子午岭人工油松林自然发育过程及其特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以黄土高原子午岭林区的次生天然油松林和人工油松林为对象,对不同生境油松林进行了样地调查,分析了两种林分的物种多样性、群落结构、养分库和碳库的主要特征,取得了以下主要结论:
     1、选择不同坡向、不同坡位的人工油松林和天然油松林,通过多样性指数进行分层测度,发现两种群落多样性指数变化规律一致,即:灌木层〉草本层〉乔木层。在对人工油松林和天然油松林群落多样性分层测度的基础上,利用群落各生长型的叶层相对厚度和相对盖度作为加权参数,对处于不同坡向的人工油松林和天然油松林群落总体的多样性指数研究,表明生长在阴坡的人工油松林,其群落总体的多样性指数较大。群落相似性比较结果表明生长在阴坡的天然林和生长在阳坡的天然林相似性显著高于处于不同坡向的人工林,无论在物种组成还是在多样性及群落空间结构上,天然林和人工林均具有较高的相似性,这进一步证明了适当人工抚育措施可以增加林下植被的种类数量和盖度,能够有效促进人工林的生长发育。
     2、该区油松针叶C、N、P的含量平均值分别为499.5±63.75mg/g,8.53±0.50mg/g和0.94±0.64mg/g,叶片C含量大小依次为阳坡天然林>阴坡天然林>阴坡人工林>阳坡人工林,而阳坡的人工林叶片N、P含量显著高于阳坡的天然林。不同立地条件下油松林叶片C/N、C/P差异显著,叶片N、P和N/P均达到极显著水平,而叶片C含量差异不显著。油松叶片C含量与N、P含量均成极显著负相关,而N和P之间的呈显著正相关。油松林针叶N/P<14,表明该地区的油松林在自然发育过程中可能更容易受N限制。不同立地的油松林除40~60cm土层土壤C、N含量无显著差异外,另外两个土层(0~20cm土层和20~40cm土层)的人工林土壤C、N含量显著高于天然林,同时阳坡人工林土壤C、N含量显著高于阴坡的人工林。子午岭林区0~20cm、20~40cm土壤C含量与N含量均成极显著正相关,与植物N、P均成显著正相关。子午岭林区阳坡的人工油松林不仅叶片养分最高,而且林地土壤是该区土壤的最大养分库和碳库,土壤C、N与油松叶片C、N、P之间明显的协同性充分体现了油松与土壤之间的互动关系。3、在黄土高原子午岭林区对不同立地条件下的天然油松种群的结构和动态进行了研究。结果表明,不同立地条件的油松种群个体数量集中于中树,大树和幼树个体数量较少。阴坡谷地和阴坡上坡位的油松种群由于水热条件适宜,林内有林窗出现,幼苗个体数量相对丰富;而阳坡上坡位的油松种群由于幼苗个体严重缺乏,衰退趋势明显。油松种群密度随径级的增加呈现降低趋势,种群密度与径级呈现出明显的负相关。尽管油松所处的生境条件差异较大,但存活曲线基本属于Deevey III型,种群偏离典型存活曲线的程度与幼苗缺乏有关,一般I-II径级和VI-VII径级死亡率较高。在未来4、8、16和24年中,油松种群均会呈现中树先增加而后减少的趋势,16年后种群进入成熟阶段,说明油松在该区内生长更新良好,在无人为干扰条件下,油松可通过自我调节而保持种群的稳定性。阳坡上坡位的油松种群的幼树相对较为缺乏,若幼苗和幼树株树不能改善,种群维持困难。在黄土高原地区针对不同立地条件下油松种群应该采取适度的人为干扰抚育,采取适度的人工措施为油松种子萌芽、幼苗定居和发展创造有利条件,以形成不同龄级的种群更新体系。
The species diversity, Size-class structure, nutrient pool and organic carbon pool of the Pinus tabulaeformis were studied in the different site conditions in Ziwuling area on the Loess Plateau. The results are as followed:
     1. The results showed that the artificial Pinus tabulaeformis and natural Pinus tabulaeformis both had the quite rich species composition. This two forest types had similar trends of the community diversity as shrubs>herbs> trees. In order to measure the whole community diversity, the average of the relative thickness of the leaf layer and the relative coverage of each living from were used as weighting parameters. The results showed that the artificial Pinus tabulaeformis in shade slope had the highest community diversity. The result of similarity comparison indicated that there had the highest comparability indices of natural Pinus tabulaeformis forests in different slopes. Regardless of the species composition and the community spatial structure of the natural forest and the artificial forest, this two forest types had the high similarity. It was proved that the proper artificial measures can increase both the quantity and the coverage of the forestland and the development of the artificial forest.
