子午岭主要乔木树种更新特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原为世界最大的黄土堆积区,气候较干旱、植被稀疏、水土流失严重。除自然因素外,与人类活动,特别是滥垦滥伐,破坏天然植被等社会因素有密切关系,所以植被的重建与恢复对黄土高原的生态环境恢复至关重要。子午岭地处黄土高原腹地,森林覆盖率88.3%,是黄土高原生态脆弱地区保存最完整、最典型、最珍贵的天然次生森林生态系统。研究该地区主要乔木树种的更新特性对黄土高原植被恢复与重建有重要的现实意义,对西部的水土保持和环境的保护、改善有重要的指导和实践意义。
     通过实地考察和野外植物群落调查并采用Levins生态位宽度指数对子午岭地区主要乔木树种,即建群种辽东栎(Quercus liaotungensis)、油松(Pinus Tabulaeformis)和主要乔木树种的幼苗、幼树和成树在不同坡向的辽东栎林、油松+辽东栎混交林和人工油松林三种群落中的生态位宽度和生态位重叠及幼苗与土壤养分和主要树种幼苗之间的关系进行了分析研究。结果显示:
     (1)辽东栎和油松的更新生态位宽度在不同的群落中各不相同,成树的生态位宽度与群落类型相一致。辽东栎幼苗和幼树在阳坡和阴坡的人工油松林中的生态位宽度均较大,分别是0.91、0.95和0.98、0.94,与其他两个群落的生态位宽度差异显著(P<0.05),表明辽东栎幼苗和幼树能较好的适应人工油松林的环境条件;在阳坡,油松幼苗的生态位宽度在辽东栎林最大是0.79,和其它两个群落的差异极显著(P<0.01);油松幼树在阴坡人工油松林最大为0.63,阳坡人工油松林中油松幼树的生态位宽度最大是1.00,阴坡油松幼树的生态位宽度却在油松+辽东栎混交林最大是0.83,和其它两个群落的差异极其显著(P<0.01)。表明油松幼苗既能适应阳坡的辽东栎林环境,也能适应阴坡的人工油松林环境;油松幼树不但能适应阳坡的人工油松林环境,而且也能适应阳坡的辽东栎林环境。人工种植油松林有利于该地区的植被恢复,人工油松林和油松+辽东栎混交林会在该地区存在较长时间,而阳坡的油松+辽东栎混交林存在时间会更长。
     (2)辽东栎和油松幼苗、幼树和成树的生态位重叠大多数情况下与生态位宽度表现一致;但当生态位宽度大时其生态位重叠不一定大。辽东栎幼苗在阳坡和阴坡的人工油松林中的生态位重叠均较大,分别是0.68和0.70,与在阳坡其他两个群落差异显著(P<0.05),在阴坡仅与辽东栎林差异显著(P<0.05);辽东栎幼树在阴坡的生态位重叠并不显著(P>0.05)。在阳坡,油松幼苗和幼树的生态位重叠在辽东栎林和人工油松林中较大,分别为0.56和0.65;油松幼苗和幼树在阴坡人工油松林和油松+辽东栎混交林中较大,为0.64和0.61。
     (3)其他乔木的更新生态位宽度在三个群落类型阴阳坡的分析表明葛萝槭(Acergrosseri)、茶条槭(A.ginnala)、鹅耳枥(Carpinus turczaninowii)和漆树(Toxicodendronvernicifluum)的幼苗、幼树和成树的生态位宽度较大,由于其分布较广,是常见的伴生种。茶条槭幼苗的生态位宽度和辽东栎幼苗的生态位宽度在三个群落阴阳坡表现不同,即其阳坡的生态位宽度大于阴坡的,而辽东栎幼苗是阳坡的大于阴坡的;由于这两者幼苗的分布较广,所以两者幼苗生态位重叠较大。油松幼苗和茶条槭幼苗的生态位重叠较辽东栎幼苗与茶条槭幼苗生态位重叠小,但油松幼苗和辽东栎幼苗生态位重叠较大。
     (4)乔木幼苗与土壤养分的分析表明,影响不同乔木幼苗更新的土壤因子不同。影响辽东栎幼苗的土壤因子是有机质,随着土壤中有机质含量的升高,其密度在缓慢减小,主要集中在有机质为5~8g/kg的地段,当有机质含量达到10g/kg时,辽东栎幼苗密度稳定在一个水平上。影响油松幼苗更新的主要土壤因子是速效钾,随着土壤中速效钾含量的升高,其密度在也在升高。天然油松林速效钾含量较人工油松林中高,建议在人工造林林种植油松时,应当注意调查种植地的速效钾含量。
     (5)辽东栎幼苗与山楂(Crataegus pinnatifid)幼苗、杜梨(Pyrus betulaefolia)幼苗和漆树幼苗成呈正相关(分别为:r=0.65,P<0.01;r=0.43,P<0.01;r=0.42,P<0.01),辽东栎幼苗、山楂幼苗、和杜梨幼苗都与有机质呈负关联(分别为:r=-0.39,P<0.01;r=-0.42,P<0.05;r=-0.38,P<0.05)。这表明,土壤养分对乔木的更新有着非常重要的影响,对群落的组成和结构起关键作用。油松幼苗与茶条槭幼苗呈负相关(r=-0.54,P<0.01),同时油松幼苗和茶条槭幼苗都与速效钾含量之间存在着一定的相关(分别为:r=0.42,P<0.01;r=-0.48,P<0.01)。
     (6)辽东栎幼苗和油松幼苗的数量随着年龄得增长逐渐降低,分别在9和8年时基本达到稳定状态,其死亡率和损失度分别在6年、8年和3年、7年达到最高。其死亡原因有待进一步深入研究。
The Loess Plateau is the largest accumulative loess area in the world,but the climate is arid,the vegetation is sparse,and the loss of water and soil is serious in this area.This situation is closely related to human activity,especially estrepement and deforestation,except natural factors.So it is imperative under the situation to accelerate the recovery and restoration.Ziwuling Mountain,which is located in the hinterland of the Loess Plateau,the forest coverage rate is 88.3%,and the vegetation is the best preserved,the most typical,the most valuable natural secondary forest ecosystems on the ecologically fragile areas of the Loess Plateau. Ziwuling Mountain forest region has crucial effect on adjusting regional climate,maintaining ecological balance and promoting ecologically sustainable economic development on the Loess Plateau.So the research of forest community regeneration has significant ecological meaning for recovery and restoration of degenerative ecosystem.
