水蚀风蚀交错带植被恢复对土壤质量的影响与植物生理生态适应性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原水蚀风蚀交错带生态环境脆弱,土壤侵蚀严重,是黄河粗泥沙的主要来源区。合理的植被恢复措施对于该区退化生态系统的恢复与重建具有重要的意义。本研究以该区不同生境的植物—土壤系统为研究对象,采用野外调查和室内分析相结合的方法,研究了植被恢复过程中地上植被特征和土壤种子库特征,阐明了植被恢复对土壤质量的影响,分析了植物水分和光合生理生态适应性。本论文取得如下主要结论:
     (1)阐明了植被恢复过程中地上植被物种组成和多样性变化。地上植被以菊科、禾本科和豆科植物为主,共占物种总数的76%。从生活型来看,主要以多年生草本植物为主,占物种总数的64%。植被演替过程可分为三个阶段:演替初期(1-3a)主要以猪毛蒿、猪毛菜等一年生植物为主;接着草木樨状黄耆成为群落的主要物种,糙隐子草、达乌里胡枝子等为主要的伴生物种;15a以后群落优势种更替为长芒草,而后随着植被演替过程的进行,长芒草群落的建群种地位一直没有发生变化。丰富度指数随恢复年限的增加其变化趋势不很明显,Shannon-wiener指数和均匀度指数均随恢复年限的增加呈现一定的上升趋势,而生态优势度却呈现下降的趋势。说明随着植被演替进展,群落的组成结构趋向均匀和稳定。
     (2)研究了土壤种子库特征及其对植被恢复的影响。土壤种子库密度范围为105~6 301粒·m-2,平均密度为2 095±448粒·m-2 ;土壤种子库具有明显的垂直分布格局,0-5 cm土层种子库密度大于5-10 cm,且占土壤种子库总密度的72%。土壤种子库主要以猪毛蒿、画眉草等演替早期的物种为主,占土壤种子库总密度的62.18%(分别为41.37%和20.81%),而演替后期物种即目标种却较缺乏。土壤种子库和地上植被的物种数目接近,但其物种种类和功能群组成有一定的差异。二者的相似性总体上较低,其相似性系数变化于0~0.667。土壤种子库的物种多样性指数随恢复年限的变化趋势与地上植被的相似。上述结果表明,土壤种子库在植被演替前期具有重要的作用,但是在演替后期贡献较小。土壤种子库在植被恢复中的潜力较小,植被恢复还需要适度的人为干预。
     (3)阐明了退耕地植被演替对土壤质量的影响。>0.25 mm团聚体破坏率随恢复年限的增加呈下降趋势;>0.25 mm水稳性团聚体含量和平均质量直径(MWD)均随恢复年限的增加呈上升趋势。这说明了植被恢复过程中,土壤结构稳定性有所增强。0-200 cm和200-500 cm土层平均土壤含水量随恢复年限的增加呈现先减少而后又有所增加的趋势。在500 cm土壤水分剖面内,随土层深度的变化土壤含水量具有较大的波动。随着恢复年限的增加,土壤有机质、全氮、碱解氮和速效磷含量表现出先减少后增加的非正“U”型变化;且它们随土层深度的增加而减少。土壤真菌、细菌和放线菌数量与土壤化学性质随恢复年限增加的变化规律相似。退耕地微生物区系以细菌类群占绝对优势,占微生物总数的70%以上,其次为放线菌,真菌数量最少。不同恢复年限的蔗糖酶、脲酶和碱性磷酸酶活性的变化趋势也与土壤化学性质相似。过氧化氢酶活性随恢复年限增加的变化规律不明显。
     (4)比较了不同植被类型间土壤质量因子的差异。农地和柠条林地的土壤结构和稳定性较好。0-500 cm土层土壤含水量平均值基本都小于10%,其排序为:农地(10.53%)>柠条灌木地(9.46%)>退耕地(8.31%)>油松林地(8.21%)>小叶杨疏林地(4.50%)>沙蒿地(3.97%)≈刺槐林地(3.95%)。不同植被类型的土壤养分含量、酶活性和微生物数量基本上均表现为刺槐和农地较高,柠条和小叶杨疏林较低。
     (5)通过敏感性分析、主成分分析和相关分析确立了土壤质量评价最小数据集,定量评价了植被恢复对土壤质量的影响。土壤质量评价指标最小数据集为有机质、速效磷、蔗糖酶和真菌,其能够反映综合评价指标的信息,评价结果具有较好的代表性。土壤质量综合评价表明,随着恢复年限的增加,土壤质量综合指数表现为演替的前15a呈现下降趋势,15a后开始呈现增加的趋势,即表现出非正“U”型变化。就不同植被类型而言,研究区土壤质量的排序为:刺槐林地>农地>退耕草地>油松林地>沙蒿地>柠条灌木地>小叶杨疏林地,这在一定程度上反映了人工培肥土壤的有效作用。总体而言,研究区土壤质量仍属于较低水平。
     (6)分析了植物水分生理生态适应性。叶片渗透势的变化范围为-1.9 MPa(苦菜)~-4.3 MPa(恢复年限为40a退耕地的长芒草)。70%的物种集中在-4.0~-3.0 MPa范围内。就生活型而言,一年生草本植物的渗透势显著大于灌木、乔木和多年生草本(P<0.05),而多年生植物间渗透势值的差异较小,其排序为灌木(-3.483MPa)<乔木(-3.384MPa)<多年生草本植物(-3.287Mpa)<一年生草本植物(-2.469MPa)。这说明多年生植物可能比一年生草本植物从土壤环境中吸收水分的能力强。叶片渗透势和叶片含水量随恢复年限的增加呈显著的下降趋势。这在一定程度上表明拥有较低渗透势的植物在植被演替的物种竞争中具有一定的优势,植被演替后期物种对研究区干旱环境具有较强适应性。长芒草、达乌里胡枝子和草木樨状黄耆的叶片渗透势随恢复年限的增加也均呈现显著下降趋势,这种种间差异是由植物的表型可塑性引起的,反映了物种对环境的适应。
     (7)分析了植物光合生理生态适应性。不同生境植物的光合特征和叶片结构特征的种间差异较大,这可能是植物长期适应生态环境的结果,同时也与其本身固有的遗传特性有关。在物种水平上,最大光合速率(Pmax)、光合氮素利用效率(PNUE)和比叶面积(SLA)随恢复年限的增加呈显著下降趋势,而水分利用效率(WUE)、叶氮含量(Nmass)与恢复年限相关关系不显著。在群落水平上,除SLA与恢复年限的相关性不显著以外,其它指标皆与物种水平的变化趋势一致。研究区物种的Pmax与WUE、PNUE、Nmass呈显著正相关(P <0.05),而与SLA的相关关系不显著。PNUE与WUE、SLA呈显著正相关(P <0.001),而与Nmass的相关性不显著;物种的Nmass与SLA呈显著正相关(P <0.001)。同其它地区相比,研究区物种的Pmax、PNUE和SLA较低。具有较低Pmax、PNUE和SLA的物种可能更适宜研究区土壤贫瘠的生境。
Ecological environment is fragile in water-wind erosion region where soil erosion is very serious. And this region is the main source of the coarse sediments of the Yellow River. Sound vegetation restoration measures are of importance to the vegetation restoration of degraded ecosystem in the study area. Vegetation-soil systems in different habitats were studied using the field survey and laboratory experiment. In detail, characteristics of standing vegetation and soil seed bank during vegetation restoration were identified. The effects of vegetation restoration on soil quality and water and photosynthesis physio-ecological adaptability were clarified. These results are helpful to reveal the interactional mechanism between vegetation and soil quality and provide theoretical basis for vegetation restoration and reconstruction in water-wind erosion region on the Loess Plateau. The main conclusions are as follows:
     (1) Species composition and species diversity of communities during vegetation restoration were clarified. Standing vegetation was dominated by Compositae, Gramineae and Leguminocae species, which accounted for 76% of total species numbers. For life forms, perennial hebaceous plants were dominant, which occupied 64% of total species numbers. Vegetation succession process was classified three stages.The dominant species were annuals of Artemisia scoparia and Salsola ruthenica in the.first stage; Astragalus melitoloides in the second stage; Stipa bungeana in the three stages (after 15a). And the role of Stipa bungeana as constructive species remanined unchanged with vegetation succession after 15a. There was no obvious tendency in richness index. Shannon-wiener and evenness index increased, while ecological dominance declined with increased years. The results indicated that species composition of community becomed even and stable along with vegetation succession.
     (2) Characteristic of soil seed bank and its effect on vegetation restoration were studied. The results showed that density of soil seed bank ranged from 105 to 6 301 seeds m-2 with an average of 2 095±448 seeds m-2. Soil seed bank had vertical distribution pattern that seed density at 0-5 cm depth (accounting for 72%) was greater than that at 5-10 cm depth. The seed bank was mainly composed of early successional species such as Artemisia scoparia and Eragrostis pilosa and their dentities accounted for 72% of total density (41.37% and 20.81%, respectively). Species of the later successional stages (i.e. target species) were absent. Similarity between seed bank and standing vegetation was low in the whole. Their Sorensen similarity coefficient ranges from 0 to 0.667. The tendency of diversity with increased years was consistent with the standing vegetation. The results suggested that seed bank plays an important role on vegetation in the early succession stage, while contributes little in the later succession stages. Potential for vegetation restoration from soil seed banks is limited and it is recommended to employ morderate human intervention to accelerate succession.
     (3) Impact of vegetation succession of abandoned croplands on soil quality was clarified.The results showed that content of >0.25 mm soil water stable aggregate and MWD increased, while destruction rate of >0.25 mm soil water stable aggregate decreased with increased years, suggesting that soil structure stability increase during vegetation restoration. Soil water content at 0-200 cm and 200-500 cm depth showed the trend of a decrease at the inital stage but then an increase. Soil water content distribution in the 500 cm soil profile showed a great fluctuation. Soil organic matter, total N, available N and available P demonstrated a trend of a drease at the initial stage but then an increase, i.e. partially“U”shape. They decreased with increasing depth in the soil profile. The trend of quantity of fungi, bacteria and actinomyces with increased years was similar to the soil chemical properties. Soil microflora in abandoned croplands was maily composed of bacteria accounting for more than 70% followed by actinomyces and fungi. The trends of soil invertase, urease and alkaline phosphates with increased years were consistent with the soil chemical properties. But soil catalase had no obvious trend with them.