     2. The results showed that in this region the average of C﹑N and P content of P. tabulaeformis needles were 499.5±63.75 mg/g, 8.53±0.50 mg/g and 0.94±0.64 mg/g, respectively. The C content of plant leaves was decreased in the order of natural forest on sunny slope> natural forest on shade slope> plantation on shade slope> plantation on sunny slopes. The N、P content of plantation leaves in sunny slopes was obviously higher than that of the natural forest in sunny slope. There were significant differences in the C/N、C/P、N、P、and N/P of leaves among four kinds of Pinus tabulaeformis which differed in site conditions. But there was no significant difference in the C content of leaves. The C of leaves had negative correlation with the N、P of leaves. And the N of leaves had observably positive correlation with the P of leaves. The result of N/P<14 in Pinus tabulaeformis leaves showed that Pinus tabulaeformis forest is easily influenced by the limit of N in the nature growth process. There was no significant difference in the C、N content in the 40~60 cm soil layer, but in the other soil layers, the C and N content of the plantation soil was significantly higher than that of the natural forest. The C and N content of plantation on sunny slope soil was significantly higher than that on shade slope soil. Soil C both in the 0~20 cm and 20~40 cm soil layer were positively correlated with soil N、the plant N and P. Not only leaves nutrients was the maximum in the plantation sunny slope, but also soil communities in this region was the greatest soil nutrient pools and carbon pools. The obvious correlation of soil C and N with the C、N and P in Pinus tabulaeformis leaves showed that interaction relations between Pinus tabulaeformis and soil.
     3. The analysis of the size structure of three populations of Pinus tabulaeformis showed that most individuals were concentrated in the 0~4㎝、12~16㎝、16~20㎝ and 20~24㎝ size classes. Younger and older individuals were dramatically few. Because of different environmental conditions, different populations developed their own characteristic size structure. Valley in the cloudy slop showed a stable development tendency. However, uphill position in sunny slope showed obvious declining tendencies. The result showed that the density decreased with the increasing of size-class structure. The analysis of life tables and survival curves showed that even under different environmental conditions, survival curves of Pinus tabulaeformis populations belonged to Deevey type III, and death peaks of different populations were the in period of I-II size classes and IV-VII size classes. Time sequence prediction models of different populations after 4, 8, 16, 24 years indicated that the numbers of old individuals would increase in the beginning and finally decrease, giving rise to difficulties for maintenance of these populations, most of the individual would be adult after 20 years. The investigations indicate that Pinus tabulaeformis population in Ziwuling area develops and renewals well. Pinus tabulaeformis population is able to maintain the stability through self-regulating without human interference. However, younger individuals of Pinus tabulaeformis population in uphill position in Sunny slope were dramatically few, if it would not be improved, the Pinus tabulaeformis population will lose its balance. Different counter-measures for fostering species should be made according to different site conditions, so as to create the environmental condition for development of young seedlings of T Pinus tabulaeformis .
引文
[1] 中国科学院黄土高原综合科学考察队编.黄土高原地区土壤侵蚀区域特征及其治理途径[M].北京: 中国科学技术出版社,1991.
    [2] 中国科学院黄土高原综合科学考察队编.黄土高原地区植被资源及其合理利用[M].北京: 中国科学技术出版社,1991.
    [3] 彭镇华,董林水,张旭东,周金星.黄土高原水土流失严重地区植被恢复策略分析[J].林业科学研究,2005,18(4):471~478.
    [4] 李裕元,邵明安.子午岭植被自然恢复过程中植物多样性的变化[J].生态学报,2004,24(2):252~260.
