流沙河流域植被与土壤对生态恢复的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据四川汉源县流沙河流域2005年63个生态恢复样方植物群落特征指标的调查采集以及土壤样品的化验分析数据,采用多元统计方法对流沙河流域生态恢复样方的生态恢复进行评价,基于生态恢复程度划分的结果,采用常规统计分析方法研究了流沙河流域不同恢复程度下植被与土壤的响应特征,并探讨影响研究区生态恢复的敏感因子。研究结果分述如下。
     采用相关分析法并结合专业知识将植被和土壤性质两方面的13个初选指标进行信息提取,对样地的生态恢复程度进行划分(由于在现有的研究中,没有对生态恢复程度的定量划分和明确的恢复程度的界定,根据流沙河流域生态恢复的实际情况,本文将生态恢复的程度划分为由低到高的“Ⅰ级、Ⅱ级、Ⅲ级、Ⅳ级”4个生态恢复程度等级。)。
     ①经相关分析后,确定了生物量、物种多样性、夹砾量、团聚度、有机质、速效磷等6个指标作为恢复类型的初步划分指标,划分结果因受“物种多样性”指标的影响较大,与野外调查的实际情况差距较大。
     ②在恢复类型的正式划分过程中,采用因子分析方法提取出5个公共因子作为对流域各样地生态恢复程度进行划分的评价因子,将流域内的63个样地的生态恢复程度分成了4级,即Ⅰ级为24个样地、Ⅱ级为15个样地、Ⅲ级为16个样地、Ⅳ级为8个样地。
     随着生态恢复程度的提高,样地的群落垂直结构逐渐形成并趋于稳定;植物群落数量特征、多样性以及丰富度呈显著或极显著增加的趋势:
     ①流域恢复与重建区不同生态恢复程度下的63个调查样方中,植物共计36科76属87种,以蔷薇科、禾本科、马桑科、菊科、松科、毛莨科等6科为主。其中,Ⅰ级恢复程度的24个样地共有植物17科36属36种,Ⅱ级恢复程度的15个样地中有植物22科38属39种,Ⅲ级恢复程度的16个样地中共分布有15科31属31种,Ⅳ级恢复程度中的8个样地中的物种数为17科28属31种。
     ②1级恢复程度下的生物量平均为22.52t hm~(2),Ⅱ级恢复程度下的生物量平均是74.05 t hm~(-2),Ⅲ级恢复程度下的生物量平均为56.52t hm~(-2),Ⅳ级恢复程度下的生物量平均为201.16 t hm~(-2)。方差分析的结果表明,生物量、盖度两个植被指标随恢复程度的提高而增大的趋势,且当生态恢复到一定程度后,样地生物量水平急剧提高。这说明样地生物量、盖度指标是判定流域生态恢复程度的两个重要指标。
     在流沙河流域生态恢复过程中,样地土壤质量得到逐步提高:
     ①随恢复程度的提高,样地内的有效土层厚度、土壤团聚度大小的变化不明显;
     ②样地土壤夹砾量大小、容重值则表现出了很明显的随生态恢复程度提高而降低的变化趋势;
     ③土壤有机质、速效钾、全钾、速效磷、全磷5个指标中,除有机质随样地恢复程度的变化明显外,其余4个指标无明显的变化趋势。方差分析的结果表明,Ⅳ级恢复程度下的土壤有机质含量与其他3个恢复程度下的有机质含量大小的差异达到了极显著性水平F=9.56**(p<0.01)。样地有机质含量大小的差异也可以作为衡量流域样地生态恢复程度的一个重要指标。
According to the data of field investigation for both plant identification and soil chemical analysis of 63 samplings in 2005 in the Liusha Basin, Hanyuan County, Sichuan Province, ecology restoration of the Liusha Basin were assessed by Multivariate Statisitical Analysis methods. Vegetation and soil character of samplings were analyzed under different ecology restoration degrees, simultaneously; and then restoration factors were studied, finally the sensitivity index for ecology restoration were brought forward in the light of forementioned analysis. The main results were as follows.
     The 13 initial indices from vegetation and soil were selected by correlation analysis combined with specialty knowledge, classifying sampling plots into 4 restoration degrees( In existing researches, it's hardly to find a quantitative Identification and defined definition to restoration degree. According to the actual situation of the Liusha Basin, this paper classified sampling plots into 4 restoration degrees, from degree I to degree IV).
     ①6 indices were chosen to be the ecology restoration assessment indices, including biomass, diversity, gravel content, aggregation degree, SOM and SAK. K-means cluster associated with discriminant analysis was applied to classifying sampling plots into degreeⅠ, degreeⅡ, degreeⅢ, and degreeⅣ. According to the diversity indice, the classified result was far away from the field investigation.
