =b_1x +b_2x~2 without constant could fit the tree ring growth of planted trees C.chengiana well in 95%of sample plots(p<0.001).b_1 in the equation ranged from 0.0494 to 1.1323,and b_2 from -0.0019 to -0.1049;"y" was the width of tree ring(mm) and "x" the growth years(a).
     3) The height growth of age classes was compared by One-Way ANOVA in SPSS 12.0.And it was found that,the height growth of planted trees C.chengiana also first gradually increased and then gradually decreased in 68%of sample plots and at 5~19 years after trees C.chengiana were planted the significant decline for annual height increment had been observed.In addition,in 14% of sample plots,the height growth of planted trees C,chengiana gradually decreased with time.
     4) By the research on biomass of planted trees C.chengiana,we found that the ratio of underground biomass to aboveground biomass of planted trees C.chengiana varied from 0.12 to 0.29.The fine root(D<0.5cm) and the leaf,which respectively functioned as nutrient absorber and photosynthesis plant,accounted for a small percentage of total biomass.The stem biomass was over 30%of total biomass and the largest part.The leaf and branch biomass followed.In all kinds of root,the stump biomass was the largest one,but its percentage in total biomass was smaller than percentages of any parts of aboveground.The biomass increment of C.chengiana planted in different time ranged from 0.011 kg to 1.335 kg.
     5) The ten-year C.chengiana which was planted before 8 years had born fruit in advance.
     The 1) to 5) results clearly suggested that planted trees C.chengiana were under stress even they could survive and they could not grow well in the present condition of dry valley.So the planted trees C.chengiana had been in the phase of growth decline earlier compared with the natural C.chengiana.C,chengiana was not the ideal tree species that could be applied into the vegetation restoration and afforestation in the dry valley of Minjiang River.
     6) By the comparison of vegetation covers of sylvicultural belts in sample plots of different afforestation time with One-Way ANOVA in SPSS 12.0,we found that the tree and litter cover increased with time,while the shrub and herb cover decreased;total vegetation cover and lichen/ moss cover did not changed significantly.Compared with those in preserved belts by Independent-Samples T Test in SPSS 12.0,total vegetation cover,shrub cover,herb cover,and lichen/moss cover in sylvicultural belts were significantly lower.Thus,afforestation with the site-preparation of contour trench could not accelerate the vegetation development effectively.
     7) The water-physical properties of soil in sylvicultural belts were worse than those in preserved belts,which was the result of Independent-Samples T Test by SPSS 12.0.Afforestation with the site-preparation of contour trench could not improve the ability of water conservation of soil effectively.Natural moisture capacity,saturated moisture capacity,capillary moisture capacity, total porosity of sylvicultural belts were lower than those of preserved belts,and soil bulk density and capillary porosity in sylvicultural belts were larger than those in preserved belts.
     8) The impacts of the spatial-temporal pattern on the survival of planted trees,the growth of planted trees C.chengiana,the vegetation development of preserved belts and sylvicultural belts, the relative decrease ratio of vegetation cover,and the soil quality of preserved belts and sylvicultural belts were analysed by Canonical Correlation Analysis in R 2.9.0 for Windows.It was found that,the percentage of all survival trees and annual diameter increment of planted trees C. chengiana decreased with time.Vegetation and soil quality in preserved belts and sylvicultural belts had been degraded.The vegetation in the sites of high altitude,shade aspect or small slope was good,and the soil quality in the sites of high altitude or sunny aspect was high.
     Conclusion and Suggestion:We concluded that planting native tree C.chengiana with the site-preparation of contour trench failed to achieve the expectant result for vegetation restoration.In the long term(7-24 a),planted trees C.chengiana could not adapt to the existing soil and climate condition in the dry valley.Its survival percentage was low and gradually decreased with time. Both its tree ring(diameter) growth and height growth declined.And planted trees C.chengiana had born fruit in advance.Meanwhile,afforestation with the site-preparation of contour trench could not effectively accelerate vegetation development and improve the ability of water conservation of soil and even decreased the vegetation cover and worsen the soil quality in sylvicultural belts.Therefore,afforestation with site-preparation could not achieve the expectant aim of vegetation restoration and even induce ecological degradation in the dry valley of Minjiang River.So we suggested that afforestation with site-preparation of contour trench was not a promising measure for ecological restoration.