     Based on field survey to Ziwuling Mountain,adopting Levins index and Pianka index,the generational(seedling,sapling and adult) niche breadth and overlap of Quercus liaotungensis,Pinus tabulaeformis and other arbor tree species were studied in different community types,which was Q. liaotungensis forest,P.tabulaeformis+Q.liaotungensis mixed forest and artificial P.tabulaeformis forest on sunny and shady slope.The relationship between arbor tree seedlings and soil nutrient,and the relationship among arbor tree seedlings were also studied.
     (1) The results showed that the generational niche breadth of Q.liaotungensis and P. tabulaeformis was different in these community types.The niche breadth of adult was the same as community.The niche breadths of Q.liaotungensis' seedling and sapling were the highest in artificial P.tabulaeformis forest on sunny slope and shady slope,which are 0.91,0.95,0.98 and 0.94. There was significant difference among other community.It indicated the growth of Q. liaotungensis' seedling and sapling was inclined to the environmental condition of artificial P. tabulaeformis forest.The niche breadth of Q.liaotungensis' seedling was the highest in Q. liaotungensis forest on sunny slope and artificial P.tabulaeformis forest on shady slope,which are 0.79 and 0.63.There was significant difference among other community.The niche breadth of Q. liaotungensis' sapling was the highest in artificial P.tabulaeformis forest on suuny slope and in P. tabulaeformis+Q.liaotungensis mixed forest on shady slope,which are 1.00 and 0.83.There was significant difference among other community.The growth of P.tabulaeformis' seedling was adaptable not only to the environment condition of Q.liaotungensis forest on sunny slope but to that of artificial P.tabulaeformis forest on shady slope.The growth of P.tabulaeformis' sapling was adaptable not only to the environment condition of artificial P.tabulaeformis forest but to that of Q. liaotungensis forest on sunny slope.As a whole,artificial P.tabulaeformis forest had an important effect on the restoration of natural vegetation in this region.Artificial P.tabulaeformis forest and P. tabulaeformis+Q.liaotungensis mixed forest would have existed over a long period of time,while P.tabulaeformis+Q.liaotungensis mixed forest on sunny slope would have even more.
