表面均匀的、稳定的金膜的制备及其在表面增强拉曼光谱上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多年的研究表明,现已研制的SERS活性基底的种类主要有金属电极、金属溶胶、金属二维薄膜、化学刻蚀和化学沉积、双金属纳米粒子、富含结点的网络状结构、平板印刷及有序组装、针尖增强拉曼等作为探针分子用于表面增强拉曼光谱技术的检测。在这些基底中,两维的金属薄膜由于其具有稳定性、良好的重现性和高增强因子,因而被广泛的使用。在目前,有很多的方法来制备二维金属薄膜,例如:自组装法、电沉积法、模板法、光刻法、纳米印刷技术等。但后三种方法麻烦并且乏味,因此,自组装技术和电沉积技术由于其简便、并能够形成一个相对较为有序的形式,而成为一种制备二维金属膜的普遍方法。最近的研究表明,通过桥连剂链接ITO导电玻璃和金属纳米粒子可获得有序的二维金属膜,然而,要实现制备一种重现性好的SERS型活性基底仍然是一个艰巨的项目。
     使用植酸钠盐作为架桥剂,由于其结构中共有12个酸根和六个磷酸酯根,可与金属离子相互作用。基于以上的性质,通过调节植酸pH值,以不同pH条件下的植酸为桥连剂就可以准备了一种具良好重现性和SERS活性的金膜。在前两个工作中我们制备具有SERS活性的金膜所用到的衬底有ITO玻璃。目前,常用到的用来制备二维纳米薄膜的衬底材料有硅片、金属薄片以及氧化铟锡玻璃(ITO)。由于这些材料具有易碎,僵硬的特点,因此,限制了制备的二维纳米薄膜的应用。本论文最后一个工作尝试采用定性滤纸作为衬底材料制备二维纳米金膜。由于定性滤纸具有微米级的粗糙度和相互交错的纤维结构,用自组装方法在其表面吸附金纳米粒子,形成一层纳米级金薄膜,用于表面增强拉曼散射上研究。
Surface enhanced Raman scattering (SERS) spectroscopy as one of the most sensitive technologies for detection of adsorbed molecules on nanostructured metal surfaces at monolayer or sub-monolayer level has been broadly applied in chemistry, biology, and anti-corrosion of metal. Hence, preparation of the SERS-active substrate with reproducible and high Raman scattering enhancement in two-dimension becomes a key and attractive project for meeting the need of Raman chemical mapping or imaging. A lot of methods to prepare metal film or array have been investigated, such as self-assembly, template method, photolithography, nanoimprint lithography and so on.
     Inositol hexakisphosphoric molecules (shortly named as IP6) are easy to form IP6 micelles by their self-organization due to 6 phosphates of IP6 separately in the both sides of cyclohexane and IP6 micelles possess capability of capturing metal nanoparticles. Due to the existing fashion of inositol hexakisphosphoric molecule depending on the pH media, in present work, we adjust pH values of IP6 solutions for forming various structures of IP6-micelles films at the indium tin oxide (ITO) glass surfaces and then the resulting IP6-micelles film can capture gold nanoparticles (AuNPs) for two-dimensional SERS substrates. A group of materials contain foil, silicon wafer and ITO glass can be used as framework of two-dimensional metal film. At present, these substrate materials have put up satisfactory performance in the fields of SERS research.
引文
[1]Hai-Feng Yang, Jie Feng, Yan-Li Liu, et al. Electrochemical and Surface Enhanced Raman Scattering Spectroelectrochemical Study of Phytic Acid on the Silver Electrode[J]. J. Phys. Chem. B. 2004, 108:17412-17417.
    [2]曹晓卫,钱庆庆,邓卫芹,等.银电极表面异亮氨酸单分子膜结构和表面性质的表面增强拉曼光谱研究[J].化学学报. 2010, 68(2):107-104.
    [3]Rui Zhang, Ying Wen, Na Wang, et al. Insight in the Relationship between the Structure and Property of Methimazole Monolayers on a Silver Surface: Electrochemical and Raman Study[J]. J. Phys. Chem. B. 2010, 114:2450–2456.