     ②In the process of final classification, 5 picke-up factors were finally chosen to be the ecology restoration assessment indices. 63 samplings were classified into 4 sorts, 24 plots in degreeⅠ,15 plots in degreeⅡ, 16 plots in degreeⅢ, and 8 plots in degreeⅣ, respectively.
     Vegetation characters were analyzed under different ecology restoration degrees. Variance analysis indicated that as restoration degree enhanced, vegetation quantitative characteristics, species diversity and species richness indices were all significantly or highly significantly increased, on the whole.
     ①As far as species composition was concerned, 87 species were collected within investigated plots, among them, 6 families (Rosaceae, Gramineae, Coriaria, Compositae, Pinaceae, Ranunculaceae) were dominated. In a word, 36 species in degreeⅠ, 39 species in degreeⅡ, 31 species in degreeⅢ, and 31 species in degreeⅣ.
     ②Along with the improvment of restoration degree, both the biomass and cover were increased. Remarkably, the biomass would increase quickly when the level came to some extent. According to data analysis, both the biomass and cover could be treated as sensitivity index for restoration degree assessment in the Liusha Basin.
     Improvement of soil quality marked the ecology restoration. Variance analysis showed that depth, aggregation degree, SAK, TK, SAK, TP were of no significant difference among different restoration degree. Only gravel content, bulk density and SOM content presented a significant or highly significant increasing tendency. They could be treated as sensitivity index for restoration degree assessment in the Liusha Basin, too.
引文
[1]艾应伟,范志金,毛达如,等.我国西部退化土壤生态重建的特点与土壤培肥.水土保持学报,2001,15(2):45-48.
    [2]安韶山,黄懿梅,李壁成,等.黄土丘陵区植被恢复中土壤团聚体演变及其与土壤性质的关系.土壤通报,2006,37(1):45-50.
    [3]安韶山,黄懿梅,刘梦云,等.宁南宽谷丘陵区土壤肥力质量对生态恢复的响应.水土保持研究,2005,12(3):22-26.
    [4]包维楷,刘照光.岷江上游大沟流域驱动植被退化的人为干扰体研究.应用与环境生物学报,1999,5(3):233-239.
    [5]包维楷,王春明.岷江上游山地生态系统的退化机制.山地学报,2000,18(1):57-62.
    [6]曹成有,刘世岩小叶锦鸡儿人工固沙区植被恢复生态过程的研究.应用生态学报,2000,11(3):349-354.
    [7]程占红,张金屯,吴必虎,等.芦芽山自然保护区旅游开发与植被环境关系-植被景观的类型及其排序.生态学报,2006,26(6):1940-1946.
    [8]陈奇伯,陈宝昆,董映成,等.长江上游洋派河小流域生态修复研究.水土保持学报,2004,18(1):154-157.
    [9]杜峰,山仑,梁宗锁,等.陕北黄土丘陵区撂荒演替过程中的土壤水分效应.自然资源学报,2005,20(5):669-678.
    [10]丁艳,王辉.生态脆弱带水土流失对农业景观的影响-以云南省丽江地区永胜县为例.水土保持研究,2001,8(2):100-102,137.
    [11]冯伟,张万军,冯学赞.接坝农牧交错区沙化地生态恢复过程中土壤因子与植被特征分析.干旱地区农业研究,2006,24(3):130-133,224.
    [12]高雷,刘宏茂.西双版纳热带雨林下砂仁拔除后的生态恢复研究.植物生态学报,2003,27(3):366-372.
    [13]巩杰,陈利项,傅伯杰,等.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响.应用生态学报,2004,15(12):2292-2296.
    [14]韩维栋,高秀梅,卢昌义等.雷州半岛的红树林植物组成与群落生态.广西植物,2003,23(2):127-132,138.
    [15]郝云庆,何丙辉,李旭光.巫溪县红池坝不同植被恢复阶段土壤养分评价.西南农业大学学报,2006,28(1):149-153.
    [16]何锦峰,樊宏,叶延琼.岷江上游生态重建的模式.生态经济,2002(3):35-37.
    [17]何其华,何永华,包维楷.干旱半干旱区山地土壤水分动态变化.山地学报,2003,21(2):149-156.
    [18]侯扶江,肖金玉,南志标.黄土高原退耕地的生态恢复.应用生态学报,2002,13(8):923-929.
    [19]胡良军,邵明安.论水土流失研究中的植被覆盖度量指标.北京林学院学报,2001,16(1):40-43.