     (4) Soil quality factors of different vegetation types were compared. The results showed that soil structure and stability of cropland and Caragana korshinskii land were better than other types. The mean soil water contents of different vegetation types were less than 10% at 0-500cm depth. They were ranked as follows: cropland (10.53%) > Caragana korshinskii land (9.46%) > abandoned cropland (8.31%) > Pinus tabulaeformis forestland (8.21%) > Populus simonii forestland (4.50%) > Artemisia desertorum land (3.97%)≈Robinia pseudoacacia forestland (3.95%). The soil nutrients, enzyme activities and microorganisms of Robinia pseudoacacia forestland and cropland were higher, while those of Caragana korshinskii land and Populus simonii forestland were lower in the whole.
     (5) A Minimum Data Set (MDS) for soil quality assessment was established by the methods of sensitivity analysis, principal components analysis and correlation analysis. Effects of succession stages and different vegetation types on soil quality were quantitatively evaluated based on integrated indictors and MDS. The results showed that MDS included soil organic matter content, available phosphorus, invertase activity and fungi. Established MDS could reflect the information of integrated indicators and results of assessment were of better representative. The trend of integrated fertility index (IFI) changes was partially“U”shape, namely, showing a decrease in 15 years following abandonment, but an increase after 15 years. Considering different vegetation types, the values of IFI ranked in the order: Robinia pseudoacacia forestland>cropland>abandoned farmland>Pinus tabulaeformis forestland>Artemisia desertorum land>Caragana korshinskii land>Populus simonii forestland. This reflected human activity could improve soil quality to some extent. Conclusively, soil quality level in the study area was low.
     (6) Plant water physio-ecological adaptability was analyzed. The results show that the values of leaf osmotic potential (ψs) ranged from -1.9 MPa in Sonchus oleraceus to -4.3 MPa in Stipa bungeana in the 40-year abandoned croplands; 70% of all species fell in the range from -4.0 MPa to -3.0 MPa. Considering life forms, annual herbs had significantly higherψs than trees, shrubs and perennial herbs (P<0.05), whileψs differed little for trees, shrubs and perennial herbs. The trend ofψs variation among lifeforms was shrubs (-3.483MPa)      (7) Plant photosynthesis physio-ecological adaptability was analyzed. The results showed that large inter-species differences existed in all habitats, probably reflecting the adaptation of species to the environment and strong influence of their genetic nature. At the species level, the maximum photosynthesis rate (Pmax), photosynthetic nitrogen use efficiency (PNUE), and specific leaf area (SLA) showed significant decreasing trends as time elapsed since abandonment, while water use efficiency (WUE) and nitrogen content (Nmass) were not significantly correlated to years elapsed since abandonment. At the community level, the trends were consistent with those at the species level except for SLA. Among the plant species in the studied area, Pmax, while not correlated with SLA, was significantly positively correlated with the WUE、PNUE and Nmass(P<0.05); the PNUE, while not correlated with Nmass, was significantly positively correlated with the WUE and SLA(P<0.001); and the Nmass was significantly positively related to SLA (P<0.001). Compared with other studies in other regions, the species in the study area had lower Pmax、PNUE and SLA. Those lower values may be a result of the plant species adapting to infertile soil and harsh habitats of the study area.
引文
1. Alexander. M著.广西农学院农业微生物学教研组译.土壤微生物学导论[M].北京:科学出版社,1983: 1-45
    2.安慧,上官周平.黄土高原植被不同演替阶段优势种的光合生理特性[J].应用生态学报,2007,18(6): 1175-1180
    3.安韶山,黄懿梅,郑粉莉.黄土丘陵区草地土壤脲酶活性特征及其与土壤性质的关系[J].草地学报,2005,13(3):233-237
    4.安韶山,张扬,郑粉莉.黄土丘陵区土壤团聚体分形特征及其对植被恢复的响应[J].中国水土保持科学,2008, 6(2): 66-70
    5.白文娟,焦菊英.黄土丘陵沟壑区退耕地主要自然恢复植物群落的多样性分析[J].水土保持研究,2006, 13(3): 140-142, 145
    6.白文娟,焦菊英,张振国.安塞黄土丘陵沟壑区退耕地的土壤种子库特征[J].中国水土保持科学,2007a, 5(2): 65-72
    7.白文娟,焦菊英,张振国.黄土丘陵沟壑区退耕地土壤种子库与地上植被的关系[J].草业学报,2007b,16(6): 30-38
    8.白文娟,焦菊英,张振国.黄土丘陵沟壑区退耕地土壤种子库对植被恢复的影响[J].北京林业大学学报, 2008, 30(4):70-76
    9.包维楷,刘照光,刘庆.生态恢复重建研究与发展现状及存在的主要问题[J].科技前沿与学术评论,2001,23(1):44-48
    10.勃海峰,刘国彬,王国梁.黄土丘陵区退耕地植被恢复过程中土壤入渗特征的变化[J].水土保持通报,2007, 27(3): 1-5, 31
    11.蔡晓布,钱成,张永清.退化高寒草原土壤生物学性质的变化[J].应用生态学报,2007, 18(8): 1733-1738
    12.查轩,唐克丽.水蚀风蚀交错带小流域生态环境综合治理模式研究[J].自然资源学报,2000,15(1):97-100
    13.常超,谢宗强,熊高明,赵常明,申国珍,赖江山,徐新武.三峡库区不同植被类型土壤养分特征[J].生态学报,2009,29(11):5978-5985
    14.常庆瑞,岳庆玲.黄土丘陵区人工林地土壤肥力质量[J].中国水土保持科学,2008,6(2):71-74
    15.陈拓,冯虎元,徐世建,强维亚,安黎哲.荒漠植物叶片碳同位素组成及其水分利用效率[J].中国沙漠,2002,22(3):288-291
    16.陈小燕.陕北黄土丘陵区植被恢复过程及干预途径研究[D].中国科学院水土保持与生态环境研究中心博士论文.2007
    17.陈英义,李道亮.北方农牧交错带沙尘源植被恢复潜力评价模型研究[J].农业工程学报,2008,24(3):130-133
    18.陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理[M].北京:科学出版社, 1988.
    19.陈智平,王辉,袁宏波.子午岭辽东栎土壤种子库及种子命运研究[J].甘肃农业大学学报, 2005, 40(1): 7-12
    20.程积民,万惠娥,杜峰.黄土高原半干旱区退化灌草植被的恢复与重建[J].林业科学,2001, 37(4): 50-57
    21.程积民,万惠娥,胡相明.黄土高原草地土壤种子库与草地更新[J].土壤学报, 2006, 43(4): 679-683
    22.崔骁勇,杜占池,王艳芬.内蒙古半干旱草原区沙地植物群落光合特征的动态研究[J].植物生态学报,2000,24(5):541-546.