    [4]Zhang L J, Wen Y, Pan Y C, Yang H F. 2-amino-5-(4-pyridinyl)-1, 3, 4-thiadiazole film at the silver surface: observation by Raman spectroscopy and electrochemical methods. Appl. Surf. Sci.[J].2011.
    [5]张丽君,宋巍,陈玲,章宗穰,杨海峰*.银电极上4-氨基安替比林原位表面增强拉曼光谱电化学.Electrochemistry(电化学)[J]. 2010,3(16):317-323.
    [6] Hua-Zhong Yu, Nan Xia, Zhong-Fan Liu. SERS Titration of 4-Mercaptopyridine Self-Assembled Monolayers at Aqueous Buffer/Gold Interfaces[J]. Anal. Chem., 1999, 71 (7): 1354–1358.
    [7] Hui Chu, Haifeng Yang, Shuangyan Huan, Guoli Shen, Ruqin Yu. Orientation of 6-Mercaptopurine SAMs at the Silver Electrode as Studied by Raman Mapping and in Situ SERS[J]. J. Phys. Chem. B, 2006, 110 (11): 5490–5497.
    [8] García-Serrano J, Pal U, Herrera A M, Salas P,ángeles-Chávez C. One-Step―Green‖Synthesis and Stabilization of Au and Ag Nanoparticles Using Ionic Polymers. Chem. Mater.[J]. 2008, 20(16): 5146-5153.
    [9]马姗姗,张迎九,胡晓阳.一维铜(核)-镍(壳)纳米结构的制备及其表面增强拉曼光谱[J].物理化学学报. 2009, 25(7):1337-1341
    [10]崔丽,任斌,田中群. DNA碱基与高氯酸根共吸附行为的表面增强拉曼光谱研究[J].物理化学学报. 2010, 26(2):397-402.
    [11]马秋梅,王艳伟,焦卓锋.纳米粒子体系中染料分子的表面增强拉曼光谱[J].山东科学.2010,23(2):28-32.
    [12]李东飞,曹彪,杨光.银胶溶液pH值对结晶紫的表面增强拉曼光谱增强效果的影响[J].光散射学报.2009,21(2):133-135.
    [13] Na Wang, Ying Wen, Yao Wang, et al. Facile and controlled synthesis of self-conjugated Ag@IP6-micelle compositions for surface-enhanced spectroscopic application[J]. J. Mater. Chem., 2010, 20:2317–2321.
    [14]Lei Wang, Hailong Li, Jingqi Tian, Xuping Sun. Monodisperse, Micrometer-Scale, Highly Crystalline, Nanotextured Ag Dendrites: Rapid, Large-Scale, Wet-Chemical Synthesis and Their Application as SERS Substrates[J].ACS Appl. Mater. Interfaces, 2010, 2 (11): 2987–2991.
    [15] Jianping Xie, Qingbo Zhang, Jim Yang Lee, Daniel I C Wang. The Synthesis of SERS-Active Gold Nanoflower Tags for In Vivo Applications[J]. ACS Nano, 2008, 2 (12): 2473–2480.
    [16] Gianni Cardini, Maurizio Muniz-Miranda, Vincenzo Schettino. SERS and DFT Study on 4-Methylpyridine Adsorbed on Silver Colloids and Electrodes[J]. J. Phys. Chem. B, 2004, 108 (44): 17007–17011.
    [17] Wenbing Li, Yanyan Guo and Peng Zhang. SERS-Active Silver Nanoparticles Prepared by a Simple and Green Method[J]. J. Phys. Chem. C, 2010, 114 (14): 6413–6417.
    [18] Masayuki Futamata, Yei-Yei Yu, Tomomi Yanatori, Takeshi Kokubun. Closely Adjacent Ag Nanoparticles Formed by Cationic Dyes in Solution Generating Enormous SERS Enhancement[J]. J. Phys. Chem. C, 2010, 114 (16): 7502–7508.
    [19] Getahun Merga, Nuvia Saucedo, Laura C. Cass, James Puthussery, Dan Meisel.―Naked‖Gold Nanoparticles: Synthesis, Characterization, Catalytic Hydrogen Evolution, and SERS[J]. J. Phys. Chem. C., 2010, 114 (35): 14811–14818.