     (2) The niche overlap of Q.liaotungensis' seedling and sapling niche breadth is consistent in most cases,but some times is not consisten.The niche overlap of Q.liaotungensis' seedling were higher in artificial P.tabulaeformis forest on sunny slope and shady slope,which are 0.68 and 0.70. There was significant difference among other community on sunny slope,but there was significant difference between Q.liaotungensis' forest shady slope.On sunny slope,the niche overlap of P. tabulaeformis' seedling and sapling were higher in artificial P.tabulaeformis forest,which are 0.56 and 0.65.There was significant difference among other community,but there was significant difference between Q.liaotungensis' forest shady slope.On shady slope,the niche overlap of P. tabulaeformis' seedling and sapling were higher in P.tabulaeformis+Q.liaotungensis mixed forest, which are 0.64 and 0.61.
     (3) The niche breadth of Acer grosseri,A.ginnala,Carpinus turczaninowii and Toxicodendron vernicifluum's seedling,sapling and adult were higher than other trees in different community types on sunny slope and shady slope.They are the common companion species and have a wide distribution.The niche breadth of A.ginnala's seedling,which the sunny slope niche breadth was higher than shady slope in different community types,was contrary to Q.liaotungensis' seedling in different community.Because both A.ginnala's and Q.liaotungensis' seedling have a wide distribution,so the niche overlap between two was more higher than the niche overlap between P. tabulaeformi and A.ginnala's.But the he niche overlap between P.tabulaeformi and Q. liaotungensis' seedling was higher.
     (4) The analysis between tree seedlings and soil nutrient showed that the factor of influence on different trees seedling were difference.The factor of soil nutrient influence on Q.liaotungensis' seedling was organic matter.Along with the content of organic matter in soil increased its density decreases slowly,when the content of organic matter was 10g/kg,Q.liaotungensis' seedling density was to keep in a stable leve.And Q.liaotungensis' seedling density mainly concentrated in the organic matter for the 5~8 g/kg.The factor of soil nutrient influence on P.tabulaeformis seedling was available potassium.The content of available potassium in natural P.tabulaeformis forest was higher than that of artificial P.tabulaeformis forest,so when P.tabulaeformis as a restoration should be paid attention to investigating the available potassium content of cultivation.
     (5) Q.liaotungensis' seedlings were significantly positive correlated with Crataegus pinnatifid seedling,Pyrus betulaefolia seedlings and Toxicodendron vernicifluum seedlings(r=0.65,P<0.01; r=0.43,P<0.01;r=0.42,P<0.01).They were all negatively associated with the organic matter(r =-0.39,P<0.01;r=-0.42,P<0.05;r=-0.38,P<0.05).This shows that the soil nutrients were very important to tree regeneration,but also play a important role in the community composition and structure.P.tabulaeformis seedlings were negative correlated with correlation with A.ginnala seedlings(r=-0.54,P<0.01).At the same time,P.tabulaeformis seedlings and A.ginnala seedlings were statistically significantly correlated with available potassium content(r=0.42,P<0.01;r=-0.48,P<0.01).
     (6) The number of Q.liaotungensis' seedlings and P.tabulaeformis seedlings were gradually decreased as the age increasing,which respectively at the age of nine and eight to achieve a stability state.The mortality rate and killing valuable of Q.liaotungensisa seedling was higher at the age of six and eight,while the mortality rate and killing valuable of P.tabulaeformis seedling was higher at the age of three and seven.But the cause of their death needs further research.
引文
[1]李博.生态学[M].北京:高等教育出版社,2000.