    23.戴全厚.黄土丘陵区侵蚀环境生态恢复过程及健康评价[D].中国科学院研究生院博士论文. 2006
    24.戴全厚,刘国彬,薛萐,翟胜,李小利.侵蚀环境退耕撂荒地水稳性团聚体演变特征及土壤养分效应[J].水土保持学报,2007, 21(2): 61-64, 77
    25.戴全厚,刘国彬,薛萐,兰雪.侵蚀环境退耕撂荒地植被恢复中土壤生物学特性演变[J].贵州农业科学,2008, 36(4): 115-117
    26.董建国,程积民,何增昌.神木试区草场资源现状及评价[J].中国科学院水利部西北水土保持研究所集刊,1993, 18: 119-129
    27.董林水,张旭东,周金星,宋爱云.黄土高原植被恢复前景及策略研究进展[J].科学技术与工程,2006,6(22):3601-3608
    28.董三孝.黄土丘陵区退耕坡地植被自然恢复过程及其对土壤入渗的影响[J].水土保持通报,2004, 24(4): 1-5
    29.董学军.九种沙生灌木水分关系参数的实验测定及生态意义.植物学报, 1998, 40(7): 657-664
    30.杜峰,梁宗锁,徐学选,山仑,张兴昌.陕北黄土丘陵区撂荒草地群落生物量及植被土壤养分效应[J].生态学报,2007, 27(5): 1673-1683
    31.杜峰,山仑,梁宗锁,谭勇.陕北黄土丘陵区撂荒演替过程中的土壤水分效应[J].自然资源学报,2005,20(5):669-678
    32.杜华栋,徐翠红,刘萍,焦菊英,苗芳.陕北黄土高原优势植物叶片解剖结构的生态适应性[J].西北植物学报,2010, 30(2): 0293 -0300
    33.冯秋红,史作民,董莉莉.植物功能性状对环境的响应及其应用[J].林业科学,2008,44(4):125-131
    34.冯秀,仝川,丁勇,张远鸣.土壤种子库在植被恢复与重建中的作用和潜力[J].内蒙古大学学报(自然科学版),2007, 38(1): 102-108
    35.巩杰,陈利顶,傅伯杰,虎陈霞,卫伟.黄土丘陵区小流域植被恢复的土壤养分效应研究[J].水土保持学报,2005, 19(1): 93-96
    36.巩杰,陈利顶,傅伯杰,李延梅,黄志霖,黄奕龙,彭鸿嘉.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J].应用生态学报,2004,15(12):2292-2296
    37.关松荫著.土壤酶及其研究方法[M].北京:农业出版社,1986
    38.郭曼,郑粉莉,安韶山,刘雨,白文娟.黄土丘陵植被恢复过程中土壤种子库萌发数量特征及动态变化[J].干旱地区农业研究.2009, 27(2): 233-238
    39.郭伟,史志华,陈利顶,闫峰陵,李朝霞,蔡崇法.不同湿润速率对三种红壤坡面侵蚀过程的影响[J].土壤学报, 2008,45(1): 26-31
    40.韩丽君,白军科,李晋川,崔艳,岳建英.安太堡露天煤矿排土场土壤种子库[J].生态学杂志, 2007, 26 (6) : 817- 821
    41.何兴东,高玉葆.干旱区水力提升的生态作用[J].生态学报,2003, 23(5): 996-1002
    42.侯庆春.神木试区自然条件及环境整治综合分析[J].中国科学院水利部西北水土保持研究所集刊, 1993, 18: 136-144
    43.侯庆春,韩蕊莲.黄土高原植被建设中的有关问题[J].水土保持通报,2000, 20(2): 53-56
    44.侯喜禄,白岗栓,曹清玉.刺槐、柠条、沙棘林土壤入渗及抗冲性对比试验[J].水土保持学报,1995,9(3): 90-95
    45.胡婵娟,傅伯杰,靳甜甜,刘国华.黄土丘陵沟壑区植被恢复对土壤微生物生物量碳和氮的影响[J].应用生态学报,2009, 20(1): 45-50
    46.胡斌,段昌群,王震洪,张世彪,起联春.植被恢复措施对退化生态系统土壤酶活性及肥力的影响[J].土壤学报,2002, 39(4): 604-608
    47.胡可,邹冬生,吴爱平,徐华勤.不同植被恢复模式对紫色土植被多样性及微生物区系的影响[J].广西农业科学,2009, 40(12): 1570-1573
    48.胡江波,杨改河,张笑培,冯永忠.不同植被恢复模式对土壤肥力的影响[J].河南农业科学,2007, 3: 69-72
    49.胡良军,邵明安.黄土高原植被恢复的水分生态环境研究[J].应用生态学报,2002,13(8): 1045-1048
    50.胡良军.黄土高原植被恢复的土壤水分生态环境[D].西北农林科技大学博士论文.2002
    51.胡启鹏,郭志华,李春燕,马履一.植物表型可塑性对非生物环境因子的响应研究进展[J].林业科学,2008,44(5): 135-142
    52.胡相明,赵艳云,程积民,万惠娥.云雾山自然保护区环境因素对土壤水分空间分布的影响[J].生态学报,2008,28(7):2964-2971
    53.黄昌勇.土壤学[M].北京:中国农业出版社, 2000: 50-64
    54.黄茂林,梁银丽,周茂娟,韦泽秀,吴燕.陕北黄土丘陵沟壑区水土保持耕作及施肥下农田土壤种子库特征[J].生态学报,2009, 27(7): 3987-3994
    55.黄懿梅,安韶山,曲东,赵伟峰.黄土丘陵区植被恢复过程中土壤酶活性的响应与演变[J].水土保持学报,2007,21(1): 152-155
    56.黄懿梅,安韶山,薛虹.黄土丘陵区草地土壤微生物C、N及呼吸熵对植被恢复的响应[J].生态学报,2009, 29(6): 2811-2818
    57.黄忠良,孔国辉,魏平,王俊浩,黄玉佳,张佑昌.南亚热带森林不同演替阶段土壤种子库的初步研究[J].热带亚热带植物学报,1996, 4(4): 42-49
    58.纪万斌主编.塌陷与生态[M].北京:地震出版社, 1996: 55-224
    59.姬兴杰,熊淑萍,李春明,张伟,马新明.不同肥料类型对土壤酶活性与微生物数量时空变化的影响[J].水土保持学报,2008, 22(1): 123-127, 133
    60.贾国梅,王刚,陈芳清.子午岭植被演替过程中土壤生物学特性的动态[J].生态环境,2007, 16(5): 1466-1469
    61.贾恒义,雍绍萍,王富乾.神木试区的土壤资源[J].中国科学院水利部西北水土保持研究所集刊,1993, 18: 36-46
    62.姜培坤,徐秋芳.土壤生物学性质对毛竹粗生长影响的研究[J].生态学杂志,2001, 20(6): 25-28
    63.蒋志荣.沙冬青抗旱机理的探讨[J].中国沙漠, 2000, 20(1): 71-74.
    64.焦峰,温仲明,焦菊英,李锐.黄土丘陵区退耕地土壤养分变异特征[J].植物营养与肥料学报,2005, 11(6): 724-730
    65.焦峰,温仲明,焦菊英,赫晓慧.黄丘区退耕地植被与土壤水分养分的互动效应[J].草业学报,2006, 15(2): 79-84
    66.焦菊英,焦峰,温仲明.黄土丘陵沟壑区不同恢复方式下植物群落的土壤水分和养分特征[J].植物营养与肥料学报,2006, 12(5): 667-674
    67.靳正忠,雷加强,徐新文,李生宇,赵思峰,邱永志,许波.塔里木沙漠公路防护林地土壤肥力质量变化与评价[J].科学通报,2008a,53: 112-122
    68.靳正忠,雷加强,徐新文,李生宇,赵思峰,邱永志,许波,谷峰.沙漠腹地人工绿地土壤微生物变异与土壤环境因子关系的研究[J].中国生态农业学报,2008b, 16(6): 1358-1364
    69.景可,陈永宗,李凤新.黄河泥沙与环境[M ].北京:科学出版社, 1993
    70.康博文,刘建军,徐学选,步秀芹.黄土高原常见树种比叶重及其与光合能力的关系[J].西北林学院学报,2005, 25(2): 1-4, 11
    71.李锋瑞,赵丽娅,王树芳,王先之.封育对退化沙质草地土壤种子库与地上群落结构的影响[J].草业学报, 2003, 12(4): 90-99
    72.李桂林,陈杰,孙志英,檀满枝.基于土壤特征和土地利用变化的土壤质量评价最小数据集确定[J].生态学报,2007,27(7):2715-2724
    73.李国雷,刘勇,李瑞生,吕瑞恒,徐扬.油松人工林土壤质量的演变[J].林业科学,2008,44(9):76-81
    74.李合生主编.现代植物生理学.北京:高等教育出版社,2002, 141.
    75.李吉玫,徐海量,张占江,叶茂,王增如,李媛.塔里木河下游不同退化区地表植被和土壤种子库特征[J].生态学报,2008, 28(8): 3626-3636
    76.李恋卿,潘根兴,张旭辉.退化红壤植被恢复中表层土壤微团聚体及其有机碳的分布变化[J].土壤通报,2000,31(5): 193-195
    77.李宁,冯固,田长彦.塔克拉玛干沙漠北缘土壤种子库特征及动态[J].中国科学(D辑), 2006,36(增刊Ⅱ): 110-118
    78.李向义,张希明,何兴元,曾凡江,Thomas F M, Foetzki.绿洲前沿地区多枝柽柳水分关系的特征及灌溉的影响[J].植物生态学报,2004, 28(5): 644-650
    79.李阳兵,谢德体,魏朝富,李先源.重庆喀斯特山地土壤种子库分布特征[J].生态环境, 2006, 15(2): 358-361
    80.李永华,罗天祥,卢琦,田晓娅,吴波,杨恒华.青海省沙珠玉治沙站17种主要植物叶性因子的比较[J].生态学报,2005, 25(5): 994-999
    81.李永强,许志信.典型草原区撂荒地植物群落演替过程中物种多样性变化[J].内蒙古农业大学学报,2002, 23(4): 26-31
    82.李玉霖,崔建垣,苏永中.不同沙丘生境主要植物比叶面积和叶干物质含量的比较[J].生态学报,2005, 25(2): 304-311
    83.李玉霖,孟庆涛,赵学勇,张铜会.科尔沁沙地流动沙丘植被恢复过程中群落组成及植物多样性演变特征[J].草业学报,2007, 16(6): 54-61
    84.李裕元,邵明安.子午岭植被自然恢复过程中植物多样性的变化[J].生态学报, 2004, 24(2): 252 -260
    85.李裕元,邵明安,上官周平,樊军,王丽梅.黄土高原北部紫花苜蓿草地退化过程与植被演替研究[J].草业学报,2006, 15(2): 85-92
    86.梁松洁,张金政,张启翔,石雷,邢全.北方地区藤本类忍冬叶表皮结构及其生态适应性比较研究[J].植物研究,2004, 24(4): 434-438
    87.梁一民.从植物群落学原理谈黄土高原植被建造的几个问题[J].西北植物学报,1999, 19 (5) : 26-31
    88.刘国彬,杨勤科,陈云明,张文辉,许明祥.水土保持生态修复的若干科学问题[J].水土保持学报,2005, 19 (6): 126-130
    89.刘国彬,李敏,上官周平,穆兴民,谢永生,李占斌,梁银丽,张文辉,候庆春.西北黄土区水土流失现状与综合治理对策[J].中国水土保持科学, 2008, 6(1): 16-21
    90.刘贵华,李伟,王相磊,张学江.湖南茶陵湖里沼泽种子库与地表植被的关系[J].生态学报, 2004, 24(3): 450-456.
    91.刘贵华,肖葳,陈漱飞,张全发.土壤种子库在长江中下游湿地恢复与生物多样性保护中的作用[J].自然科学进展,2007, 17(6): 741-747
    92.刘建立,袁玉欣,彭伟秀,马长明,管伟.河北丰宁坝上孤石牧场土壤种子库与地上植被的关系[J].干旱区研究,2005, 22(3): 295-300.