    [5] 焦菊英,王万中,李靖.黄土高原林草水土保持有效盖度分析[J].植物生态学报, 2000,24(5):608~612.
    [6] 邹厚远,刘国彬,王晗生.子午岭林区北部近50年植被的变化发展[J].西北植物学报, 2002,22(1):1~8.
    [7] Jess K, Zimmerman, John B, et al. Barriers to forest regeneration in an abandoned pastures in puerto rico [J]. Restor Ecol, 2000, 8 (4) :350~359.
    [8] 程积民,万慧娥,杜峰.黄土高原半干旱区退化灌草植被的恢复与重建[J].林业科学,2001,37(4):50~57.
    [9] 胡建忠,朱金兆.黄土高原退化生态系统的恢复重建方略[J].北京林业大学学报(社会科学版) 2005,4(1):13~19.
    [10] 张文辉,徐学华,李登武,等.黄土高原丘陵沟壑区封禁30年前后狼牙刺种群动态研究[J].应用生态学报,2006,17(2):182~186.
    [11] 吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社,1998.
    [12] 梁一民.从植物群落学原理谈黄土高原植被建造的几个问题[J].西北植物学报,1999,19(5):26~31.
    [13] 王晗生.黄土高原植被恢复策略回顾[J].中国水土保持科,2004,2 (1):42~45.
    [14] 王正秋.黄土高原造林中几个问题的思考[J].中国水土保持,2000, (4)
    [15] 彭镇华,江泽慧.迎接21世纪生态环境新时代———论中国森林生态网络系统工程[J].安徽农业大学学报( 自然科学版),1998,(2):101~108.
    [16] 彭镇华,江泽慧.中国森林生态网络系统工程[J].应用生态学报,1999, (1):99~103.
    [17] 中国工程院“西北水资源”项目组.西北地区水资源配置、生态环境建设和可持续发展战略研究项目综合报告[J].中国工程科学,2003,(4):1~26.
    [18] 王彬,王辉,杨军珑,等.子午岭油松林林隙更新特征研究[J].林业资源管理,2007,4(2):60~65.
    [19] 李国雷,刘勇,徐杨,等.间伐强度对油松人工林植被发育的影响[J].北京林业大学学报,2007,29(2):70~76.
    [20] 张希彪,上官周平.黄土丘陵区油松人工林与天然林养分分布和生物循环比较[J].生态学报,2006,26(2):373~382.
    [21] 马克平,钱迎倩.生物多样性保护及其研究进展[综述][J].应用与环境生物学报,1998,4(1): 95~99.
    [22] 马克平.中国生物多样性热点地区(Hotspot) 评估与优先保护重点的确定应该重视[J].植物生态学报,2001,25(1):124~125.
    [23] 宋永昌.植被生态学[M].上海:华东师范大学出版社,2001.
    [24] 王国梁,刘国彬,侯喜禄.黄土高原丘陵沟壑区植被恢复重建后的物种多样性研究[J].山地学报, 2002,20(2):182~187.
    [25] 张继义,赵哈林,张铜会,等.科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态[J].植物生态学报, 2004,28(1):86~92.
    [26] 侯琳,雷瑞德,康博文,等. 黄龙山林区油松封育过程中植物物种多样性特性[J].西北植物学报,2004,24(7):1165~1172.
    [27] 陈世品.福建青冈林恢复过程中植物物种多样性的变化[J].浙江林学院学报,2004,2(3):258~262.
    [28] 严岳鸿,易绮斐,黄忠良,等. 广东古兜山自然保护区蕨类植物多样性对植被不同演替阶段的生态响应[J].生物多样性, 2004,12(3):339~347.
    [29] 雷瑞德,彭鸿.秦岭林区天然油松林结构研究初报[J].陕西林业科技,1994,(4): 4 ~7.
    [30] 张玉钧,刘振玉.松山油松林群落特征分析[J].北京林业大学学报,1996,18(2):96~99.
    [31] 高宝嘉,李东义,蔡万坡,等.残次油松林群落特征与生物多样性恢复[J].生态学报,1999,19(5):647~653.