    [2]尚玉昌.普通生态学[M].第二版.北京:北京大学出版社,2002
    [4]王伯荪,马曼杰.鼎湖山自然保护区森林群落的演变[J].热带亚热带森林生态系统研究,1982,(1):142-156.
    [6]王伯荪.植物群落学[M].北京:高等教育出版社,1987.
    [7]熊文愈,骆林川.植物群落演替研究概述[J].生态学进展,1989,6(4):229-235.
    [8]Mcintosh R P.Succession and ecological theory in forest succession and application[M].NewYork:Springer-Verlag,1981:10-23.
    [9]曲仲湘,文振旺.琅琊山林木现况分析[J].植物学报,1953,(3):349-369.
    [10]董厚德,唐炯炎.辽东山地“乱石窖”植被演替规律的初步研究[J].植物生态学与地植物学丛刊,1965,(1):117-130.
    [11]彭少麟.南亚热带森林群落动态学[M].北京:科学出版社,1996.
    [12]王伯荪,彭少麟.鼎湖山森林群落分析Ⅱ.物种联结性[J].中山大学学报(自然科学版),1983,(4):27-35.
    [13]王伯荪,彭少麟.鼎湖山森林群落分析Ⅳ.相似性与聚类分析[J].中山大学学报(自然科学版),1985,(1):31-38.
    [14]王伯荪,彭少麟.鼎湖山森林群落分析Ⅴ.线性演替系统与预测[J].中山大学学报版),1985,(4):75-80.
    [15]王伯荪,彭少麟.鼎湖山森林群落分析Ⅷ.生态优势度[J].中山大学学报(自然科学版),1986,(2):93-97.
    [16]彭少麟.广东亚热带森林群落的生态优势度[J].生态学报,1987,7(1):36-42.
    [17]彭少麟.森林群落稳定性与动态测度[J].广西植物,1987,7(1):67-72.
    [18]彭少麟,方炜.鼎湖山植被演替过程中椎栗和荷木种群的动态[J].植物生态学报,1995,16(1):111-115.
    [19]彭少麟,方炜,任海等.鼎湖山厚壳桂群落演替过程的组成和结构动态[J].植物生态学报,1998,22(3):245-249.
    [20]杨龙.梵净山黔稠林的结构与动态[J].植物生态学与地植物学丛刊,1983,(3):204-214.
    [21]朱守谦,杨业勤.贵州亮叶水青冈林的结构与动态[J].植物生态学与地植物学丛刊,1985,(3):183-190.
    [22]刘玉成.四川缙云山常绿阔叶林次生演替及其物种多样性的研究[J].武汉植物学研究,1993,11(4):327-336.
    [23]丛沛桐,赵则海,张文辉等.东灵山辽东栎群落演替的连续时间马尔可夫过程研究[J].木本植物研究,2000,20(4):438-443.
    [24]丁圣彦,宋永昌.常绿阔叶林演替过程中马尾松消退的原因[J].植物学报,1998,40(8):755-760.
    [25]王良衍,王希华.浙江天童国家森林公园木荷演替更新特性的研究[J].浙江林业科技,2002,22(1):14-17.
    [26]吴邦兴.云南哀牢山徐家坝中山湿性常绿阔叶林动态和节律的研究[J].植物学报,1995,37(12):969-977.
    [27]郭文增.雾灵山自然保护区的山杨林[J].河北林果研究,2001,16(2):118-123.
    [28]彭少麟.南亚热带森林群落动态学[M].北京:科学出版社,1996.
    [29]德利.关于生态场的几点评述[J].应用生态学报,2006,11(3):472-476.
    [30]邬建国.生态演替理论和模型[A].刘建国.当代生态学博论[C].北京:中国科学技术出版社,1992:49-64.
    [31]Brual F,Baudry J,Butet A,et al.Comparative biodiversity along a gradient of agriculture landscapes[J].Acta Ocology,1998,(19):47-60.
    [32]SANG Weiguo,CHEN Lingzhi,MA Keping.Research on successiomodel foroak of mongolian oak-korean pine(Quercus mongolica Pinus koraiensis)forest[J].Acta Botanica Sinica,1999,41(6):65-668.