    93.刘建立,王彦辉,程丽莉,马长明,袁玉欣.坝上草原退耕地植被不同恢复处理土壤种子库研究[J].中国生态农业学报,2009, 17(2):250-255
    94.刘满强,胡锋,何园球,李辉信.退化红壤不同植被恢复下土壤微生物量季节动态及其指示意义[J].生态学报,2003, 40(6): 937-944
    95.刘美珍,蒋高明,李永庚,牛书丽,高雷鸣.浑善达克沙地三种生境中不同植物的水分生理生态特征[J].生态学报, 2004, 24(7): 1465-1471
    96.刘美珍.浑善达克退化生态系统恢复研究—自然力在沙地恢复中的应用[D].中国科学院植物所博士学位论文, 2004
    97.刘娜娜,赵世伟,杨永辉,王恒俊,赵永刚,姬秀云,曹丽花.云雾山封育草原对表土持水性的影响[J].草地学报,2006, 14(4): 338-342
    98.刘雨,郑粉莉,安韶山,郭曼.燕沟流域退耕地土壤有机碳、全氮和酶活性对植被恢复过程的响应[J].干旱地区农业研究,2007, 25(6): 220-226
    99.刘占锋,傅伯杰,刘国华,朱永官.土壤质量与土壤质量指标及其评价[J].生态学报,2006,26(3):901-913.
    100.卢金伟,李占斌.土壤团聚体研究进展[J].水土保持研究,2002, 9(1): 81-85
    101.吕春花.黄土高原子午岭地区土壤质量对植被自然恢复过程的响应[D].西北农林科技大学博士学位论文.2009
    102.吕春花,郑粉莉.黄土高原子午岭地区植被恢复过程中的土壤质量评价[J].中国水土保持科学,2009, 7(3): 12-18
    103.吕春花,郑粉莉,安韶山.子午岭地区植被演替过程中土壤养分及酶活性特征研究[J].干旱地区农业研究,2009,27(2): 227-232
    104.吕佳,李俊清.北京百花山植物叶片性状相互关系研究[J].科学技术与工程,2008, 8(12): 3287-3289
    105.吕晓男,孟赐福,麻万诸,陈晓佳.土壤质量及其演变[J].浙江农业科学,2004, 16(2): 105-109
    106.马成仓,高玉葆,李清芳,郭宏宇,吴建波,王金龙.内蒙古高原荒漠区几种锦鸡儿属(Ca ragana)优势植物的生理生态适应特性[J].生态学报,2007, 27(11): 4643-4650
    107.马克平,刘玉明.生物群落多样性的测度方法:Ⅰα多样性的测度方法(下)[J].生物多样性, 1994, 2(4): 231-239.
    108.马克平.生物群落多样性的测度方法:Ⅰα多样性的测度方法(上) [J].生物多样性, 1994, 2(3): 162-168
    109.马妙君,周显辉,吕正文,杜国帧.青藏高原东缘封育和退化高寒草甸种子库差异[J].生态学报,2009, 29(7): 3658-3664
    110.马祥华,白文娟,焦菊英,焦峰.黄土丘陵沟壑区退耕地植被恢复中的土壤水分变化研究[J].水土保持通报,2004, 24(5): 19-23
    111.马祥华,焦菊英,温仲明,白文娟,焦峰.黄土丘陵沟壑区退耕地植被恢复中土壤物理特性变化研究[J].水土保持研究,2005a, 12(1): 17-21
    112.马祥华,焦菊英.黄土丘陵沟壑区退耕地自然恢复特征及其与土壤环境的关系[J].中国水土保持科学, 2005b, 3(2): 15-22, 31
    113.闵红,和文祥,李晓明,刘国彬,杨祥.黄土丘陵区植被恢复过程中土壤微生物数量演变特征[J].西北植物学报,2007, 27 (3): 588-593
    114.穆兴民,徐学选,王文龙,温仲明,杜峰.黄土高原人工林对区域深层土壤水环境的影响[J].土壤学报,2003, 40(2): 210-217
    115.南京农业大学.土壤农化分析[M].北京:农业出版社,1986
    116.牛书丽.浑善达克沙地优势豆科植物光合生理特性研究[D].中国科学院植物所博士学位论文, 2004
    117.牛书丽,蒋高明.豆科植物在中国草原生态系统中的地位及其生理生态研究[J].植物生理学通讯,2004,21(1): 9-18.
    118.牛书丽,蒋高明,高雷明,李永庚,刘美珍.内蒙古浑善达克沙地97种植物的光合生理特征[J].植物生态学报,2003,27(3): 318-324
    119.牛书丽,蒋高明,李永庚. C3与C4植物的环境调控[J].生态学报,2004,24(2):308-314
    120.庞学勇,刘庆,刘世权,吴彦,林波,何海,张宗锦.川西亚高山云杉人工林土壤质量性状演变[J].生态学报,2004,24(2):261-267
    121.彭镇华,董林水,张旭东,周金星.植被封禁保护是黄土高原植被恢复的重要措施[J].世界林业研究, 2006, 19(2): 61-67
    122.彭少麟.广东热带森林群落的生态优势度[J].生态学报, 1987, 7(1): 36- 42
    123.彭少麟,方炜,曹洪麟.人为干扰对热带人工桉林生态系统的影响[J].生态学报, 1995, 115(增刊): 31-37
    124.彭少麟.恢复生态学与退化生态系统的恢复[J].中国科学院院刊,2000, 3: 188-192
    125.彭少麟.退化生态系统恢复与恢复生态学[J].中国基础科学,2003, 3: 18-24
    126.彭少麟.生态恢复的全球性挑战—第17届国际恢复生态学大会综述[J].生态学报,2005, 25(9)
    127.彭文英,张科利,陈瑶,杨勤科.黄土坡耕地退耕还林后土壤性质变化研究[J].自然资源学报,2005, 20(2):272-278
    128.彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].生态学报,2003,23 (10) : 2176-2183
    129.彭新华,张斌,赵其国.土壤有机碳与土壤结构稳定性关系的研究进展[J].土壤学报,2004,41(4):618-623
    130.漆良华,张旭东,孙启祥,周金星,张建锋,刘国华,李东雪.土壤—植被系统及其对土壤健康的影响[J].世界林业研究,2007, 20(3): 1-8
    131.邱丽萍,张兴昌.子午岭不同土地利用方式对土壤性质的影响[J].自然资源学报,2006,21(6):965-972
    132.任海,彭少麟,陆宏芳.退化生态系统恢复与恢复生态学[J].生态学报,2004, 24(8): 1760-1768
    133.任海,杜卫兵,王俊,余作岳,郭勤峰.鹤山退化草坡生态系统的自然恢复[J].生态学报, 2007, 27(9): 3593-3600
    134.任海,刘庆,李凌浩.恢复生态学导论(第二版)[M].北京:科学出版社,2008
    135.任洪玉,温仲明,杨勤科.黄土沟壑区植被恢复及其物种多样性的变化—以吴旗县植被恢复为例[J].干旱地区农业研究,2003, 21 (2): 154-158
    136.尚占环,龙瑞军,马玉寿,张黎敏,施建军,丁玲玲.黄河源区退化高寒草地土壤种子库:种子萌发的数量和动态[J].应用与环境生物学报,2006, 12(3): 313-317
    137.尚占环,任国华,龙瑞军.土壤种子库研究综述—规模、格局及影响因素[J].草业学报,2009a,18(1): 44-154
    138.史刚荣,李慧.淮北相山恢复演替群落优势树种的水分生理生态研究[J].植物研究,2006, 26(6): 722-727
    139.史竹叶.神木试区土壤水分资源状况[J].中国科学院水利部西北水土保持研究所集刊,1993,18:130-135
    140.斯琴巴特尔,秀敏.荒漠植物蒙古扁桃水分生理特征[J].植物生态学报,2007, 31(3): 484-489
    141.宋永昌.植被生态学[M].上海,华东师范大学出版社,2001: 598-599
    142.苏德毕力格,李永宏,雍世鹏,萨仁.冷蒿草原土壤可萌发种子库特征及其对放牧的响应[J].生态学报,2000, 20(1): 43-48
    143.孙波,赵其国,张桃林,俞慎.土壤质量与持续环境.Ⅲ土壤质量评价的生物学指标[J].土壤,1997, 5: 225-234
    144.孙波,赵其国.红壤退化中的土壤质量评价指标及评价方法[J].地理科学进展,1999,18(2):118-128
    145.孙栋元,王辉,马仲武,杨君珑.干旱荒漠区封育沙地土壤水分变化研究[J].西北林学院学报,2007,22(2):49-53
    146.孙海运,李新举,胡振琪,刘雪冉,仲伟静.马家塔露天矿区复垦土壤质量变化[J].农业工程学报,2008, 24(12): 205-209
    147.孙瑞莲,赵秉强,朱鲁生,徐晶,张福道.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J].植物营养与肥料学报,2003,9(4): 406-410
    148.唐海萍,蒋高明.植物功能型及其生态学意义[J].应用生态学报,2000, 11(3): 461-464
    149.唐克丽,侯庆春,王斌科,张平仓.黄土高原水蚀风蚀交错带和神木试区的环境背景及整治方法[J].中国科学院水利部西北水土保持研究所集刊,1993, 18: 2-15
    150.唐勇,曹敏,张建侯,盛才余.西双版纳热带森林土壤种子库与地上植被的关系[J].应用生态学报,1999, 10(3): 279-282
    151.田呈明,刘建军,梁英梅,刘永华.秦岭火地塘林区森林根际微生物及其土壤生化特性研究[J].水土保持通报,1999, 19(2): 19-22
    152.仝川,冯秀,张远鸣,仲延凯.锡林郭勒退化草原不同禁牧恢复演替阶段土壤种子库比较[J].生态学报,2008, 28(5): 1991-2002
    153.汪殿蓓,暨淑仪,陈飞鹏.植物群落物种多样性研究综述[J].生物多样性,2001, 20(4): 55-60
    154.王兵,刘国彬,薛萐,李占斌,李鹏,刘娴.黄土丘陵区撂荒对土壤酶活性的影响[J].草地学报,2009, 17(3): 282-287
    155.王伯荪,余世孝,彭少麟,李鸣光.植物群落实验手册[M].广州:广东教育出版社, 1996, 100-103
    156.王国宏.黄土高原植被恢复与新产业带形成的生态学基础研究.中国科学院植物所博士后研究工作报告, 2003
    157.王国梁,刘国彬,许明祥.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应[J].水土保持通报, 2002,22(1): 1- 5
    158.王国梁,刘国彬,周生路.黄土丘陵沟壑区小流域植被恢复对土壤稳定入渗的影响[J].自然资源学报,2003, 18(5): 529-535
    159.王国梁,刘国彬,党小虎.黄土丘陵区不同土地利用方式对土壤含水率的影响[J].农业工程学报,2009, 25(2): 31-35
    160.王海英,宫渊波,陈林武.嘉陵江上游不同植被恢复模式土壤微生物及土壤酶活性的研究[J].水土保持学报,2008,22(3): 172-177
    161.王晗生.黄土高原植被恢复策略回顾[J].中国水土保持科学, 2004, 2(1): 42-45
    162.王辉,任继周.子午岭主要森林类型土壤种子库研究[J].干旱区资源与环境, 2004a, 18 (3): 130-136
    163.王辉,任继周.子午岭油松林土壤种子库研究[J].甘肃农业大学学报, 2004b, 39(1): 1-5