    [20]淮虎银,魏万红,张镱锂.青藏铁路温性草原区路域植被自然恢复过程中群落组成和物种多样性变化.山地学报,2005,23(6):657-662.
    [21]贾瑞燕,丁国栋,马士龙,等.京郊荒滩生态恢复及其植被变化研究-以延庆县为例.水土保持研充2005,12(6):166-168,234.
    [22]焦菊英,马祥华,白文娟,等.黄土丘陵沟壑区退耕地植物群落与土壤环境因子的对应分析.土壤学报,2005,42(5):744-752.
    [23]李恩香,蒋忠诚,曹建华,等.广西弄拉岩溶植被不同演替阶段的主要土壤因子及溶蚀率对比研究.生态学报,2004,24(6):1131-1139.
    [24]刘国彬,胡维银,许明祥.黄土丘陵区小流域生态经济系统健康评价.自然资源学报,2003,18(1):44-49.
    [25]刘美珍,蒋高明,于顺利,等.浑善达克退化沙地恢复演替18年中植物群落动态变化生态学报,2004,24(8):1731-1737.
    [26]刘美珍,蒋高明.李永庚等.浑善达克退化沙地草地生态恢复试验研究.生态学报,2003.23(12):2719-2727.
    [27]刘瑞禄,周国富,龙成昌.赤水市水土保持生态修复工程生态效益评价研究.水土保持通报,2005,25(6):82-86.
    [28]刘忠宽,汪诗平,陈佐忠,等.不同放牧强度草原休牧后土壤养分和植物群落变化特征.生态学报,2006,26(6):2048-2056.
    [29]刘梦云,常庆瑞,安韶山.不同土地利用方式土壤生态效应设计研究.土壤通报,2006,37(1):144-148.
    [30]李文龙,王刚,李白珍.人工固沙林生态系统健康的模糊综合评价及实例分析.西北植物学报,2004,24(3):443-448.
    [31]李裕元,邵明安.子午岭植被自然恢复过程中植物多样性的变化.生态学报,2004,24(2):252-260.
    [32]李全发,刘文耀,沈有信,等.南涧干热退化山地植被恢复的植物多样性变化.山地学报,2005,23(5):557-564.
    [33]李宗峰,陶建平,王微,等.岷江上游退化植被不同恢复阶段群落小气候特征研究.生态学杂志,2005,24(4):364-367.
    [34]李先琨,叶惊春.广西水土流失重点区域生态恢复试验研究.水土保持通报,1997,17(6):1-6.
    [35]龙健,李娟,江新荣,等.喀斯特石漠化地区不同恢复和重建措施对土壤质量的影响.应用生态学报,2006,17(4):615-619.
    [36]罗辉,王克勤.金沙江干热河谷山地植被恢复区土壤种子库和地上植被研究.生态学报,2006,26(8):2432-2442.
    [37]Moseley Robert K,唐亚.云南干旱河谷150年来的植被变化研究及其对生态恢复的意义.植物生态学报,2006,30(5):713-722.
    [38]潘开文,刘照光.暗针叶林采伐迹地几种人工混交群落乔木层结构及动态.应用与环境生物学报,1998,4(4):327-334.
    [39]彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响.生态学报,2003,23(10):2176-2183.
    [40]彭文英,张科利,陈瑶,等.黄土坡耕地退耕还林后土壤性质变化研究.自然资源学报,2005,20(2):272-278.
    [41]彭补拙,张建春闸岸带研究及其退化生态系统的恢复与重建.生态学报,2003,23(1):56-63.
    [42]任洪玉,温仲明,杨勤科.黄土沟壑区植被恢复及其物种多样性的变化-以吴旗县植被恢复为例.干旱地区农业研究,2003,21(2):154-158.
    [43]山钢,彭锦.大渡河流域退耕还林与综合治理探讨.四川林业科技,2001,22(2):36-38.
    [44]沈琪,张骏,朱锦茹,等.浙江省生态公益林植被恢复过程中物种组成及多样性的变化.生态学报,2005,25(9):2131-2138.
    [45]沈有信,刘文耀,张彦东.东川干热退化山地不同植被恢复方式对物种组成与土壤种子库的影响.生态学报,2003,23(7):1454-1460.
    [46]盛才余,刘伦辉.云南南涧干热退化山地人工植被恢复初期生物量及土壤环境动态.植物生态学报,2000,24(5):575-580.
    [47]石承苍,雍国玮.长江上游干热干旱河谷生态环境现状及生态环境重建的对策.西南农业学报,2001,14(4):114-118.