    [32] 郭泉水,王德艺,冯天杰,等.雾灵山落叶阔叶林采伐迹地物种多样性和植物种群动态变化研[J].究应用生态学报,1999,10(6)∶ 645~649.
    [33] 王磊,高贤明,孙书存.岷江上游人工油松林群落空间结构:物种丰富度和盖度[J].林业科学,2004,11(6):8~12.
    [34] 李裕元,郑纪勇,邵明安.子午岭天然林与人工林群落特征比较研究[J].西北植物学报,2005,25(12):2447~2456.
    [35] 李毳,柴宝峰,王孟本.华北地区油松种群遗传多样性分析[J].植物研究,2006,1(26):98~102.
    [36] 李利平,邢韶华.北京山区不同区域油松林植物多样性比较研究[J].北京林业大学学报,2005,7(4):12 ~16.
    [37] 马履一,李春义,王希群,等.不同强度间伐对北京山区油松生长及其林下植物多样性的影响[J].林业科学,2007,5(43):1~9.
    [38] 汪超,王孝安,王玲.不同种植年代油松林植物多样性及土壤养分变化[J].生态学杂志,2007,26(8):1182~1186.
    [39] 曹云,杨吉力,宋炳煜,等.人工抚育措施对油松林生长及结构特征的影响[J].应用生态学报,2005,16(3):397~402.
    [40] 胡相明,程积民,万惠娥.黄土丘陵区人工林下草本层植物的结构特征[J].水土保持通报,2006,26(3):41~45.
    [41] Harper J L. Population Biology of Plants [M]. London: Academic Press Inc. 1977.
    [42] Stewart G H. The dynamics of old—growth Pseudotsuga forests in the western Cascade Range, Oregon [J]. USA. Vegetation, 1989, 82: 79~94.
    [43] Armesto JJ, I Casassa & O Dollenz. Age structure and dynamics of Patagonian beech forests in Torres del Paine National Park Chile [M]. Vegetation, 1992, 98: 13~22.
    [44] Skoglund J & T Verwijst. Age structure of woody species populations in relation to seed rain, germination and establishment along the river Dalulven [J]. Sweden. Vegetation, 1989, 82: 25~34.
    [45] 马丹炜.九寨沟自然保护区油松种群的生命表[J].西南民族学院学报(自然科学),1999,25(1):59~62.
    [46] 田丽,王孝安,郭华,等.黄土高原马栏林区优势种幼苗与其种群径级结构的演替研究[J].西北植物学报,2006 ,26(12):2560~2566.
    [47] 吴涛,张文辉,陆元昌,等.黄龙山林区不同培育措施对油松种群数量动态及物种多样性的影响[J].西北植物学报,2006,26(5):1007~1011.
    [48] 范玮熠,王孝安,郭华.黄土高原子午岭植物群落演替系列分析[J].生态学报,2006,26(3):706~714.
    [49] 王根绪,马海燕,王一博,等.黑河流域中游土地利用变化的环境影响[J].冰川冻土,2003,25(4):359~367.
    [50] Blair G J, Lefroy R D B. Soil carbon fractions based on their degree of oxidation, and the developments of a carbon management index for agricultural systems [J]. Aust. J. Agric. Res, 1995, 46: 1456~1466.
    [51] Jones D L, Healey JR, Willett VB, et al. Dissolved organic nitrogen uptake by plants: An important N uptake pathway? [J]. Soil Biology and Biochemistry, 2005, 37: 413~423.
    [52] Tamm C O. Nitrogen in terrestrial ecosystems: Questions of productivity, vegetational changes, and ecosystem stability [J]. Ecological Studies 81, Berlin: Springer Verlag: 1991, pl15.
    [53] 赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J].生态科学,1998,7(2):.37~42.
    [54] Kucharik CJ, Foley JA, Delire C, et al. Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance and vegetation structure [J]. Global Biogeochemical Cycles, 2000,14 ( 3 ) :795~825.
    [55] 苏波,韩兴国,渠春梅,等.东灵山油松纯林和油松-辽东栎针阔混交林土壤氮素矿化与硝化作用研究[J].植物生态学报,2001,25(2):195~ 203.