    164.王江,张崇邦.重金属污染土壤植被恢复过程中的土壤微生物特征[J].生态学报,2009, 29(3): 1636-1646
    165.王俊明.“退耕”草地演替过程中植被地上部分与根系的变化及其土壤响应[D].中国科学院水土保持与生态环境研究中心博士论文.2008
    166.王力,李裕元,李秧秧.黄土高原生态环境的恶化及其对策[J].自然资源学报,2004, 19(2): 263-271
    167.王力,卫三平,吴发启.黄土丘陵沟壑区土壤水分环境及植被生长效应[J].生态学报,2009,29(3):1543-1553
    168.王力,张青峰,卫三平,王全九.黄土高原水蚀风蚀交错带煤田开发区小流域植被恢复模式[J].北京林业大学学报,2009, 31(2): 36-43
    169.王宁,贾燕锋,白文娟,张振国,焦菊英.黄土丘陵沟壑区退耕地土壤种子库特征与季节动态[J].草业学报,2009, 18(3): 43-52
    170.王宁,贾燕锋,李靖,焦菊英.黄土丘陵沟壑区退耕地自然恢复植被主要物种生态位特征[J].水土保持通报,2007, 27(6): 34-40
    171.王延平,邵明安,张兴昌.陕北黄土区陡坡地人工植被的土壤水分生态环境[J].生态学报,2008,28(8):3769-3778
    172.韦兰英,上官周平.黄土高原不同恢复年限坡地植物比叶面积与养分含量的关系[J].生态学报,2008, 28(6): 2526-2535
    173.魏孝荣,邵明安.黄土高原沟壑区小流域不同地形下土壤性质分布特征[J].自然资源学报,2007, 22(6): 946-953
    174.魏媛,喻理飞,张金池.退化喀斯特植被恢复过程中土壤微生物学特性[J].林业科学,2008, 44(7): 6-10
    175.温仲明,赫晓慧,焦峰,焦菊英.黄土高原森林边缘区退耕地植被自然恢复及其对土壤养分变化的影响[J].草业学报, 2007, 16(1): 16-23
    176.吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社,1998
    177.奚为民.雾灵山国家自然保护区森林群落物种多样性研究[J].生物多样性,1997, 5(2): 121-125
    178.谢锦升,杨玉盛,陈光水,朱锦懋,曾宏达,杨智杰.植被恢复对退化红壤团聚体稳定性及碳分布的影响[J].生态学报,2008, 28(2): 702-709
    179.谢晋阳,陈灵芝.中国暖温带若干灌丛群落多样性问题的研究[J].植物生态学报,1997, 21(3): 197-207.
    180.谢运球.恢复生态学[M].中国岩溶,2003,22(1): 28-34
    181.熊利明,钟章成,李旭光,汪莉.亚热带常绿阔叶林不同演替阶段土壤种子库的初步研究[J].植物生态学与地植物学学报,1992, 16(3):249-257
    182.许景伟,王卫东,李成.不同类型黑松混交林土壤微生物、酶及土壤养分关系的研究[J].北京林业大学学报,2000, 22(1): 51-55
    183.许明祥,刘国彬,赵允格.黄土丘陵区土壤质量评价指标研究[J].应用生态学报,2005a,16(10):1843-1848
    184.许明祥,刘国彬,赵允格.黄土丘陵区侵蚀土壤质量评价[J].植物营养与肥料学报,2005b,11(3):285-293
    185.薛立,邝立刚,陈红跃,谭绍满.不同林分土壤养分、微生物与酶活性的研究[J].土壤学报,2003,40(2): 280-285
    186.薛萐,刘国彬,戴全厚,党小虎,周萍.不同植被恢复模式对黄土丘陵区侵蚀土壤微生物量的影响[J].自然资源学报,2007, 22(1): 20-27
    187.闫巧玲,刘志民,李荣平.持久土壤种子库研究综述[J].生态学杂志,2005, 24(8): 948-952
    188.杨光,宋耀选.神木六道沟流域林业现状分析及林业发展战略[J].中国科学院水利部西北水土保持研究所集刊,1993, 18: 106-112
    189.杨建伟,梁宗锁,韩蕊莲.黄土高原常用造林树种水分利用特征[J].生态学报,2006,26(2):558-565
    190.杨文治,马玉玺,韩仕峰,杨新民.黄土高原地区造林土壤水分生态分区研究[J].水土保持学报, 1994, 8(1): 1-9
    191.杨新民.黄土高原灌木林地水分环境特性研究[J].干旱区研究,2001, 18(1): 8-13
    192.杨跃军,孙向阳,王保平.森林土壤种子库与天然更新[J].应用生态学报,2001, 12(2): 304-308
    193.喻理飞,朱守谦,叶镜中,魏鲁明,陈正仁.退化喀斯特森林自然恢复评价研究[J].林业科学, 2000, 36(6): 12-19
    194.于顺利,蒋高明.土壤种子库的研究进展及若干研究热点[J].植物生态学报,2003, 27(4): 552-560.
    195.余作岳,彭少麟.热带亚热带退化生态系统的植被恢复生态学研究[M].广州:广东科技出版社,1996
    196.袁宝妮,李登武,李景侠,王冬梅,薛玲,刘杰.黄土丘陵沟壑区植被自然恢复过程中土壤种子库特征[J].干旱地区农业研究,2009, 215-222
    197.曾凡江,张希明,李小明.柽柳的水分生理特性研究进展[J].应用生态学报,2002, 13(5): 611-614
    198.曾希柏,白玲玉,李莲芳,苏世鸣.山东寿光不同土地利用方式下农田土壤有机质和氮磷钾状况极其变化[J].生态学报,2009,29(7):3737-3746
    199.詹学明,李凌浩,李鑫,程维信.放牧和围封条件下克氏针茅草原土壤种子库的比较[J].植物生态学报, 2005,29(5): 747-752
    200.章家恩,徐琪.恢复生态学研究的一些基本问题探讨[J].应用生态学报,1999, 19(1): 109-113
    201.张成娥,陈小利.黄土丘陵不同撂荒年限自然恢复的退化草地土壤养分及酶活性特征[J].草地学报,1997, 5(3): 195-199
    202.张光富.浙江天童灌丛植被的土壤种子库与幼苗库特征[J].云南植物研究,2001, 23(2): 209-215
    203.张继义,赵哈林,张铜会,赵学勇.科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态[J].植物生态学报,2004, 28(1): 86-92
    204.张金屯,柴宝峰,邱扬,陈廷贵.晋西吕梁山严村流域撂荒地植物群落演替中的物种多样性变化[J].生物多样性,2000, 8(4): 378-384
    205.张俊华,常庆瑞,贾科利,陈涛,岳庆玲,李云驹.黄土高原植被恢复对土壤肥力质量的影响研究[J].水土保持学报,2003, 17(4): 38-41
    206.张林,罗天祥.植物叶寿命及其相关叶性状的生态学研究进展[J].植物生态学报,2004,28(6): 844-852
    207.张林,罗天祥,邓坤枚,李文华.云南松比叶面积和叶干物质含量随冠层高度的垂直变化规律[J].北京林业大学学报,2008, 30(1): 40-44
    208.张玲,李广贺,张旭.土壤种子库研究综述[J].生态学杂志, 2004, 23(2):114-120
    209.张平仓,王斌科,唐克丽.神木试区环境地貌特征[J].中国科学院水利部西北水土保持研究所集刊,1993, 16-23
    210.张庆费,由文辉.浙江天童植物群落演替对土壤化学性质的影响[J].应用生态学报,1999, 10(1): 19-22
    211.张庆费,宋永昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系[J].生态学报,1999,19(2):174-178
    212.张文辉,孙海芹,赵则海,祖元刚.北京东灵山辽东栎林优势植物水分适应特性[J].植物生态学报,2001, 25(4): 438-443
    213.张文辉,刘国彬.黄土高原植被生态恢复评价、问题与对策[J].林业科学, 2007, 43(1): 102-106
    214.张希彪,王瑞娟,上官周平.黄土高原子午岭油松林的种子雨和土壤种子库动态[J].生态学报, 2009, 29(4): 1877-1884
    215.张笑培,杨改河,胡江波,王得祥.不同植被恢复模式对黄土高原丘陵沟壑区土壤水分生态效应的影响[J].自然资源学报,2008,23(4):635-642
    216.张笑培,杨改河,王得祥,冯永忠,任广鑫.黄土高原沟壑区不同植被恢复模式对土壤生物学特性的影响[J].西北农林科技大学学报(自然科学版),2008, 36(5): 149-154, 159
    217.张咏梅,周国逸,吴宁.土壤酶学的研究进展[J].热带亚热带植物学报,2004, 12(1): 83-90
    218.赵丽娅,李锋瑞,张华,王先之.科尔沁沙地围封沙质草甸土壤种子库特征的研究[J].生态学杂志, 2004, 23(2): 45-49
    219.赵凌平,程积民,万惠娥,石绘陆,谭世图.黄土高原草地封育与放牧条件下土壤种子库特征[J].草业科学,2008, 25(10): 78-83
    220.赵平.退化生态系统植被恢复的生理生态学研究进展[J].应用生态学报, 2003, 14(11): 2031-2036
    221.赵世伟,苏静,杨永辉,刘娜娜.宁南黄土丘陵区植被恢复对土壤团聚体稳定性的影响[J].水土保持研究,2005, 12(3): 27-28, 69
    222.赵勇钢,赵世伟,华娟,张扬.半干旱典型草原区封育草地土壤结构特征研究[J].草地学报,2009, 19(1): 106-112
    223.郑华,欧阳志云,赵同谦,王效科,苗鸿,彭廷柏.不同森林恢复类型对土壤生物学特性的影响[J].应用与环境生物学报,2006,12(1): 36-43
    224.郑立臣,宇万太,马强,王永宝.农田土壤肥力综合评价研究进展[J].生态学杂志,2004, 23(5): 156-161
    225.郑淑霞,上官周平. 8种阔叶树种叶片气体交换特征和叶绿素荧光特性比较[J].生态学报, 2006, 26(4): 1080-1087
    226.郑淑霞,上官周平.不同功能型植物光合特性及其与叶氮含量、比叶重的关系[J].生态学报, 2007, 27(1): 171-181
    227.郑淑霞.黄土高原植物叶片光合与化学计量特征的时空响应与适应机制[D].中国科学院水土保持与生态环境研究中心博士论文.2008
    228.郑昭佩,刘作新.土壤质量及其评价[J].应用生态学报,2003, 14(1): 131-134
    229.中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985
    230.钟继洪,谭军,林兰稳,骆伯胜,余炜敏.广东丘陵红壤土壤水分性能特征比较研究[J].水土保持学报,2009, 23(6): 244-246, 256
    231.周璟,张旭东,周金星,何丹.我国植被恢复对土壤质量的影响研究综述[J].世界林业研究,2009, 22(2): 56-61
    232.周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性,2007,15(3):306-311
    233.周礼恺.土壤酶学[M].北京:科学出版社,1987
    234.周丽霞,丁明懋.土壤微生物学特性对土壤健康的指示作用[J].生物多样性,2007, 15(2): 162-171.