    [20]康颐璞,司民真,李清玉,等.水稻白叶枯病菌生理小种在纳米银膜上的表面增强拉曼光谱初探[J].光谱学与光谱分析. 2010, 30(12):372-375.
    [21] Tian Z Q, Ren B, Wu D Y. Surface-Enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures[J]. J. Phys. Chem. B 2002, 37, 9963-9983.
    [22]乔世宝,司民真,刘仁明,等.纳米银膜的制备及其表面增强拉曼光谱研究[J].光散射学报. 2009, 21(2):129-131.
    [23] Kantarovich K, Tsarfati I, Gheber L A, Haupt K. Writing Droplets of Molecularly Imprinted Polymers by Nano Fountain Pen and Detecting Their Molecular Interactions by Surface-Enhanced Raman Scattering[J]. Anal. Chem. 2009, 81:5686–5690.
    [24]乔世宝,康颐璞,司民真.人血红细胞在纳米银膜上的表面增强拉曼光谱研究[J].光散射学报. 2010, 22(2):133-136.
    [25]卜雅丽,宦双燕,刘湘江,等.均匀表面增强活性基底上孔雀石绿的SERS[J].上海师范大学学报. 2008, 37(4):390-395.
    [26] Liao Q, Mu C, Xu D S, Ai X C. Gold Nanorod Arrays with Good Reproducibility for High-Performance Surface-Enhanced Raman Scattering[J]. Langmuir. 2009, 25:4708–4714.
    [27]翟晓凤,慕成,徐东升,等.膜结构对金纳米线阵列表面增强拉曼散射的影响[J].光谱学与光谱分析. 2008, 28(10):2329-2332.
    [28] Jesse Theiss, Prathamesh Pavaskar, Pierre M, Echternach, Richard E, Muller, Stephen B, Cronin Plasmonic. Nanoparticle Arrays with Nanometer Separation for High-Performance SERS Substrates[J].Nano Lett., 2010, 10 (8):2749–2754.
    [29] Anderson D J, Moskovits M. A SERS-Active System Based on Silver Nanoparticles Tethered to a Deposited Silver Film[J]. J. Phys. Chem. B, 2006, 110 (28): 13722–13727.
    [30] Liu Y-J, Hsiao, Yun Chu, Zhao Y-P. Silver Nanorod Array Substrates Fabricated by Oblique Angle Deposition: Morphological, Optical, and SERS Characterizations[J]. J. Phys. Chem. C., 2010, 114 (18): 8176–8183.
    [31] Glauco R Souza, Carly S Levin, Amin Hajitou, Renata Pasqualini, Wadih Arap, J Houston Miller. In Vivo Detection of Gold?Imidazole Self-Assembly Complexes: NIR-SERS Signal Reporters[J].Anal. Chem., 2006, 78 (17): 6232–6237.
    [32] He L L, Kim N J, Li H. Use of a Fractal-like Gold Nanostructure in Surface-Enhanced Raman Spectroscopy for Detection of Selected Food Contaminants[J]. J. Agric. Food Chem. 2008, 56:9843–9847.
    [33] Kiang Wei Kho, Ze Xiang Shen, Hua Chun Zeng, Khee Chee Soo, Malini Olivo. Deposition Method for Preparing SERS-Active Gold Nanoparticle Substrates[J]. Anal. Chem., 2005, 77 (22): 7462–7471.
    [34]Gutes A, Carraro C, Maboudian R. Silver Nanodesert Rose as a Substrate for Surface-Enhanced Raman Spectroscopy[J]. Applied Materials & Interfaces. 2009, 1: 2551–2555.
    [35] Ji N, Ruan W D, Wang C X, Lu Z C. Fabrication of Silver Decorated Anodic Aluminum Oxide Substrate and Its Optical Properties on Surface-Enhanced Raman Scattering and Thin Film Interference[J]. Langmuir 2009, 25:11869–11873.
    [36] Ward D R, Grady N K, Levin C S, Halas N J. Electromigrated Nanoscale Gaps for Surface-Enhanced Raman Spectroscopy[J]. Nano Lett. 2007, 7:1396-1400.