     The present status of water resources should be primarily considered in the process of vegetation restoration in the dry valley.Afforestation with intensive site-preparation and planting trees of high transpiration would aggravate the drying of soil and go against vegetation development and tree growth.Considering the competition among plants and the low soil water, anthropogenic intervene should be used carefully and the research on soil water should be further and deeper carried out.In the future,anthropogenic disturbances of intensive site-preparation should be avoided and native shrub and herb should be considered as objective plant after the impact factors and the mechanism of vegetation restoration were understood in the process of vegetation restoration in the dry valley.By accelerating the natural vegetation development,the vegetation cover and the soil quality could be heightened and the good and interactive development of vegetation and soil would be achieved.
引文
[1]SER(Society for Ecological Restoration & Policy Working Group).The SER Primer on Ecological Restoration.2002
    [2]彭少麟.恢复生态学与植被重建.生态科学,1996,15(2):26-31
    [3]任海,彭少麟,陆宏芳.退化生态系统恢复与恢复生态学.生态学报,2004,24(8):1756-1764
    [4]彭少麟.退化生态系统恢复与恢复生态学.中国基础科学,2001,(3):18-24
    [5]彭少麟,陆宏芳.恢复生态学焦点问题.生态学报,2003,23(7):1249-1257
    [6]Truman P.Young.Restoration Ecology and Conservation Biology.Biological Conservation,2000,(92):73-83
    [7]张厚华,傅德志,孙谷畴.森林植被恢复重建的理论基础.北京林业大学学报,2004,26(1):97-99
    [8]温仲明,焦锋,卜耀军 等.植被恢复重建对环境影响的研究进展.西北林学院学报,2005,20(1):10-15
    [9]徐嵩龄.采矿地的生态重建和恢复生态学.科技导报,1994,3:49-51,16
    [10]John Box.Setting Objectives and Defining Outputs for Ecological Restoration and Habitat Creation.Restoration Ecology,1996,4(4):427-432
    [11]John Cairns Jr.Setting Ecological Restoration Goals for Technical Feasibility.Ecological Engineering,2000,(15):171-180
    [12]Maria C,Ruiz-Ja(?)n,T.Mitchell Aide et al.Vegetation Structure,Species Diversity,and Ecosystem Processes as Measures of Restoration Success.Forest Ecology and Management,2005,(218):159-173
    [13]Eric S.Higgs.What is a good restoration?.Conservation Biology,1997,11(2):338-348
    [14]Yong Gao,Guo Yu Qiu,Hideyuki Shimizu et al.A 10-Year Study on Techniques for Vegetation Restoration in a Desertified Salt Lake Area.Journal of Arid Environments,2002,(52):483-497
    [15]R.Foroughbakhch,M.A.Alvarado-V(?)zquez,J.L.Hern(?)ndez-Pi(?)ero et al.Establishment,growth and biomass production of 10 tree woody species introduced for reforestation and ecological restoration in northeastern Mexico.Forest Ecology and Management,2006,(235):194-201
    [16]Peter Z.Ful(?),Daniel C.Laughlin,W.Wallace Covington.Pine-oak forest dynamics five years after ecological restoration treatments,Arizona,USA.Forest Ecology and Management, 2005,(218):129-145
    [17]孔维静,郑征.岷江上游茂县退化生态系统及人工恢复植被地上生物量及净初级生产力.山地学报,2004,22(4):445-450
    [18]项文化,田大伦,闰文德 等.杉木林采伐迹地撂荒后植被恢复早期的生物量与养分积累.生态学报,2003,23(4):695-702
    [19]何海,乔永康,刘庆等.亚高山针叶林人工恢复过程中生物量和材积动态研究.应用生态学报,2004,15(5):748-752
    [20]漆良华,彭镇华,张旭东 等.退化土地植被恢复群落物种多样性与生物量分配格局.生态学杂志,2007,26(11):1697-1702
    [21]高英志,汪诗平,韩兴国 等.退化草地恢复过程中土壤氮素状况以及与植被地上绿色生物量形成关系的研究.植物生态学报,2004,28(3):285-293
    [22]曹成有,蒋德明,阿拉木萨 等.小叶锦鸡儿人工固沙区植被恢复生态过程的研究.应用生态学报,2000,11(3):349-354
    [23]周厚诚,任海,彭少麟.广东南澳岛植被恢复过程中的群落动态研究.植物生态学报,2001,25(3):298-305
    [24]李裕元,邵明安.子午岭植被自然恢复过程中植物多样性的变化.生态学报,2004,24(2):252-260
    [25]石胜友,尚进,田海燕 等.缙云山风灾迹地常绿阔叶林生态恢复过程中优势种群分布格局和动态.武汉植物学研究,2003,21(4):321-326
    [26]沈泽昊,金义兴.米心水青冈林采伐地的早期植被恢复和土壤环境动态.植物生态学报,1995,19(4):375-383
    [27]G.B.De Deyn,C.E.Raaijmakers,W.H.Van Der Putten.Plant community development is affected by nutrients and soil biota.Journal of Ecology,2004,(92):824-834
    [28]Y.Y.Li,M.A.Shao.Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China.Journal of Arid Environments,2006,(64):77-96.