    [33]张金屯.植被数量生态学方法[M].北京:中国科学技术出版社,1995.
    [34]李旭光,何维明.乔木种群循环更新的模型及研究进展[J].生态学杂志,1996,15(4):43-46.
    [35]彭少麟.森林群落波动性探讨[J].应用生态学报,1993,4(2):120-125.
    [36]彭少麟,王伯荪.鼎湖山森林群落的波动[J].生态科学,1988,(1):40-45.
    [37]王如松,马世骏.边缘效应及其在经济生态学中的应用[J].生态学杂志,1985,(2):38-42.
    [38]王伯荪,彭少麟.鼎湖山森林群落分析X.边缘效应[J].中山大学学报(自然科学版),1986,(4):52-56.
    [39]奚为民,钟章成,毕润成.四川缙云山亚热带常绿阔叶林林窗边缘效应的研究[J].植物生态学与地植物学学报,1993,17(3):232-242.
    [40]Bazzaz F A,Chiariello N R,Coley P D,et al.Allocating resources to reproduction and defense[J].BioScience,1987,37(1):58-67.
    [41]Bradshaw,A.Restoration of mined lands-using natural processes[J].Ecological Engineering,1997,(8):255-269.
    [42]王刚.植物群落中生态位重叠的计测[J].植物生态学与地植物丛刊,1984,8(4):329-334.
    [43]梁士楚.云贵鹅耳枥群落乔木种群生态位初探[J].广西植物,1994,14(3):227-230.
    [44]熊利民.缙云山常绿阔叶林建群种生态位的初步研究[J].西南师范大学学报,1988,13(增刊):101-106.
    [45]丛沛桐,颜廷芬,周福军等.东北羊草群落种群生态位重叠关系研究[J].植物研究,1999,1(2):213-219.
    [46]GrinnellJ.The niche relationships of the California thrasher[J].Auk.1917,21:364-382.
    [47]张金屯.数量生态学[M].北京:科学出版社,2004:110-113
    [48]谢正苗,吕军,俞劲炎等.红壤退化过程与生态位的研究[J].应用生态学报,1998,9(6):669-672.
    [49]王刚,杜国祯.鼢鼠土丘植被演替过程中物种的生态位分析[J].生态学杂志,1990,9(1):1-6.
    [50]余世孝,物种多维生态位宽度测定[J].生态学报,1994,14(1):32-39.
    [51]袁志忠,何丙辉.生态位理论及其在植物种群研究中的应用[J].福建林业科技,2004,31(2):123-127.
    [52]张金屯.数量生态学[M].北京:科学出版社,2004:110-119.
    [53]彭少麟,王伯荪.鼎湖山森林群落优势种群生态位重叠研究热带亚热带森林生态系统研究:3集[M].北京:科学出版社,1985:19-27.
    [54]余世孝.数学生态学导论[M].北京:科学技术文献出版社,1995:23-65.
    [55]吴刚,梁秀英,张旭东等.长白山红松阔叶林主要树种高度生态位的研究[J].应用生态学报,1999,10(3):262-264.
    [56]黄国胜,王雪军,魏建祥等.生态位在区域森林资源评价中的应用[J].林业资源管理,2003,23(3):33-35.
    [57]臧润国,蒋有绪,杨彦承.海南岛霸王岭热带山地雨林林隙更新生态位的研究[J].林业科学研究,2001,14(1):17-22.
    [58]龙翠玲.茂兰喀斯特森林林隙更新生态位的研究[J].山地农业生物学报,2006,25(4):302-306.
    [59]杨君珑,王辉,孙栋院.子午岭油松林主要种群更新生态位研究[J].林业资源管 理,2006,26(6):51-56.
    [60]王刚,梁学功,马波.沙漠植物的更新生态位[J].西北植物学报,1995,15(5):102-105.
    [61]王莹莹.长白山阔叶红松林更新生态位测度研究[D].博士论文,2005.