    [37]Nahla A. Abu Hatab, Jenny M. Oran and Michael J. Sepaniak. Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing[J]. ACS Nano, 2008, 2 (2): 377–385.
    [38] Gopinath A, Boriskina S V, Premasiri W R, Ziegler L, Reinhard B M. Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing[J]. Nano Lett. 2009, 9:3922-3929.
    [39] Ramon Alvarez-Puebla, Bo Cui, Juan-Pablo Bravo-Vasquez, Teodor Veres, Hicham Fenniri. Nanoimprinted SERS-Active Substrates with Tunable Surface Plasmon Resonances[J]. J. Phys. Chem. C, 2007, 111 (18): 6720–6723.
    [40]Li M D, Cui Y, Gao M X, Luo J, Ren B. Clean Substrates Prepared by Chemical Adsorption of Iodide Followed by Electrochemical Oxidation for Surface-Enhanced Raman Spectroscopic Study of Cell Membrane[J]. Anal. Chem. 2008, 80:5118–5125.
    [41]Pavel I, McCarney E, Elkhaled A, Morrill A, Plaxco K. Label-Free SERS Detection of Small Proteins Modified to Act as Bifunctional Linkers[J]. J. Phys. Chem. C 2008, 112:4880-4883.
    [42]Huo S J, Li Q X, Yan Y G, Chen Y, Cai W B, Xu Q J. Tunable Surface-Enhanced Infrared Absorption on Au Nanofilms on Si Fabricated by Self-Assembly and Growth of Colloidal Particles[J]. J. Phys. Chem. B 2005, 109:15985-15991.
    [43]Wang N, Yang H F, Zhu X, Zhang R. Wang Y. Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surfaceenhanced Raman scattering substrate[J]. Nanotechnology 2009, 20:315603/1-315603/6.
    [44]Brigaud A B, Fauconnier G C. 31P NMR, potentiometric and spectrophotometric studies of phytic acid ionization and complexation properties towerd Co2+, Ni2+, Cu2+, Zn2+, and Cd2+[J]. J. Inorg. Biochem. 1999, 75: 71-78.
    [45]Notoya T, Alego V O, Schweinsberg D P. The Corrosion and Polarization Behaviour of Copper in Domestic Water in the Presence of Ca, Mg and Na Salt of Phytic Acid[J]. Corrosion Science 1995, 37: 55-65.
    [46]Bauman A T, Chateauneuf G M, Boyd B R, Brown R E. Conformational Inversion Processes in Phytic Acid: NMR Spectroscopic and Molecular Modeling Studies. Tetrahedron Lett[J]. 1999, 40:4489-4492.
    [47]朱自莹,顾仁敖,陆天虹.拉曼光谱在化学中的应用[M].沈阳:东北大学出版社. 1998.
    [48] Raman C V, Krishman K S. A new type of secondary radiation. Nature[J]. 1928, 121(3048): 501-502, b. Raman C V A. change of wavelength in light scattering. Nature[J]. 1928, 121(3049): 619-620.
    [49]潘家来.激光拉曼光谱在有机化学上的应用[M].北京:化学工业出版社,1986, 16-20.
    [50] Raman C V. A new radiation. Indian J. Phys. [J].1928, 2(1): 387-398.
    [51]吕小虎.分子光谱分析新法引论[M].安徽:中国科技大学出版社,1992. 16-
    [52]郑旋顺.激光拉曼光谱学[M].上海:上海科技出版社,1985. 22-29.
    [53] Schrader F P, Conroy N, Patel V. Some consequences of the Fourier transform in Fourier transform Raman spectroscopy. Spetrochimi. Acta. [J].1993, 49A: 657-666.
    [54]田中群,林图强,连渊智. H2O的表面增强Raman散射效应——在高浓度的ClO4-体系.国科学(B辑)[J]. 1990, 03: 24-30.
    [55]安保山,李立琳,王培杰.银纳米颗粒单层膜的组装及其SERS特性研究[J].纳米加工工艺.20107(4):36-39.
    [56] James A, Hutchison S P, Centeno H O. Subdiffraction Limited, Remote Excitation of Surface Enhanced Raman Scattering[J]. Nano Lett, 2009, 9 (3):995–1001.