    [29]谢宝平,牛德奎.华南严重侵蚀地植被恢复对土壤条件影响的研究.江西农业大学学报,2000,22(1):135-139
    [30]陈奇伯,王克勤,李艳梅 等.金沙江干热河谷不同类型植被改良土壤效应研究.水土保持学报,2003,17(2):67-70,113
    [31]张俊华,常庆瑞,贾科利 等.黄土高原植被恢复对土壤肥力质量的影响研究.水土保持学报,2003,17(4):38-41
    [32]安韶山,刘梦云,李壁成 等.宁南山区不同植被恢复措施的土壤养分效应研究.西北植物学报,2003,23(8):1429-1432
    [33]Nan C.Vance,James A.Entry.Soil properties important to the restoration of a Shasta red fir barrens in the Siskiyou Mountains.Forest Ecology and Management,2000,(138):427-434
    [34]黄懿梅,安韶山,曲东等.黄土丘陵区植被恢复过程中土壤酶活性的响应与演变.水土保持学报,2007,21(1):152-155
    [35]R.S.Smith,R.S.Shiel,R.D.Bardgett,et al.Long-term change in vegetation and soil microbial communities during the phased restoration of traditional meadow grassland.Journal of Applied Ecology,2008,(45):670-679
    [36]I.Izquierdo,F.Caravaca,M.M.Alguacil,et al.Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions.Applied Soil Ecology,2005,(30):3-10
    [37]王海英,宫渊波,陈林武等.不同植被恢复模式下土壤微生物及酶活性的比较--以嘉陵江上游地区为例.长江流域资源与环境,2006,15(2):201-206
    [38]贾晓红,李新荣,李元寿.干旱沙区植被恢复中土壤碳氮变化规律.植物生态学报,2007,31(1):66-74
    [39]李裕元,邵明安,郑纪勇 等.黄土高原北部草地的恢复与重建对土壤有机碳的影响.生态学报,2007,27(6):2279-2287
    [40]张荣祖.横断山区干旱河谷.北京:科学出版社,1992,6-9,20-23
    [41]包维楷,陈庆恒,陈克明.岷江上游干旱河谷植被恢复环境优化调控技术研究.应用生态学报,1999,10(5):542-544
    [42]陈安勇.岷江上游地区水土保持的特别重要性及战略措施.农村经济,1998,(1):65-69
    [43]吴宁,刘庆 等.山地退化生态系统的恢复与重建--理论与岷江上游的实践.成都:四川科学技术出版社,2007,1,19,180、193、199-200
    [44]包维楷,陈庆恒,刘照光.岷江上游山地生态系统的退化及其恢复与重建对策.长江流域资源与环境,1995,4(3):277-282
    [45]张谊光,陈纪卫,徐渝江.我国西南干旱河谷农业气候资源的分类与合理利用.资源科学,1989,(3):1-6
    [46]张一平,张昭辉,何云玲.岷江上游气候立体分布特征.山地学报,2004,22(2):179-183
    [47]汤宗祥,郭永明.岷江上游褐土类型与发生特征研究.西南农业大学学报,1993,(3)
    [48]王春明,包维楷,陈建中等.岷江上游干旱河谷区褐土不同亚类剖面及养分特征.应用与环境生物学报,2003,9(3):230-234
    [49]王春明.岷江上游干旱河谷土壤肥力的垂直变化[硕士学位论文].重庆:西南农业大学,2001.23-45
    [50]何其华,何永华,包维楷.岷江上游干旱河谷典型阳坡海拔梯度上土壤水分动态.应用与环境生物学报,2004,10(1):68-74
    [51]岳永杰,慕长龙,刘兴良 等.岷江上游干旱河谷区坡面尺度土壤贮水特性研究.干旱 区资源与环境,2008,22(10):360-364
    [52]冶民生,关文彬,谭辉 等.岷江干旱河谷灌丛α多样性分析.生态学报,2004,24(6):1123-1130
    [53]王红梅.岷江干旱河谷典型阳坡土壤质量动态与评估[硕士学位论文].北京:中国科学院研究生院,2008.65-67
    [54]刘伦辉.横断山区干旱河谷植被类型.山地研究,1989,7(3):175-182
    [55]刘文彬.岷江上游半干旱河谷灌丛植物区系.山地研究,1992,10(2):83-89
    [56]刘文彬.岷江上游半干旱河谷游丛的主要类型.山地研究,1994,12(1):27-31
    [57]关文彬,冶民生,马克明等.岷江干旱河谷植被分类及其主要类型.山地学报,2004,22(6):679-686