    [56] 赵鸿雁,吴钦孝,陈云明.黄土高原不同处理人工油松林地水土流失研究[J].西北农林科技大学学报(自然科学版),2002,30(6):171~173.
    [57] 赵鸿雁,吴钦孝,刘国彬.黄土高原人工油松林枯枝落叶层的水土保持功能研究[J].林业科学,2003,39(1):168~172.
    [58] 刘建,何维明,房志玲.东灵山油松林和辽东栎林下土壤资源和光资源的空间特征[J].生态学报,2005,25(11):2954~2960.
    [59] 白岗栓,侯喜录,张占雄.油松- 沙棘混交模式对生境和油松生长的影响[J].林业科学,2006,42(8):38~43.
    [60] 张俊华,常庆瑞,张佳宝.不同林龄人工林对退化生态系统土壤肥力质量的影响[J].土壤通报,2006,37(3):429~433.
    [61] 耿增超,张社奇,王国栋,等.黄土高原油松人工林地土壤养分及化学性质的时空效应[J].西北农林科技大学学报(自然科学版),2006,34(8):98~104.
    [62] 刘占锋,刘国华,傅伯杰,等.人工油松林恢复过程中土壤微生物生物量C、N的变化特征[J].生态学报,2007,27(3):1012~1018.
    [63] 耿玉清,余新晓,孙向阳,等.北京八达岭地区油松与灌丛林土壤肥力特征的研究[J].北京林业大学学报,2007,29(2):50~54.
    [64] 侯琳,雷瑞德,王得祥,等.黄龙山林区封育油松林土壤养分研究[J].西北农林科技大学学报(自然科学版),2007,35(2):63~68.
    [65] 朱志诚.秦岭及其以北黄土区植被地带性特征[J].地理科学,1991,11(2):157~163.
    [66] 张希彪,郭小强,周天林,等.子午岭种子植物区系分析[J].西北植物学报,2004,24(2):267~274.
    [67] 马克平,刘玉明.生物群落α多样性的测度方法 I多样性的测度方法(下)[J].生物多样性,1994,2(4):231~239.
    [68] Krebs C. J. Ecology: The experimental analysis of distribution and abundance[M]. New York: Harper & Row Publishers, 1992.
    [69] Pielou E C, 卢泽愚译. 数学生态学引论[M].北京:科学出版社, 1978.
    [70] 朱志诚.陕北黄土高原白桦林初步研究[J].西北大学学报(自然科学版),1994,24(5):455~459.
    [71] 高贤明,黄建辉,万师强,等.秦岭太白山弃耕地植物群落演替的生态学研究――演替系列的群落α多样性特征[J].生态学报,1997,17(6):619~626.
    [72] Page A L, Miller R H, Keeney D R. Methods of soil analysis. Part 2.Chemical and microbiological properties. (2nd Ed) [M].Wisconsin, USA: American Society of Agronomy Press, 1982.
    [73] 刘峰,陈伟列,贺金生.神农架地区锐齿槲栎种群结构与更新的研究[J].植物生态学报,2000,24(4):396~401.
    [74] 吴承祯,洪伟,谢金寿.珍稀濒危植物长苞铁杉种群生命表分析[J].应用生态学报, 2000,11(3):333~336.
    [75] 张文辉,康永祥,刘祥君,等.濒危植物太白红杉种群年龄结构及其时间序列分析[J].生物多样性,2004,12(3): 361~369.
    [76] 侯庆春,韩蕊莲,韩仕峰.黄土高原人工林草地“土壤干层”问题初探[J].中国水土保持, 1999,5:11~14.
    [77] 陈云明,梁一民,程积民.黄土高原植被建设的地带性特征[J].植物生态学报,2002,26(3):339~345.
    [78] 穆兴民,陈霁伟.黄土高原水土保持措施对土壤水分的影响[J].土壤侵蚀与水土保持学报,1999,5(4):39~44.
    [79] 马梅.人工林地力衰退问题研究[J].林业科技管理,2002,3:26~29.