    235.周先叶,李鸣光,王伯荪.广东黑石顶自然保护区森林次生演替不同阶段土壤种子库的研究[J].植物生态学报,2000,24(2): 222-230
    236.周印东,吴金水,赵世伟,郭胜利,路鹏.子午岭植被演替过程中土壤剖面有机质与持水性能变化[J].西北植物学报,2003, 23(6): 895-900
    237.周智彬,李培军.我国旱生植物的形态解剖学研究[J].干旱区研究,2002, 19(1): 35-40
    238.朱桂林,山仑,刘国彬.弃耕演替与恢复生态学[J].生态学杂志,2004, 23(6): 94-96
    239.朱显谟.抢救“土壤水库”实为黄土高原生态环境综合治理与可持续发展的关键[J].水土保持学报, 2000, 14 (1): 1- 6
    240.邹厚远,程积民,周麟.黄土高原植被的自然恢复演替及调节[J].水土保持研究,1998, 5(1): 126-138
    241.左小安,赵哈林,赵学勇,郭轶瑞,张铜会,毛伟,苏娜,冯静.科尔沁沙地不同恢复年限退化植被的物种多样性[J].草业学报,2009, 18(4): 9-16
    242. Abernethy G A, Fountain D W, Mcmanus M T. Observations on the leaf of anatomy of Festuca novae-zelandiae and biochemical responses to a water deficit [J]. New Zealand Journal of Botany, 1998, 36: 113-123
    243. Abrams M D. Adaptations and responses to drought in Quercus species of North America [J]. Tree Physiology, 1990, 7: 227-238
    244. Ackerly D D, Knight C A, Weiss S B, Barton K, Starmer K P. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level andcommunity level analyses [J].Oecologia, 2002, 130: 449-457
    245. Aerts R, Chapin F S. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns [J]. Advances in Ecological Research, 30: 1-67
    246. Alejandro J P, Matthew J P, David W L. Low sink demand limits photosynthesis under Pi deficiency[J]. Journal of Experimental Botany, 2001, 52: 1083-1091
    247. Aranda I, Gil L, Pardos J A Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe [J]. Trees, 2000, 14: 344-352
    248. Attiwill P M, Adams M A. Nutrient cycling in forests (Tansley Revies No.50) [J]. New Phytol, 1993, 124: 561-582
    249. Baniya C B, Solhφy T, Vetaas O R. Temporal changes in species diversity and composition in abandoned fields in a trans-Himalayan landscape, Nepal [J]. Plant Ecology, 2009, 201: 383-399
    250. Bassow S L, Bazzaz F A. Intra- and inter-specific variation in canopy photosynthesis in a mixed deciduous forest [J]. Oecologia, 1997, 109: 507-515
    251. Bazzaz F A. The physiological ecology of plant succession [J]. Annual Review of Ecology and Systematics, 1979, 10: 351-371
    252. Bazzaz F A, Pickett S T. Physiological ecology of tropical succession: a comparative review [J]. Annual Review of Ecology and Systematics, 1980, 11, 287-310
    253. Benigno G R, Mulualem T, Guillermo C M, Per C O. Soil seed bank assembly following secondary succession on abandoned agricultural fields in Nicaragua [J]. Journal of Forestry Research, 2009, 20(4): 349-354
    254. Bertiller M B. Seasonal variation in the seed bank of a Patagonian grassland in relation to grazing and topography [J]. Journal of Vegetation Science, 1992, 3, 47-54
    255. Bossuyt B, Butaye J, Honnay O. Seed bank composition of open and overgrown calcareous grassland soils -a case study from Southern Belgium [J]. Journal of Environmental Management, 2006, 79: 364-371
    256. Bossuyt B, Heyn M, Hermy M. Seed bank and vegetation composition of forest stands of varying age in central Belgium: consequences for regeneration of ancient forest vegetation [J].Plant Ecology, 2002, 162: 33-48
    257. Bossuyt B, Honnay O. Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities [J]. Journal of Vegetation Science, 2008, 19: 875-884
    258. Bradshaw A D, Chadwick M J. The Restoration of Land [M]. Blackwell Scientific Publications, Oxford, UK. 1980
    259. Bremner J M, Mulvaney C S. Regular Kjeldahl method.// Page A L, Miller R H, Keeney D R eds.Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties [M]. Madison: American Society of Agronomy Presss, 1982: 595-624.
    260. Bruno Hérault, Olivier Honnay, Daniel Thoen. Evaluation of the ecological restoration potential of plant communities in Norway spruce plantations using a life-trait based approach[J]. Journal of Applied Ecology, 2005, 42 (3): 536-545
    261. Buckley G P. Biological Habitat Reconstruction[M]. Belhaven Press, London, UK, 1989
    262. Callister A N, Arndt S K, Ades P K, Merchant A, Rowell D, Adams M A. Leaf osmotic potential of Eucalyptus hybrids responds differently to freezing and drought, with little clonal variation [J]. Tree Physiology, 2008, 28: 1297-1304
    263. Caravaca F, Alguacil M M, Figueroa D, Barea J M, Roldan A. Re-establishment of Retama sphaerocarpa as a target species for reclamation of soil physical and biological properties in a semi-arid Mediterranean area [J]. Forest Ecology Management, 2003, 182: 49-58
    264. Carla K, Arnaud M, Jacques M. Spontaneous vegetation dynamics and restoration prospects for limestone quarries in Lebanon [J]. Applied Vegetation Science, 2003, 6: 199-204
    265. Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Grégoire J M. Detecting vegetation leaf water content using reflectance in the optical domain [J]. Remote Sensing of Environment. 2001, 77: 22-33
    266. Clarke J M, Simpson G M. Leaf osmotic potential as an indicator of crop water deficit and irrigation need in rapeseed (Brassica napus L.). Agricultural Water Management, 1977, 1: 351-356
    267. Cohen D. The expected efficiency of water utilization in plants under different competition and selection regimes [J]. Israel Journal of Botany, 1970, 19: 50-54
    268. Collins S L, Glenn S M, Gibson D J. Experimental analysis of intermediate disturbance and initial floristic composition: decoupling cause and effect [J]. Ecology, 1995, 76: 486-492
    269. Cordell S G., Goldstein G, Meinzer F C, Vitousek P M. Regulation of leaf life-span and nutrient-use efficiency of Metrosideros polymorpha trees at two extremes of a long chronosequence in Hawaii [J]. Oecologia, 2001, 127: 198-206
    270. Crabtree B, Bayfield N. Developing sustainability indicators for mountain ecosystems: a study of the Cairngorms, Scotland [J]. Journal of Environmental management, 1998, 52: 1-14
    271. Cunningham S A, Summerhayes B, Westoby M. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradient[J]. Ecology Monographs, 1999, 69: 569-588.
    272. Daily G C. Restoring value to the worlds degraded lands [J]. Science, 1995, 269: 350-354.
    273. Delucia E H, Schlesinger W H. Resource-use efficiency and drought tolerance in adjacent great basin and Sierran plants [J]. Ecology, 1991, 72(1): 51-58
    274. Dobson A P,Bradshaw A D, Baker A J M. Hopes for the future: restoration ecology and conservation biology [J]. Science, 1997, 277: 515-522
    275. Dodd M B, Lauenroth W K, Welker J M. Differential water resource use by herbaceous and woody plant life-forms in a shortgrass steppe community [J]. Oecologia, 1998, 117: 504-512
    276. Falk D A, Millar C I, Olwell P, Noss R F, et al. Restoring diversity-strategies for reintroduction of endangered plants [M]. Washington: Island Press, 1996
    277. Doran J W, Parkin T B. Defining and assessing soil quality [M]. Soil Science Society of American, Inc, Madison, Wisconsin, USA, 1994: 3-21
    278. D?lle M, Schmidt W. The relationship between soil seed bank, above-ground vegetation and disturbance intensity on old-field successional permanent plots [J]. Applied Vegetation Science, 2009, 12: 415-428
    279. Edwards P. Restoration Ecology [M]. Blackwell science, 2002, 12
    280. Ellsworth D S, Reich P B. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest [J]. Oecologia, 1993, 96: 169-178
    281. Ellsworth D S, Reich P B. Photosynthesis and leaf nitrogen in five Amazonian tree species during early secondary succession [J]. Ecology, 1996, 77(2): 581-594.