    [62]王刚,赵松龄,张鹏云等.关于生态位定义的探讨及生态位重叠计测公式改进的研究.生态学报,1984,4(2):119-127.
    [63]Abrams,P.Some eomments on measuring niche overlap[J].Ecology,1985,61(1):41-49.
    [64]Colwell,R.K,D.J.Futuyma.On the measurement of niche breadth and overlap[J].Eeology,1971,52(4):587-596
    [65]Hurlbert,S.H.The measurement of nicheoverlap and some relatives[J].Eeology,1978,59(Ⅰ):67-77.
    [66]Pielou,E.C.Niche width and niche overlap:A method for measuring them.Eeology[J].1972,53(4):687-692.
    [67]杨效文,马继盛.生态位有关术语的定义及计算公式评述[J].生态学杂,1992,11(2):44-49.
    [68]张庆费,由文辉,宋永昌.浙江天童植物群落次生演替与土壤肥力的关系[J].生态学报,1999,19(2):174-178.
    [69]West,D.C.Forest succession concept and applications[M].Springer-Verlag,NewYork.1981:185-211.
    [67]Huggett,R.J.Soil chronosequences,soil development,and soil evolution:a critical review[J].Catena,1998,32:155-172.
    [68]苏宝川.杉木人工纯林与混交林下土壤肥力分析[J].安徽农学通报,2007,13(1):138-139.
    [69]耿玉清,余新晓,孙向阳等.北京八达岭地区油松与灌丛林土壤肥力特征的研究[J].北京林业大学学报,2007,29(2):150-54.
    [70]蒋文伟,周国模,余树全等.安吉山地主要森林类型土壤养分状况的研究[J].水土保持学报,2004,18(4):73-76.
    [71]王清奎,汪思龙,邓仕坚等.亚热带地区杉木人工林和阔叶林土壤活性有机质研究[J].林业研究,2005,16(1):23-26.
    [72]王旭琴,戴伟,夏良放等.亚热带不同人工林土壤理化性质的研究[J].北京林业大学学报,2006,28(6):56-59.
    [73]戴文圣,黎章矩,程晓建等.香榧林地土壤养分状况的调查分析[J].浙江林学 院学报,2006,23(2):140-146.
    [74]何蓉,李玉媛,杨卫等.无量山自然保护区北段2种森林类型的土壤特性[J].西部林业科学,2004,33(4):7-12.
    [75]邹礼光.秃杉人工林林下植物和土壤肥力的研究[J].防护林科技.2005,(9):1-3.
    [76]胥辉,刘小菊,程洪文.思茅松林分土壤养分衰退的研究[J].西南林学院学报,2006,26(3):16-18.
    [77]蒋云东,李思广,杨春学等.茅松栽松留阔模式幼林期的土壤化学性质分析[J].西南林学院学报,2005,20(2):64-66.
    [78]胡亚利.杉木人工林土壤养分动态变化规律研究[D].北京林业大学,2007.
    [79]张源润,蒋齐,蔡进军等.山桃沙棘混交林养分状况研究[J].水土保持通报,2006,26(4):60-63.
    [80]温仲明,焦峰,赫晓慧等.黄土高原森林边缘区退耕地植被自然恢复及其对土壤养分变化的影响[J].草叶学报,2007,16(1):16-23.
    [81]侯琳,雷瑞德,王得祥等.黄龙山林区封育油松林土壤养分研究.西北农林科技大学学报(自然科学版),2007,35(2):63-68
    [82]E.Verkaik,F.Berendse,R.O.Gardner.Low soil water and nutrient availability below New Zealand kauri(Agathis australis(D.Don) Lindl.) trees increase the relative fitness of kauri seedlings[J].Plant Ecol,2007,(191):163-170.
    [83]魏晶,吴钢邓红兵等.长白山高山冻原生态系统土壤碳和养分储量的空间分布格局[J].林业研究,2004,15(4):249-254.
    [84]李亮亮,依艳丽,凌国鑫等.地统计学在土壤空间变异研究中的应用[J].西北农林科技大学学报(自然科学版),2007,35(2):265-268
    [85]郭晓敏,牛德奎,郭熙等.奉新毛竹林土壤养分空间变异性研究[J].植物营养与肥料学报,2006,12(3):420-425.