    [57] Wei L, Pedro H C, Camargo, Xianmao L. Dimers of Silver Nanospheres: Facile Synthesis and Their Use as Hot Spots for Surface-Enhanced Raman Scattering[J]. Nano Lett., 2009, 9 (1): 485–490.
    [58] Sarah M, Stranahan, Katherine A. Willets Super-resolution Optical Imaging of Single-Molecule SERS Hot Spots[J]. Nano Lett., 2010, 10 (9): 3777–3784.
    [59] Tao Chen, Hong Wang, Gang Chen, Yong Wang, Yuhua Feng, Wei Shan Teo, Tom Wu, Hongyu Chen. Hotspot-Induced Transformation of Surface-Enhanced Raman Scattering Fingerprints[J].ACS Nano, 2010, 4 (6): 3087–3094.
    [60]R C Maher, S A Maier, L F Cohen, L Koh, A Laromaine, J A G Dick, M M Stevens. Exploiting SERS Hot Spots for Disease-Specific Enzyme Detection[J]. J. Phys. Chem. C, 2010, 114 (16): 7231–7235.
    [61]覃奇贤.电镀原理与工艺[M].天津:天津科学技术出版社,1993.25-30.
    [62]范利平,成鸣飞,方靖淮.基于铝片生长的金颗粒膜的表面增强拉曼光谱活性研究[J].南通大学学报. 2008, 7(4):70-72.
    [63] Sheng-Juan Huo, Qiao-Xia Li, Yan-Gang Yan, et al. Tunable Surface-Enhanced Infrared Absorption on Au Nanofilms on Si Fabricated by Self-Assembly and Growth of Colloidal Particles[J]. J. Phys. Chem. B. 2005, 109:15985-15991.
    [64]Ming-De Li, Yan Cui, Min-Xia Gao, et al. Clean Substrates Prepared by Chemical Adsorption of Iodide Followed by Electrochemical Oxidation for Surface-Enhanced Raman Spectroscopic Study of Cell Membrane[J]. Anal. Chem. 2008, 80, 5118–5125.
    [65] Shan C S, Li F H, Yuan F Y, Yang G F. Size-controlled synthesis of monodispersed gold nanoparticles stabilized by polyelectrolyte-functionalized ionic liquid[J]. Nanotechnology 2008, 19: 285601/1-285601/6.
    [66]SLIMESTAD R, FOSSEN T, V?GEN I M. Onions: A Source of Unique Dietary Flavonoids[J]. J. Agric. Food Chem. 2007, 55: 10067–10080.
    [67]Viswanathan P, Sriram V, Yogeeswaran G. Sensitive Spectrophotometric Assay for 3-Hydroxy-Substituted Flavonoids, Based on Their Binding with Molybdenum, Antimony, or Bismuth[J]. J. Agric. Food Chem. 2000, 48: 2802-2806.
    [68]Podstawka E, Niaura G, Proniewicz L M. Potential-Dependent Studies on the Interaction between Phenylalanine-Substituted Bombesin Fragments and Roughened Ag, Au, and Cu Electrode Surfaces[J]. J. Phys. Chem. B. 2010, 114: 1010–1029.
    [69]Cherney D P, Conboy J C, Harris J M. Optical-Trapping Raman Microscopy Detection of Single Unilamellar Lipid Vesicles[J]. Anal. Chem. 2003, 75: 6621-6628.
    [70]Teslova T, Corredor C, Livingstone R, Spataru T, Birke R L, Lombardi J R. Raman and surface-enhanced Raman spectra of flavone and several hydroxy derivatives[J]. J. Raman Spectrosc. 2007, 38:802–818.
    [71] Ming-De Li, Yan Cui, Min-Xia Gao, et al. Clean Substrates Prepared by Chemical Adsorption of Iodide Followed by Electrochemical Oxidation for Surface-Enhanced Raman Spectroscopic Study of Cell Membrane[J]. Anal. Chem. 2008, 80, 5118–5125.
    [72] Chang H. Lee, Limei Tian, Srikanth Singamaneni. Paper-Based SERS Swab for Rapid Trace Detection on Real-World Surfaces[J]. Appl. Mater. Interface. 2010, 12(2), 3429–3435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700