    282. England J R, Attiwill P M. Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, Eucalyptus regnans F. Muell [J]. Trees-Structure and Function, 2006, 20: 79-90
    283. Esau K. Anatomy of seed plants [M]. 2nd ed. New York, John Wiley and Sons. 1977, P. 351-353.
    284. Falinska K. Seed bank dynamics in abandoned meadows during a 20-year period in the Bialowieza National Park [J]. Journal of Ecology, 1999, 87: 461-475
    285. Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis [J]. Annual Review of Plant Physiology & Plant Molecular Biology, 1989, 40: 503-507
    286. Fenner M. Seed Ecology [M]. London, UK: Chapman and Hall, 1985
    287. Fenner M, Thompson K. The Ecology of Seeds [M]. UK: Cambridge University Press, 2005
    288. Field C, Merino J, Mooney H A. Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens [J]. Oecologia, 1983, 60: 384-389
    289. Fonseca C R, Overton J M, Collins B, Westoby M. Shifts in trait-combinations along rainfall and phosphorus gradients [J]. Journal of Ecology, 2000, 88: 964-977
    290. Forman R T T. Land Mosaics [M]. Cambridge: Cambridge University Press, 1995, 1-498
    291. Fu B J, Liu S L, Chen L D, LüY H, Qiu J. Soil quality regime in relation to land cover and slope position across a highly modified slope landscape [J]. Ecological Research, 2004, 19: 111-118
    292. Funes G, Basconcelo S, Diaz S, Cabido M. Edaphic patchiness influences grassland regeneration from the soil seed-bank in mountain grasslands of central Argentina [J]. Austral Ecology, 2001, 26: 205-212
    293. Garnier E, Cortez J, Billes G, Navas M L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D,Bellmann A, Neill C, Toussaint J P. Plant functional markers capture ecosystem properties during secondary succession [J]. Ecology, 2004, 85(9): 2630-2637
    294. Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas M L. Consistency of species ranking based on functional leaf traits [J]. New phytologist, 2001a, 152: 69-83
    295. Gleeson S, Tilman D. Allocation and the transient dynamics of competition during succession on poor soils [J]. Ecology, 1990, 71: 1144-1155
    296. Grubine R E. What is ecosystem management? [J]. Conservation Biology, 1994, 8: 27-38
    297. Guenni O, Baruch Z, Marín D. Responses to drought of five Brachiaria species. II. water relations and leaf gas exchange [J]. Plant Soil, 2004, 258: 249-260
    298. He J S, Wang Z H, Wang X P, Schmid B, Zuo W Y, Zhou M, Zheng C Y, Wang M F, Fang J Y. A test of the generality of leaf traits relationships on the Tibetan Plateau [J]. New Phytologist, 2006, 170: 835-848.
    299. Hikosaka K, Hanba Y T, Hirose T, Terashima I. Photosynthetic nitrogen-use efficiency in leaves of woody and herbaceous species [J]. Functional Ecology, 1998, 12: 271-283.
    300. Hoffman G J, Rawlins S L. Growth and water potential of root crops as influenced by salinity and relative humidity [J]. American Society of Agronomy, 1971, 63: 877-880
    301. Horn H S. The ecology of secondary succession [J]. Annual Review of Ecology and Systematics, 1974, 5: 25-37
    302. Huo Z, Shao M A, Horton R. Impact of gully on soil moisture of shrubland in wind-water erosion crisscross region of the Loess Plateau [J]. Pedosphere, 2008, 18: 674–680
    303. Inouye R S, Huntly N J, Tilman D, Tester J R, Stillwell M, Zinnel K C. Old-field succession on Minnesota sand plain[J]. Ecology, 1987, 68: 12-26.
    304. Jackson L L, Lopoukine D, Hillyard D. Ecological restoration: a definition and comments [J]. Restoration Ecology, 1995, 3 (2): 71-75
    305. Jalili A, Hamzeh'ee B, Asri Y, Shirvany A, Yazdani S, Khoshnevis M, Zarrinkamar F, Ghahramani M A, Safavi R, Shaw S, Hodgson J G, Thompson K, Akbarzadeh M, Pakparvar M. Soil seed banks in the Arasbaran Protected Area of Iran and their significance for conservation management[J]. Biological Conservation, 2003, 109: 425-431
    306. Janssens F, Peeters A, Tallowin J R B, Bakker J P, Bekker R M, Fillat F, Oomes M J M. Relationship between soil chemical factors and grassland diversity [J]. Plant and Soil, 1998, 202: 69-78
    307. Jess Z K, Mitchell Aide J B P T. Barriers of forest regeneration in an abandoned pasture in Puerto Rico [J]. Restoration Ecology, 2000, 8: 350-359
    308. Jiang G M, He W M. Species- and Habitat-variability of photosynthesis,transpiration and water use efficiency of different plant species in Maowusu sand area [J]. Acta Botanica Sinica, 1999,41(10):1114-1124
    309. Jiao J Y, Tzanopoulos J, Xofis P, Bai W J, Ma X H, Mitchley J. Can the study of natural vegetation succession assist in the control of soil erosion on abandoned croplands on the Loess Plateau, China? [J]. Restoration Ecology, 2007, 3: 391-399
    310. Johnstone I M. Plant invasion windows: a time-based classification of invasion potential [J]. Biological Review, 1986, 61: 369-394
    311. Karlen D J, Mausbach M J, Doran J W, Cline R G, Harris R F, Schuman G E . Soil quality: A concept, definition, and framework for evaluation [J]. Soil Science Society American Journal, 1997, 61: 4-10
    312. Khan H U R, Link W, Hocking T J, Stoddard F L. Evaluation of physiological traits for improving drought tolerance in faba bean (Vicia faba L.) [J]. Plant Soil, 2007, 292: 205-217
    313. Kikuzawa K. Leaf phenology as an optimal strategy for carbon gain in plants [J]. Canadian Journal of Botany, 1995, 73: 158-163
    314. Kimura R, Fan J, Zhang X C, Takayama N, Kamichika M, Matsuoka N. Evapotranspiration over the grassland field in the Liudaogou Basin of the Loess Plateau, China [J]. Acta Oecologica, 2006, 29: 45-53
    315. K?rner C. The nutritional status of plants from high altitudes [J]. Oecologia, 1989, 81: 379-391
    316. Kristiina A, Vogt B. Larson. Ecosystems-balancing science with management[M]. New York: Springer-Verlag, 1997
    317. Kvalseth T O. Note on biological diversity, eveness, and homogeneity measures [J]. Oikos, 1991, 62: 123-127
    318. Lawson C S, Ford M A, Mitchley J. The influence of seed addition and cutting regime on the success of grassland restoration on former arable land [J]. Applied Vegetation Science, 2004, 7: 259-266
    319. Lal R, Mahboubi A A, Fausey N R. Long-term tillage and rotation effects on properties of a central Ohio soil [J]. Soil Science Society of America Journal, 1994, 58: 517-522
    320. Larcher W. Plant physiological ecology [M]. Berlin, Herdelberg, New York: Springer-Verlag, 245-247
    321. Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility I. Theory and methodology [J]. European Journal of Soil Science, 1996, 47: 425-428
    322. Liu F, Stützel H. Leaf water relations of vegetable amaranth (Amaranthus spp.) in response to soil drying [J]. European Journal of Agronomy, 2002, 16: 137-150
    323. Liu G H, Zhou J, Li W, Cheng Y. The seed bank in a subtropical freshwater marsh: implication for wetland restoration [J]. Aquatic Botany, 2005, 81(1): 1-11
    324. Liu M Z, Jiang G M, Li Y G, Niu S L, Gao L M, Ding L, Peng Y. Leaf osmotic potentials of 104 plants species in relation to habits and plant functional types in Hunshandak Sandland, Inner Mongolia, China [J]. Trees, 2003, 17: 554-560
    325. Liu M Z, Jiang G M, Yu S L, Li Y G, Li G. The role of soil seed banks in natural restoration of the degraded Hunshandak sandlands, northern China [J]. Restoration Ecology, 2009, 17: 127-136
    326. Luzuriaga A L, Escudero A, Olano J M, Loidi J. Regenerative role of seed banks following an intense soil disturbance [J]. Acta Oecologica, 2005, 27: 57-66
    327. Ma M J, Du G Z, Zhou X H. Role of the soil seed bank during succession in a subalpine meadow on the Tibetan Plateau [J]. Arctic, Antarctic, and Alpine Research, 2009, 41: 469-477
    328. Major J, Pyott W T. Buried viable seeds in two California bunchgrass sites and their bearing on the definition of a flora [J].Vegetation, 1966, 13: 253-282
    329. Maury P, Berger M, Mojayad F, Planchon C. Leaf water characteristics and drought acclimation in sunflower genotypes [J]. Plant and Soil, 2000, 223: 153-160
    330. McIntyre S, Lavorel S, Landsberg J, Forbes T D A. Disturbance response in vegetation towards a global perspective on functional traits [J]. Journal of Vegetation Science, 1999, 10: 621-630.
    331. Middleton B. Wetland restoration: Flood pulsing and disturbance dynamics [M]. New York: John Wiley & Sons, Inc, 1999:1-311
    332. Michel B E, Kaufmann M R. The osmotic potential of polyethylene glycol 6000 [J]. Plant Physiol, 1973, 51: 914–916
    333. Monserud R A, Marshall J D. Allometric crown relations in three northern Idaho conifer species [J]. Canadian Journal of Forest Research, 1999, 29: 521-535.