    [86]赵海霞,李波,刘颖慧等.皇甫川流域不同尺度景观分异下的土壤性状[J].生态学报,2005,25(8):2010-2018.
    [87]魏彦昌,阳志云,苗鸿等.尖峰岭自然保护区土壤性质空间异质性[J].生态学杂志,2007,26(2):197-203.
    [88]高俊峰,马克明,冯宗炜等.景观组成_结构和梯度格局对植物多样性的影响[J].生态学杂志,2006,25(9):1087-1094.
    [89]尚占环,姚爱兴,龙瑞军.山地荒漠草原植物群落多样性与环境因子动态关系研究[J].干旱区资源与环境,2005,19(2):163-168.
    [90]孙伟红,劳秀荣.英国对土壤性质_侵蚀及作物生产空间变化的研究[J].水土保持科技情报,2003,(1):4-7.
    [91]刘忠宽,智建飞,李英杰等.休牧后土壤养分空间异质性和植物群落多样性[J].河北农业科学,2004,8(4):1-8.
    [92]何艺玲.不同类型毛竹林林下植被的发育状况及其与土壤养分关系的研究[D].中国林业科学研究院,2000.
    [93]鲁绍伟,靳芳,余新晓等.中国森林生态系统保护土壤的价值评价[J].中国水土保持科学,2005,3(3):16-21.
    [94]马姜明,李昆.元谋干热河谷人工林的土壤养分效应及其评价[J].林业科学研究,2006,19(4):467-471.
    [95]余常兵,陈防罗,治建等.用土壤养分系统研究法评价杨树人工林土壤养分状况[J].林业研究,2004,15(4):298-300.
    [96]陈晓燕,史志民,何丙辉.巫溪县生态修复区植被覆盖对土壤养分及其有效性的影响[J].中国农学通报,2005,121(1):296-300.
    [97]杨涛,徐慧,李慧等.樟子松人工林土壤养分微生物及酶活性的研究[J].水土保持学报,2005,19(6):50-53.
    [98]曹慧,孙辉,杨浩.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109.
    [99]许景伟,王卫东,李成.不同类型黑松混交林土壤微生物、酶及其与土壤养分关系研究[J].北京林业大学学报,2000,22(1):51-55.
    [100]薛立,陈红跃,邝立刚.湿地松混交林地土壤养分_微生物和酶活性的研究[J].应用生态学报,2003,14(1):157-159.
    [104]Macarthur R H,Connell J H.The biology of populations[M].New York:Willey and Sons Press,1966:200.
    [105]班勇,徐化成.兴安落叶松老龄林分幼苗天然更新及微生境特点[J].林业科学研究,1995,8(6):660-664.
    [106]牛西午,丁玉川,徐强等.营养液不同磷浓度对柠条苗期植株生长发育的影响[J].西北植物学报,2003,23(4):622-627
    [107]顾云春.大兴安岭几个主要森林类型的天然更新[J].林业调查规划,1980,(4):21-27.
    [108]刘琪景,王战.长白山岳桦林倒木及其与更新的关系[J].林业系统研究,1992,(6):63-67.
    [109]Gibson D L,Good R E.The seedling habitat of Pinus echinata and Melampyrum linearein oak-pine forest of the New Jersey Pineland[J].Oikos,1987,(49):91-100.
    [110]杜亚娟,徐化成,于汝元.兴安落叶松林下植被、枯枝落叶层和动物对幼苗发生影响的研究[J].北京林业大学学报,1993,15(4):12-20.
    [111]韩有志,王政权.Effect of spatial heterogeneity on natural regeneration of Manchurian ash,China[J].林业研究,2000,11(2):89-94.
    [112]Vivian-Smith G..Microtopograhic heterogeneity and floristic diversity in experimental wetland communities[J].J.Ecol.,1997,85(1):71-81.
    [113]邹厚远,刘国彬,王晗生.子午岭林区北部近50年植被的变化发展[J].西北植物学报,2002,22(1):1-8.