    [48]苏永中,赵哈林,张铜会,等.科尔沁沙地不同年代小叶锦鸡儿人工林植物群落特征及其土壤特性.植物生态学报,2004,28(1):93-100.
    [49]涂修亮,陈建三峡库区退化生态系统植被恢复与重建研究.湖北农业科学,2000,2:29-31.
    [50]涂成龙,林昌虎,何腾兵,等.黔中石漠化地区生态恢复过程中土壤养分变异特征冰.土保持通报,2004,24(6):22-25,89.
    [51]王玲玲,曾光明,黄国和.等湖滨湿地生态系统稳定性评价.生态学报,2005,25(12):3406-3410.
    [52]王永健.陶建平,张炜银.等.茂县土地岭植被恢复过程中物种多样性动态特征.生态学报,2006, 26(4):1028-1036.
    [53]王震洪,段昌群.滇中几种人工林生态系统恢复效应研究.应用生态学报,2003,14(9):1439-1445.
    [54]王兵,赵广东,苏铁成,等.极端困难立地植被综合恢复技术研究.水土保持学报,2006,20(1):151-154,180.
    [55]王国梁,刘国彬,刘芳,等.黄土沟壑区植被恢复过程中植物群落组成及结构变化.生态学报,2003,23(12):2550-2557.
    [56]王国梁,常欣,刘国彬,等.黄土丘陵区小流域植被建设的土壤水文效应.自然资源学报,2002,17(3):339-344.
    [57]王重云,刘文耀,刘伦辉,等.紫茎泽兰迹地上不同替代植物群落植物多样性的变化.应用生态学报,2006,17(3):377-383.
    [58]王凤玉,周广胜,贾丙瑞,等.水热因子对退化草原羊草恢复演替群落土壤呼吸的影响.植物生态学报,2003,27(5):644-649.
    [59]王文颖,王启基,王刚.高寒草甸土地退化及其恢复重建对土壤碳氮含量的影响.生态环境,2006,15(2):362-366.
    [60]王月玲,蔡进军,张源润,等.半干旱退化山区不同生态恢复与重建措施下土壤理化性质的特征分析.水土保持研究.2007,14(1):11-14.
    [61]吴彦,刘庆,乔永康,等.亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响.植物生态学报,2001,25(6):648-655.
    [62]项文化,田大伦,闫文德,等.杉木林采伐迹地撂荒后植被恢复早期的生物量与养分积累.生态学报,2003,23(4):695-702.
    [63]肖辉杰,丁国栋,贾瑞燕,等.京郊荒滩生态恢复初期植被与土壤环境的变化--以延庆县为例.干旱地区农业研究,2005,23(5):202-206.
    [64]许明祥,刘国彬,赵允格.黄土丘陵区土壤质量评价指标研究.应用生态学报,2005,16(10):1843-1848.
    [65]杨小波,吴庆书.海南岛热带地区弃荒农田次生植被恢复特点.植物生态学报,2000,24(4):477-482.
    [66]杨晓晖,张克斌,侯瑞萍,等.半干旱沙地封育草场的植被变化及其与土壤因子间的关系.生态学报,2005,25(12):3212-3219.
    [67]杨建国,安韶山,郑粉莉.宁南山区植被自然恢复中土壤团聚体特征及其与土壤性质关系.水土保持学报,2006,20(1):72-75,98.
    [68]冶民生,关文彬,白占雄,等.岷江干旱河谷植物群落生态梯度分析.中国水土保持科学,2005,3(2):70-75.
    [69]赵晓飞,牛丽君,陈庆红等.长白山自然保护区风灾干扰区生态系统的恢复与重建.东北林业大学学报,2004,32(4):38-40.
    [70]张金屯,李素清.应用生态学.北京:科学出版社,2004:629-630.
    [71]张成梁,黄艺.山西省煤矿区土地退化成因分析及生态恢复对策.农业环境科学学报,2006,25(B09):711-715.
    [72]张前进,江玉林,陈学平.高速公路环境破坏与生态恢复评估研究.公路交通科技,2006,23(5):147-149.
    [73]张继义,赵哈林,崔建垣,等.科尔沁沙地流动沙丘沙米群落生物量特征及其防风固沙作用.水土保持学报,2003,17(3):152-154.
    [74]张继义,赵哈林.科尔沁沙地草地植被恢复演替进程中群落优势种群空间分布格局研究.生态学杂志,2004,23(2):1-6.