    334. Monson R K, Smith S D. Seasonal water potential components of Sonoran desert plants [J]. Ecology, 1982, 63:113-123
    335. Nevo E, Bolshakova M A, Martyn G I, Musatenko, L I, Sytnik K, Pavlíèk T, Beharav A. Drought and light anatomical adaptative leaf strategies in three woody species caused by microclimatic selection at“Evolution Canyon”, Israel [J]. Israel Journal of Plant Sciences, 2000, 48, 33-46
    336. Niinemetsülo. Global-scale climatic controls of leaf day mass per area, density, and thickless in trees and shrubs [J]. Ecology, 2001, 82: 453-469
    337. Nilsen E T, Orcutt D M. The physiology of plants under stress [M]. New York: Jhon Wiley & Sons, Inc.1996
    338. Nortcliff S. Standardisation of soil quality attributes [J]. Agriculture, Ecosystems and Environment, 2002, 88: 161-168
    339. O′Donnell A G, Seasman M, Macrmae A, Waite I, Davies J T. Plants and fertilizers as drivers of changes in microbial community structure and function in soils[J]. Plant and Soil, 2001, 232: 135-145
    340. Odum E P. The strategy of ecosystem development [J]. Science, 1969, 164: 262-270
    341. Oshiro R, Fujioka R. Sand, soil, and pigeon droppings: Sources of indicator bacteria in the waters of Hanauma Bay, Oahu, Hawaii [J]. Water Science Technology, 1995, 31(5-6): 251-254
    342. Otto R, Krusi B O, Burga C A, Fernandez-Palacios J M. Old-field succession along a precipitation gradient in the semi-arid coastal region of Tenerife [J]. Journal of Arid Enviroments, 2006, 65: 156-178
    343. Parker W C, Pallardy S G, Hinckley T M, Teskey R O. Seasonal changes in tissue water relations of three woody species of the Quercus-Carya forest type [J]. Ecology, 1982, 63: 1259-1267
    344. Passioura J B. Water in the soil-plant-atmosphere continuum [J]. Encyclopedia of Plant Physiology, 1982, 12B: 5-33
    345. Peco B, Ortega M, Levassor C.Similarity between seed bank and vegetation in Mediterranean grassland: a predicitive model [J]. Journal of Vegetation Science, 1998, 9: 815-828.
    346. Poorter H, Bergkotte M. Chemical composition of 24 wild species differing in relative growth rate [J]. Plant Cell Environment, 1992, 15: 221-229.
    347. Poorter H, De Jong R. A comparison of specific leaf area, chemical composition and leaf constructioncosts of field plants from 15 habitats differing in productivity [J]. New Phytologist, 1999, 143: 163-176
    348. Poorter H,Evans J R. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific area[J]. Oecologia, 1998, 116: 26-37
    349. Prach K. Spontaneous succession in Central-European man-made habitats: What information can be used in restoration practice? [J]. Applied Vegetation Science, 2003, 6: 125-129
    350. Pugnaire F I, I zam R.Seed bank and understory species composition in a semi-arid environment: the effect of shrub age and rainfall [J]. Annals of Botany, 2000, 86, 807-813
    351. Pywell R F, Bullock J M, Hopkins A, Walker K J, Sparks T H, Burke M J W, Peel S. Restoration of species-rich grassland on arable land: assessing the limiting processes using a multi-site experiment[J]. Journal of Applied Ecology, 2002, 39, 294-310.
    352. Pywell R F, Webb N R, Putwain P D. A comparison of techniques for restoring heathland on abandoned farmland [J]. Journal of Applied Ecology, 1995, 32, 397-409
    353. Ranjbarfordoei A, Samson R, Lemeur R, Van damme P. Effects of osmotic drought stress induced by a combination of NaCl and polyethylene glycol on leaf water status, photosynthetic gas exchange, and water use efficiency of Pistacia khinjuk and P. mutica [J]. Photosynthetica, 2002, 40: 165-169
    354. Rapport D J, Whitford W G. How ecosystems respond to stress [J]. BioScience, 1999, 49 (3): 193-204
    355. Raven P H, Evert R F, Eichhorn S E. Biology of plants [M]. 4th ed. New York, Worths.1986, 425p
    356. Raza S H, Athar H R, Muhammad A, Amjad H. Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance[J]. Environmental and Experimental Botany, 2007, 60: 368-376
    357. Reich P B, Ellsworth D S, Uhl C. Leaf carbon and nutrient assimilation and conservation in species ofdiffering successional status in an oligotrophic Amazonian forest [J]. Functional Ecology, 1995, 9: 65-76
    358. Reich P B, Ellsworth D S, Walters M B, Vose J M, Gresham C, Volin J C, Bowman W D. Generality of leaf trait relationships: A test across six biomes [J]. Ecology, 1999, 80: 1955-1969
    359. Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 30: 11001-11006
    360. Reich P B, Walters M B, Ellsworth D S. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems [J]. Ecological Monographs, 1992, 62: 365-392
    361. Reich P B, Walters M B, Ellsworth D S. From tropics to tundra: Global convergence in plant functioning [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 94: 13730-13734
    362. Ren H, Peng S L. Restoration and rebuilding of degraded ecosystem [J]. Youth Geography, 1998, 3 (3): 7-11
    363. Ren H,Wu J G,Peng S L. Degraded ecosystem and restoration ecology. In: Wu J G & Han X G ed. Modern ecology lecture II. Beijing: Chinese Science and Technology Press, 2002, 68-72
    364. Richard H. Plant and their atmospheric environment[M].Academic Press, New York, 1981, 263-272
    365. Rohacek K. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning and mutual relationships [J]. Photosynthetica, 2002, 40(1): 13-29
    366. Rollin E M, Milton E J. Processing of high spectral resolution reflectance data for the retrieval of canopy water content information [J]. Remote Sensing of Environment, 1998, 65: 86-92
    367. Schonherr J. Physiological responses to moderate water stress. In: Lange, O. L.; Nobel, P. S.; Osmond, C. B.; Ziegler, H.ed. Encyclopaedia of plant physiology. New series. Physiological plant ecologyII. Vol. 12B. Heidelberg, Springer-Verlag. 1982, Pp. 154-179
    368. Simposon, R. L. Ecology of soil seed bank [M]. San Diego: Academic Press 1989, 149-209
    369. Sluis W J. Patterns of species richness and composition in re-created grassland [J]. Restoration Ecology, 2002, 10: 677-684
    370. Smith E C, Grifftus H. Intraspecific variation in photosynthetic responses of trebouxioid lichens with reference to the activity of a carbon concentrating mechanism [J]. Oecologia, 1998, 113: 360-439.
    371. Sultan S E. An emerging focus on plant ecological development [J]. New Phytologist, 2005, 166: 1-5
    372. Thompson K,Bakker J P,Bekker R M. The soil seed banks of North West Europe: Methodology, Density and Longevity [M]. London: Cambridge University Press.1997
    373. Thompson K, Grime J P. Seasonal variation in the seed banks of herbaceous species in ten contrasting habits [J]. Journal of Ecology, 1979, 67: 893-921
    374. Touchette B W. Salt tolerance in a Juncus roemerianus brackish marsh: spatial variations in plant water relations [J]. Journal of Experimental Marine Biology and Ecology, 2006, 337: 1-12
    375. Tsialtas J T, Pritsa T S, Veresoglou D S. Leaf physiological traits and their importance for species success in a Mediterranean grassland. Photosynthetica, 2004, 42(3): 371-376.
    376. Van Bavel C H M . Mean weight—diameter of soil aggregates as a statistical index of aggregation[J].Soil Science Society of America Proceedings, 1949, 14: 20-23
    377. Van der Valk. Succession theory and wetland restoration. Proceedings of INTECOL’s V International wetlands conference, Perth, Australia, 1999, 162.
    378. Wang G H. Plant traits and soil chemical variables during a secondary vegetation succession in abandoned fields on the Loess Plateau [J]. Acta Bontanica Sinica, 2002, 44(8): 990-998
    379. Wang, G. H. Can the restoration of natural vegetation be accelerated on the Chinese Loess Plateau? A study of the response of the leaf carbon isotope ratio of dominant species to changing soil carbon and nitrogen levels [J]. Ecological Research, 2006, 21: 188-196
    380. Wang G H. Leaf traits co-variation, response and effect in a chronosequence [J]. Journal of Vegetation Science, 2007, 18: 563-570
    381. Wang J, Ren H, Yang L, Li D Y, Guo Q F. Soil seed banks in four 22-year-old plantations in South China: implications for restoration [J]. Forest Ecology and Management, 2009, 258: 2000-2006
    382. Whipple S A. The relationship of buried, germinating seeds to vegetation in an old-growth Colorado sub-alpine forest [J]. Canadian Journal of Botany, 1978, 56: 1505-1509
    383. Wright I J, Groom P K, Lamont B B, Poot P, Prior L D, Reich P B, Schulze E D, Veneklaas E J, Westoby M. Leaf trait relationships in Australian plant species [J]. Functional Plant Biology, 2004, 31: 551-558
    384. Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats [J]. Functional Ecology, 2001, 15: 423-434
    385. Wright I J, Reich P B, Westoby M, Ackerly D D, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J H C, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont B B, Lee T, Lee W J, Lusk C, Midgley J J, Navas M L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov V I, Roumet C, Thomas S C, Tjoelker M G, Veneklaas E J, Villar R. The worldwide leaf economics spectrum [J]. Nature, 2004, 428: 821-827
    386. Young I M, Crawford J W. Interactions and self-organization in the soil-microbe complex [J]. Science, 2004, 304:1634-1637
    387. Zheng S X, Shangguan Z P. Spatial patterns of foliar stable carbon isotope composition of C3 plant species in the Loess Plateau of China [J]. Ecological Research, 2007, 22: 342-353
    388. Zheng S X, Shangguan Z P. Spatial patterns of photosynthetic characteristics and leaf physical traits of plants in the Loess Plateau of China [J]. Plant Ecology, 2007, 191: 279-293
    389. Zhu Y J, Shao M A. Variability and pattern of surface moisture on a small-scale hillslope in Liudaogou catchment on the northern Loess Plateau of China [J]. Geoderma, 2008, 47: 185-191

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700