    [58]刘国华,马克明,傅伯杰 等.岷江干旱河谷主要灌丛类型地上生物量研究.生态学报,2003,23(9):1757-1764
    [59]关文彬,冶民生,马克明 等.岷江干旱河谷植物群落物种周转速率与环境因子的关系.生态学报,2004,24(11):2367-2373
    [60]冶民生,关文彬,吴斌 等.岷江干旱河谷植物群落的复杂性.生态学报,2006,26(10):3159-3165
    [61]张文辉,卢涛,马克明 等.岷江上游干旱河谷植物群落分布的环境与空间因素分析.生态学报,2004,24(3):552-559
    [62]冶民生,关文彬,白占雄 等.岷江干旱河谷植物群落生态梯度分析.中国水土保持科学,2005,3(2):70-75
    [63]周志琼,包维楷,吴福忠 等.岷江干旱河谷多苞蔷薇生长与繁殖特征.应用生态学报,2007,18(7):1407-1413
    [64]包维楷,王春明.岷江上游山地生态系统的退化机制.山地学报,2000,18(1):57-62
    [65]胡志斌,何兴元,李月辉 等.岷江上游地区人类活动强度及其特征.生态学杂志,2007,26(4):539-543
    [66]刘庆,乔永康,吴宁 等.岷江上游山地生态系统退化机理研究的核心--关键种群的作用.长江流域资源与环境,2002,11(3):274-278
    [67]黎燕琼,陈泓,郑绍伟 等.岷江干旱河谷几种乔木抗旱性研究.四川林业科技,2006,27(6):24-29
    [68]郑绍伟,黎燕琼,岳永杰 等.岷江上游干旱河谷造林技术试验研究.四川林业科技,2007,28(1):56-59,70
    [69]岳永杰,郑绍伟,黎燕琼 等.岷江上游干旱河谷区人工幼林生物量与生产力研究.四川林业科技,2008,29(2):25-29
    [70]吴宗兴,刘千里,黄泉 等.干旱地带辐射松整地造林研究.四川林业科技,2006,27 (2):11-16
    [71]吴宗兴.岷江上游干旱河谷试验林经营技术研究.四川林业科技,1993,14(2):50-53
    [72]王春明,孙辉,陈建中 等.保水剂在干旱河谷造林中的应用研究.应用与环境生物学报,2001,7(3):197-200
    [73]吴宗兴,慕长龙,刘福云 等.岷江上游干旱河谷山杏幼林地绿肥种植研究.干旱区研究,2004,21(4):395-398
    [74]吴宗兴,周永丽,干少雄 等.干旱地带侧柏幼林地绿肥种植研究.四川林业科技,2005,26(4):24-28
    [75]吴福忠.干旱胁迫与施N条件下白刺花(Sophora davidii)幼苗生长及其适应机制[博士学位论文].北京:中国科学院研究生院,2008.93-95
    [76]吴宗兴,刘千里,黄泉 等.岷江上游干旱河谷辐射松引种造林研究.四川林业科技,2005,26(3):2-10
    [77]杨兆平,常禹,布仁仓 等.岷江上游干旱河谷区域空间变化的定量判定.生态学报,2007,27(8):3250-3256
    [78]中国人民共和国国务院.《国家中长期科学和技术发展规划纲要(2006-2020年)》.2006年02月09日
    [79]袁志忠,包维楷,何丙辉.川西地区岷江柏种群生命表与生存分析.云南植物研究,2004,26(4):373-381
    [80]孟宪宇.测树学.北京:中国林业出版社,1996,188-216
    [81]吕晓涛,唐建维,何有才 等.西双版纳热带季节雨林的生物量及其分配特征.植物生态学报,2007,31(1):11-22
    [82]吴祥定.树木年轮与气候变化.北京:气象出版社,1990
    [83]李江风,由希尧,袁玉江.树木年轮水文学研究与应用.北京:科学出版社,2000,33-39,55-133
    [84]何海.使用WinDENDRO测量树轮宽度及交叉定年方法.重庆师范大学学报(自然科学版),2005,22(4):39-44
    [85]Daniel P.Bebber,Sean C.Thomas,William G.Cole,David Balsillie.Diameter increment in mature eastern white pine Pinus strobus L.following partial harvest of old-growth stands in Ontario,Canada.Trees,2004,18:29-34
    [86]卢纹岱等.SPSS for Windows统计分析.北京:电子工业出版社,2006,173-179,190-202,312-214,417-447
    [87]白昆声,吴中北,梅炯杰 等.岷江柏木调查研究.中南林业调查规划,1990(2):43-49
    [88]Huston M A,Smith TM.Plant succession:life history and competition.American Naturalist, 1987,130(2):168-198