    [80] 张希彪,上官周平.黄土丘陵区油松人工林与天然林养分分布和生物循环比较[J].生态学报,2006,26(2):373~382.
    [81] 张文辉,卢志军,李景霞,等.秦岭北坡栓皮栎种群动态的研究[J].应用生态学报,2003,14(9):1427~1432.
    [82] 张文辉,王延平,康永祥,等.太白红杉种群结构与环境的关系[J].生态学报,2004,24(1):41~47.
    [83] 张文辉,郭连金,刘国彬.黄土丘陵区不同生境沙棘种群数量动态分析[J].西北植物学报,2005,25(4):641~647.
    [84] Dalal R C, Chan K Y. Soil organic matter in rainfed cropping systems of the Australian cereal belt [J]. Aust J Soil Res, 2001, 39: 435 ~464.
    [85] Layese M F, Clapp C E, Allmaras R R, et al. Current and relic carbon using natural abundance carbon-13 [J]. Soil Sci, 2002,167 ( 5 ) : 315~326.
    [86] Lepisto A, Andersson L, Arheimer B, et al. Influence of catchment characteristics , forestry activities and deposition on nitrogen export from small forested catchments [J]. Water Air Soil Pollut, 1995, 84: 81~102.
    [87] 王小利,郭胜利,马玉红,等.黄土丘陵区小流域土地利用对土壤有机碳和全氮的影响[J].应用生态学报,2007,18(6):1281~1285.
    [88] 李明峰,董云社,齐玉春,等.温带草原土地利用变化对土壤碳氮含量的影响[J].中国草地,2005,27(1):1~6.
    [89] 史奕,张璐,陈欣,等.不同经营方式对黑土水稳性团聚体组成及微粒有机质积累分布的影响[J].中国生态农业学报,2005,13(2):122~124.
    [90] 陈伏生,胡小飞.残茬和施肥管理及犁耕对土壤碳的影响[J].水土保持科技情报,2003,(3) :5~7.
    [91] 薛立,韦如萍,谭天泳等.韦美满华南阔叶树种幼苗叶片的养分特征[J]..应用生态学报,2003,14 (11) :1820~1824.
    [92] 孙书存,陈灵芝.东灵山地区辽东栎叶养分的季节动态与回收效率[J].植物生态学报,2001,25(1):76~82.
    [93] 严昌荣,陈灵芝,黄建辉,等.中国东部主要松林营养元素循环的比较研究[J].植物生态学报,1999,23(4):351~360.
    [94] Crawley M J. Plant Ecology [M]. London:Blackwell Scientific Publications,1986, 97~1 85.
    [95] 马克明,傅伯杰,周华锋.北京东灵山地区森林的物种多样性和景观格局多样性研究[J].生态学报,1999,19(1):1~7.
    [96] 岳明,崔延棠, 王双峰.陕北黄土高原森林群落物种多样性分析[J].水土保持通报,2003,23(1):39~45.
    [97] 肖雁青,林大影,邢韶华.北京北部山区天然油松林与人工油松林比较研究[J].河北林果研究,2007,22(3):231~236.
    [98] 孙国钧,张荣,周立.植物功能多样性与功能群研究进展[J].生态学报,2003,23(7):1430~1435.
    [99] 赵平,彭少麟.种的多样性及退化生态系统功能的恢复和维持研究[J].应用生态学报,2001,12(1):132~136.
    [100] Chapin Ⅲ F S, Zavaleta E S, Eviner V T, et al. Consequences of changing biodiversity[J]. Nature, 2000, 405 : 234~242.
    [101] Reyolds J F, H L, Hungate B A. Soil heterogeneity and plant competion in an annual grassland [J]. Ecology, 1997, 78 (7): 2076~2090.
    [102] Li H, Reyolds J F. On definition and quantification of heterogeneity [J]. Oikos, 1995, 73 (2): 280~283.
    [103] Titus J H. M icro—topography and woody plant regeneration in a hardwood floodplain swamp in Florida [J]. Bulletin of the Torrey Botanical Club, 1990, 117: 429~ 437.
