新型扩张式腰椎椎间融合器的研制和相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研制一种新型微创化具有高度自稳性能的融合器,单独应用不附加椎弓根螺钉固定,并评价其生物力学稳定性。方法通过测量国人腰椎干燥标本和活体MRI获得与植入操作及cage设计有关的解剖数据,据此设计具有坚强的界面稳定性能和自稳性能的扩张式融合器。通过体外生物力学实验和腰椎椎间融合三维有限元模型分析评价比较扩张式融合器与圆柱状(Interfix)和箱形融合器(Telamon)的生物力学稳定性和自稳性能。同时分析融合器的应力分布情况。构建山羊侧后入路腰椎椎间融合模型以及研究单侧关节突关节切除对椎间融合影响情况。结果研制的扩张式融合器箱形体为主体,上下表面分布长倒齿,在植入椎间隙后,通过内芯将主体前部分向四周撑开扩张,同时将倒齿结构牢固地嵌入到骨性终板中。最大扩张角度为8°,设计的新型融合器型号分为:7、8、9、10mm规格。Expended组在前屈、后伸、侧屈和旋转各种状态下ROM值均小于Interfix组和Telamon组,扩张式融合器最大拔出力分别比Telamon和Interfix高98.1%和32.4%。有限元模型中扩张式融合器位移最小,平均0.085mm(左旋0.05mm~前屈0.11mm),其次是Interfix,Telamon位移最大。动物实验表明切除单侧关节突关节将显著影响椎间融合。结论新型扩张式融合器具有良好的界面稳定性能和自稳性能,在适应证下具有一定的临床应用价值。
Objective To design a new type cage with enough initial stability, without pedicle screw fixation and evaluate the biomechanics stability. Methods The parameters related to new type cage design were obtained from anatomic measurements of lumbar specimen and human MRI scans. At the basis of the parameters, the new expended cage was designed. The biomechanics in vitro and finite element model were used to investigate the difference of biomechanical stability and self-stability three cages including: expended cage, threaded cage (Interfix) and impacted cage (Telamon). The goat latero-posterior lumbar intervertebral fusion model was established and compared with the results of groups interbody fusion with different excision rang of zygapophysial joints. Result The new type cage was designed nearly cuboid before expand during implantation procedure, then expanded , by impulsing the bolt in the posterior part of the cage, to increase the cage (intervertebral height and the contact area); teeth(height 1.5mm) on the contact surface. The expended angle was 8°, and the pattern had four kinds( 7,8,9,10mm) . Expended cage significantly decreased the ROM in flexion , extention ,lateral bending and rotation compared with Interfix and Telamon. The median pullout force of expended cage was 98.1% and 32.4% more than those of Telamon and Interfix respectively. The most dislodgement of cages were in rotation and the least were in flexion and extention. The median dislodgement of expended was least(0.085mm, 0.05mm in left rotation~0.11mm in flexion), compared to the other two type cages. The animal test showed zygapophysial joint play an important role in interbody fusion. Conclusion Theoretically the new type expended cage could be used alone without posterior pedicle screw fixation because of itself good biomechanical stability and self-stability.
引文
1. Cloward RB. The treatment of ruptured intervertebral disc by vertebral body fusion. Ann Surg, 1952,136(6): 987-9.
    2.Kim SS, Michelsen CB. Revision surgery for failed surgery syndrome. Spine, 1992, 17(8): 957 -60.
    3.Fraser RD. Interbody, posterior, and combined lumbar fusions. Spine,1995,20(24 Suppl): 167-7.
    4.Summers BN, Eisenstein SM. Donor site pain from the ilium complication of lumbar spine fusion. J Bone Joint Surg,1971(4):677-80.
    5. Damien CJ, Parsons JR. Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater, 1991,2(3), 187-208.
    6.Oxland TR, Lund T. Biomechanics of stand-alone cages and cages in combination with posterior fixation:a literature review.Eur spine J,2000, 9 Suppl 1:95-101.
    7.Weiner BK, Fraser RD. Spine update lumbar interbody cages. Spine,1998,23(5):634-44.
    8.Kim Y.Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segments. Spine, 2001, 26(13):1437-42.
    9.Hitchon PW, Goel V, Rogge T, et al.Spinal stability with anterior or posterior ray threaded fusion cages.J Neurosurp, 2000, 93(1 Suppl): 102-8.
    10.Kanayama M, Cunningham BW, Haggerty CJ, et al. In vitro biomechanical investigation of the stability and stress-shielding of lumbar literbody fusion devices.J Neurosurg,2000,93: 259-65.
    11. Weiner BK, Fraser RD. Spine update lumbar interbody cages.Spine, 1998,23(5): 634-40.
    12. Ray CD, Blumenthal S, Klara P, et al. Interbody cages. J Neurosurg, 2000, 93(2 Suppl): 338-40.
    13.张春才,海涌,侯铁胜,等. BAK椎间融合器治疗退行性下腰椎失稳症的临床初步报告.中国矫形外科杂志,2000,7(4):346-8.