    [114]李裕元,邵明安.黄土高原子午岭森林群落演替与结构特征演化[J].西北植物学报,2003,23(5):693-699.
    [115]李裕元,邵明安.子午岭植被自然恢复过程中植物多样性的变化[J].生态学报,2004,24(2):252-260.
    [116]范玮熠,王孝安,郭华.黄土高原子午岭植物群落演替系列分析[J].生态学报,2006,25(5):986-993.
    [117]张希彪,郭小强,周天林等.子午岭种子植物区系分析[J].西北植物学报,2004,24(2):267-274.
    [118]赵世伟,周印东,吴金水等.子午岭次生植被下土壤蓄水性能及有效性研究[J].西北植物学报,2003,23(8):1389-1392.
    [119]李师翁,刘立品.子午岭森林与灌丛植被的主要类型及特征的研究[J].西北植物学报,2004,24(2):275-280.
    [120]周印东,吴金水,赵世伟等.子午岭植被演替过程中土壤剖面有机质与持水性能变化[J].西北植物学报,2003,23(6):895-900.
    [121]张成娥,陈小莉,郑粉莉.子午岭林区不同环境土壤微生物生物量与肥力关系研究[J].生态学报,1998,18(2):218-222.
    [122]王辉,任继周.子午岭主要森林类型土壤种子库研究[J].干旱区资源与环境,2004,18(3):130-136.
    [123]孙晓霞,王孝安,郭华.黄土高原马栏林区植物群落多元分析与环境解释[J].西北植物学报,2006,26(1):0150-0156.
    [124]汪超,王孝安,郭华.黄土高原马栏林区主要森林群落物种多样性研究[J].西北植物学报,2006,26(4):0791-0797.
    [125]方坚,王孝安,郭华等.黄土高原马栏林区辽东栎种内、中间竞争研究[J].西北 植物学报,2007,27(2):0334-0339.
    [126]田丽,王孝安,郭华等.黄土高原马栏林区辽东栎更新特性研究[J].广西植物,2007,27(2):191-196.
    [127]李师翁,刘立品.子午岭森林与灌丛植被的主要类型及特征的研究[J].西北植物学报,2004,24(2):275-280.
    [128]徐振邦,代力民,陈吉泉等.长白山红松阔叶混交林天然更新条件的研究[J].生态学报.2001,21(9):1414-1420.
    [129]柳新伟,申卫军,张桂莲等.南亚热带森林演替植物幼苗生态位适应度模拟[J].北京林业大学学报,2006,28(1):1-6.
    [130]杨小波,张桃林,吴庆书.海南琼北地区不同植被类型物种多样性与土壤肥力的关系[J].生态学报,2002,22(2):190-196.
    [131]安树青,王峥峰,朱学雷等.土壤因子对次生森林群落演替的影响[J].生态学报,1997,17(1):45-50.
    [132]张继义,赵哈林,张铜会等.科尔沁沙地植物群落恢复演替系列种群生态位动态特征[J].生态学报,2003,23(12):2741-2746.
    [133]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978:63-151.
    [134]刘光崧,蒋能慧,张连第等.土壤理化分析与剖面描述[M].北京:中国标准出版社,1996:31-165.
    [135]鲍士旦.土壤农化分析[M].第三版.北京:中国农业出版社,2003:25-83.
    [136]臧润国,刘静艳等.林隙动态与森林生物多样性[M].中国林业出版社,1998:65-68.
    [137]汪超,王孝安,郭华等.不同种植年代油松林植物多样性及土壤养分变化[J].生态学杂志,2007,26(8):1182-1186.
    [138]欧斯汀HJ著.植物群落的研究[M].吴中伦译.北京:科学出版社,1962:236.
    [139]张希彪,郭小强,上官周平等.黄土丘陵子午岭油松天然林群落特征研究[J].植物研究,2006,26(2):169-175.
    [140]李裕元,邵明安.黄土高原子午岭森林群落演替与结构特征演化研究[J].西北植物学报,2003,23(5):693-699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700