    [75]张华,张甘霖.土壤质量指标和评价方法.土壤,2001,33(6):326-330,333
    [76]张华,伏乾科,李锋瑞,YasuhitoShirato.退化沙质草地自然恢复过程中土壤-植物系统的变化特征.水土保持通报,2003,23(6):1-6.
    [77]张文辉,郭连金,徐学华,等.黄土丘陵区狼牙刺种群恢复及群落土壤水分养分效应冰土保持学报,2004,18(6):49-53.
    [78]张远东,赵常明:刘世荣.川西亚高山人工云杉林和自然恢复演替系列的林地水文效应.自然资源学报, 2004,19(6):761-768.
    [79]章海波,骆永明,赵其国,等.香港土壤研究:Ⅵ.基于改进层次分析法的土壤肥力质量综合评价.土壤学报,2006,43(4):577-583.
    [80]郑本暖,杨玉盛,谢锦升,等.亚热带红壤严重退化生态系统封禁管理后生物多样性的恢复.水土保持研究,2002,9(4):57-60,63.
    [81]周厚诚,任海,彭少麟.广东南澳岛植被恢复过程中的群落动态研究.植物生态学报,2001,25(3):298-305.
    [82]Amanda B C,John G M,Lee D W.Season Length Indicators and Land-Use Effects in Southeast Virginia Wet Flats.Soil Science Society of America Journal,2005,69(5):1551-1558.
    [83]Brye K R,Kucharik C J.Carbon and nitrogen sequestration in two prairie topochronosequences on contrasting soils in southern Wisconsin.The American Midland Naturalist,2003,149(1):90-104.
    [84]Borcard D,Legendre P,Drapeau P.Partialling out the spatial component of ecological variation.Ecology,1992,76:1045-1055.
    [85]Bart M,Griet B,Lieven N,et al.Medium-term evaluation of a forest soil restoration trial combining tree species change,fertilisation and earthworm introduction.Pedobiologia,2003,47(6):772-783.
    [86]Bruce H P,Jack W E,Malka P L,et al.Restoring the ecological integrity of public lands.Journal of Soil and Water Conservation,1997,52(4):226-331.
    [87]Corstanje R,Grunwald S,Reddy K R,et al.Assessment of the Spatial Distribution of Soil Properties in a Northern Everglades Marsh.Journal of Environmental Quality,2006,35(3):938-949.
    [88]Craig C G.Potential Compost Benefits for Restoration Of Soils Disturbed by Urban Development.Compost Science & Utilization,2005,13(4):243-251.
    [89]Corinne M L,Brian M C.Two-year response of American chestnut(Castanea dentata) seedlings to shelterwood harvesting and fire in a mixed-oak forest ecosystem.Canadian Journal of Forest Research,2005.35(3):740-749.
    [90]Cooke J A,Johnson M S.Ecological restoration of land with particular reference to the mining of metals and industrial minerals:A review of theory and practice.Environmental Reviews,2002,10(1):41.
    [91]Christy T C,Irwin U A.Aboveground vegetation,seed bank and soil analysis of a 31-year-old forest restoration on coal mine spoil in Southeastern Ohio.The American Midland Naturalist,2002,147(1):44-59.
    [92]Greer E,Pezeshki S R,Shields F D.Influences of cutting diameter and soil moisture on growth and survival of black willow,Salix nigra.Journal of Soil and Water Conservation,2006,61(5):311-323.
    [93]Gerlinde D D B,Ciska R E,Rik Z H,et al.Soil invertebrate fauna enhances grassland succession and diversity.Nature,2003,422(6933):711.
    [94]Heather H F,Jodi S R.Stability of Contaminants on an Aged Petroleum Refinery Land Treatment Unit Undergoing Ecological Restoration.Soil & Sediment Contamination,2004,13(2):187.
    [95]Jorba M,Andres P.Effects of sewage sludge on the establishment of the herbaceous ground cover after soil restoration.Journal of Soil and Water Conservation,2000,55(3):322-327.
    [96]Juan F P,Markus F,David B F.Hydraulic Properties in a Silt Loam Soil under Natural Prairie,Conventional Till,and No-Till.Soil Science Society of America Journal,2004,68(5):1679-1689.
    [97]Kristofor B R.Soil Biochemical Properties as Affected by Land Leveling in a Clayey Aquert.Soil Science Society of America Journal,2006,70(4):1129-1139.
    [98]Kondolf,G Mathias.A cross section of stream channel restoration.Journal of Soil and Water Conservation,1996,51(2):119.
    [99]Lal R,Reddy M V.Soil management and soil biotic processes.Management of tropical agroecosustems and the beneficial soil biota.1999.67-81
    

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700