    [89]Tilman D.Plant strategies and the structure and dynamics of plant communities.Princeton:Princeton University Press,1988,52-97
    [90]Fleming RL,Black TA,Eldridge NR.Effects of site preparation on root zone soil water regimes in high-elevation forest clearcuts.Forest Ecology and Management,1994,68(2-3):173-188
    [91]庞学勇,包维楷.岷江柏各地理居群生长状况及气候因子分析.生态环境,2005,14(4):466-472
    [92]周志琼,包维楷,吴福忠 等.岷江干旱河谷黄蔷薇(Rosa hugonis)生长与繁殖特征及其空间差异.生态学报,2008,28(4):1820-1828
    [93]宋永昌.植被生态学.上海:华东师范大学出版社,2001,549-588
    [94]马克平,黄建辉,于顺利 等.北京东灵山地区植物群落多样性的研究:Ⅱ丰富度、均匀度和物种多样性指数.生态学报,1995,15(3):268-277
    [95]Diemont SAW,Martin JF,Levy-Tacher SI et al.Lacandon Maya forest management:restoration of soil fertility using native tree species.Ecological Engineering,2006,28(3):205-212
    [96]中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1978,1-5,508-513,522-525
    [97]鲁如坤 等.土壤农业化学分析方法.北京:中国农业科学出版社,2000,269-271
    [98]刘光崧 等.土壤理化分析与剖面描述.北京:中国标准出版社,1996,1-4,96-116
    [99]张万儒,杨光滢,屠星南 等.LY/T 1215-1999.森林土壤水分-物理性质的测定.北京:中国标准出版社,1999.21-24
    [100]刘文耀,刘伦辉,邱学忠 等.云南南涧干热退化山地水分调蓄与植被恢复途径的试验研究.自然资源学报,1995,10(1):35-42
    [101]杨忠,庄泽,秦定懿 等.元谋干热河谷水保林营造技术研究.水土保持通报,1999,19(1):38-42
    [102]杨忠,张信宝,王道杰 等.金沙江干热河谷植被恢复技术.山地学报,1999,17(2)152-156
    [103]李昆,侯开卫,张志钧 等.云南南涧干热区极度退化山地的造林技术.林业科学研究,1998,11(2):208-213
    [104]张信宝,陈玉德.云南元谋干热河谷区不同岩土类型荒山植被恢复研究.应用与环境生物学报,1997,3(1):13-18
    [105]周麟.云南元谋干热河谷植被恢复初探.西北植物学报,1998,18(3):450-456
    [106]Querejeta,Rold(?)n A,Albaladejo J,Castillo V.Soil water availability improved by site preparation in a Pinus halepensis afforestation under semiarid climate.Forest Ecology and Management,2001,(149):115-128
    [107]Sutinen R,P(a|¨)ntt(a|¨)j(a|¨) M,Teiril(a|¨) A,Sutinen M.Effect of mechanical site preparation on soil quality in former Norway spruce sites.Geoderma,2006,(136):411-422
    [108]刘长利,孙美清,王庆禄.石质山地造林整地技术的研究.林业科学,1989,25(3):263-267
    [109]徐化成.关于人工林的地力下降问题.世界林业研究,1992,5(1)66-73
    [110]马祥庆,刘爱琴,何智英 等.整地方式对杉木人工林生态系统的影响.山地学报,2000,18(3):237-243
    [111]潘开文,刘照光,陈庆恒.保留带与造林带的小气候和水分比较研究.应用与环境生物学报,1998,4(3):298-304
    [112]袁志发,周静芋.多元统计分析.北京:科学出版社,2002,172-180
    [113]薛毅,陈立萍.统计建模与R软件.北京:清华大学出版社,546-557
    [114]潘开文,刘照光,陈庆恒.保留带与造林带水土和养分再分配效应.应用与环境生物学报,1999,5(6):551-556

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700