    [104] Johnes R H, Scharitz R R, Dixon P M, et a1. Woody plant regeneration in four floodplain forests [J]. Ecological Monographs, 1994, 64: 345~367.
    [105] Nakashizuka T, Iida S. Composition, dynamics and disturbance regimes of temperate deciduous forests in monsoon Asia [J]. Vegetation, 1995, 121: 23~30.
    [106] 赵平,彭少麟,张经炜.恢复生态学———退化生态系统生物多样性恢复的有效途径[J].生态学杂志,2000,19(1):53~58.
    [107] 郑淑霞,上官周平.黄土高原地区植物叶片养分组成的空间分布格局[J].自然科学进展,2006,16(8):965~973.
    [108] 高甲荣,肖斌.桥山林区油松人工林营养元素分配与积累的研究[J].应用生态学报,2001,12(5):667~671.
    [109] Kocrselman W, Meuleman A F M. The vegetation N:P ration: A new tool to detect the nature ofnutrient limitation [J]. The Journal of Applied Ecology, 1996, 33 (6): 1441~1450.
    [110] ZHU Jiao-jun , TAN Hui, KANG Hong-zhang, et al. Comparison of foliar nutrient concentrations between natural and artificial forests of Pinus sylvestris var. mongolica on sandy land [J]. China. Journal of Forestry Research, 2006,17 (3): 177~184.
    [111] 张鼎华,叶章发,范必有,等.抚育间伐对人工林土壤肥力的影响[J].应用生态学报,2001,12(5):672~676.
    [112] 王克勤,王斌瑞.黄土高原刺槐林间伐改造研究[J].应用生态学报,2002,13(1):11~15.
    [113] 闫恩荣,王希华,陈小勇.浙江天童地区常绿阔叶林退化对土壤养分库和碳库的影响[J].生态学报,2007,27(4):1646~1655.
    [114] Jennifer D K, Wayne T S. Forest management effects on surface carbon and nitrogen [J]. Soil Science Society of America Journal, 1997, 61: 928~935.
    [115] Laclau J P, Arnaud M, Bouillet J P, et al. Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients [J]. Tree Physiological, 2001, 21: 129~136.
    [116] Laclau J P, Ranger J, Nzila J D, et al. Nutrient cycling in a clonal stand of Eucalyptus and an adjacent savanna ecosystem in Congo II. Chemical composition of soil solutions [J]. Forest Ecology and Managent, 2003, 180:527~544.
    [117] Helmisaari H S. Nutrient retranslocation in three Pinus sylvestris stands [J]. Forest Ecology and Managent, 1992, 51 :347~367.
    [118] 刘广全,土小宁,赵士洞.秦岭松栎林带生物量及营养元素的生物循环特征研究[J].林业科学,2001,37 (1):28~36.
    [119] Aplet G H, Vitousek P M. An age-altitude matrix analysis of Hawaiian rain-forest succession [J]. Journal of Ecology, 1994, 82(1) : 137~147.
    [120] Elgersma A M. Primary forest succession on poor sandy soils as related to site factors. Biodiversity and Conservation, 1998, 7 :193~206.
    [121] 刘加珍,陈亚宁,李卫红,等.塔里木河下游植物群落分布与衰退演替趋势分析[J].生态学报,2004,24(2):379~383.
    [122] 陈圣宾,宋爱琴,李振基.森林幼苗更新对光环境异质性的响应研究进展[J].应用生态学报,2005,16(2):365~370.
    [123] Swaine M D, Whitmore T C. On t he definition of ecological species groups in tropical rain forests [J]. Vegetatio, 1988, 75 : 81~86.
    [124] 范玮熠,王孝安,郭华.黄土高原子午岭植物群落演替系列分析[J].生态学报,2006 ,25(5):986~ 993.
    [125] 彭闪江,黄忠良,徐国良,等.生境异质性对鼎湖山植物群落多样性的影响[J].广西植物,2003,23(5):391~ 398.
    [126] Denslow J S, Newelle, Ellison M. The effect of understory palms and syclanths on t he growth and survival of Inga seedlings [J]. Biot ropica, 1991, 23 :225~234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700