    14.赵杰,王新伟.斜向单放BAK植入后路腰椎椎体间融合术的生物力学及临床研究.中国脊柱脊髓杂志, 2000, 10(4):208-11.
    15.赵杰,海涌.侧后方斜向植入单枚BAK的腰椎椎体间融合术:临床初步报告.第二军医大学学报,2000,21(1):77-80.
    16.Fuji T,Oda T,Kato Y,Fujita S, et al.Posterior lumbarinterbody fusion using titanium cylindrical threaded cages:is optimal interbody fusion possible without other instrumentation.J Orthop Sci.2003,8(2):142-7.
    17.Abumi K, Panjabi M, Kramer K, et al. Biomechanical evaluation of 1umhar spinal stability after graded facetectomies. Spine,1990;15(11):1142-7.
    18. Sharma M, Langrana NA, Podriguez J. Role of ligaments and facets in lumbar spinal stability. Spine, 1995; 20(8):887-90.
    19. Zhou Yue, Luo Gang, Chu Tongwei, et al. Biomechanical change of lumbar unilateral graded facetectomy and strategies of its microsurgical reconstruction: report of 23 cases. Zhanghua Yi Xue Za Zhi . 2008,87(19):1134–8.
    20.蔡维山,郭东明,刘恩志,等.后路可扩张型椎体间融合笼治疗退行性下腰椎不稳症.广东医学,2007,28(5):764-6.
    21.钟波夫,徐中和,郭东明,等.可扩张型腰椎椎问融合器在退行性腰椎疾病中的应用评价.中国临床解剖学杂志,2007,25(3):344-6.
    22.董健文,戎利民,蔡道章,等.单独置入扩张型椎间融合器再次修复复发性腰椎间盘突出症重建腰椎稳定性.中国组织工程研究与临床康复,2008,12(26):5015-8.
    23.文益民,蓝旭,张军华,等.扩张型椎间融合器治疗腰椎不稳定的临床观察.中国矫形外科杂志,2007,15(21):1604-6.
    1.Shaw JA, Wilson SC, Bruno A, et al. Comparison of primate and canine models for bone ingrowth experimentation, with reference to the effect of ovarian function of bone ingrowth potential. J Orthop Res, 1994,12(2):268–73.
    2. Schlegel KF, Pon A. The biomechanics of posterior lumbar interbody fusion (PLIF) in spondylolisthesis. Clin Orthop Relat Res, 1985,(193): 115-9.
    3. Wetzel FT, LaRocca H. The failed posterior lumbar interbody fusion. Spine,1991;16(7): 839-45.
    4.靳安民,袁野,曹虹等.单双侧小关节分级切除的有限元分析.中国临床解剖学杂志, 2002,20(6):473-4
    5. Hedman TP, Fernie GR. Mechanical response of the lumbar spine to seated postural loads. Spine, 1997, 22(7):734-43.
    6. Sharma M, Langrana NA, Rodriguez J. Role of ligaments and facets in lumbar spinal stability. Spine, 1995, 20(8):887-900.
    7.董凡,侯筱魁.小关节在腰椎结构刚度中的作用.中华外科杂志.1993,31(7):417-20.
    8.陈其听,陈维善,徐少文,等.下腰椎疾患的腰椎小关节角度变化规律及临床意义.中华骨科杂志,2000, 20: 55-7.
    9.Wong HK, Goh JCH, Goh PS. Paired cylindrical interbody cage fit and facetectomy in posterior lumbar interbody fusion in an Asian population. Spine, 2001,26(5): 572-7.
    10.王静成,陶玉平,吴洪海,等.下腰椎骶椎相关结构的测量与单枚斜向椎间融合器的应用研究.解剖与临床,2002,7(3): 80-2.
    11.Abumi K, Panjabi M, Kramer K, et al. Biomechanical evaluation of 1umhar spinal stability after graded facetectomies. Spine,1990;15(11):1142-7
    12. Zhou Yue, Luo Gang, Chu Tongwei, et al. Biomechanical change of lumbar unilateral graded facetectomy and strategies of its microsurgical reconstruction: report of 23 cases . Zhonghua Yi Xue Za Zhi. 2007,87(19):1334-8.
    13. Caspar W. Anterior cervical fusion and inerbody stabilization with thetrapezial osteosynthetic plate technique. AESCLAP-Wissenschatliche information imselbstverlag der AESCULAP AG, Tuttlingen Germany: Tuttenlingen Press, 1993, 73-5.
    14. Mizrahi J, Silva MJ, Hayes WC. Finite element stress analysis of simulated metastatic lesions in the lumbar vertebral body. Spine, 1992,14(6):467-75.
    15. Vesterby A, Mosekilde L, Gundersen HJG, et al. Biologically meaningful determinants of the vitro strength of lumbar vertebra. Bone, 1992,12:219-24.
    16. Yoganandan N, Myklebust J, Cusick J. Functional biomechanics of the thoracolumbar vertebral cortex. Clincical Biomechanics,1988,3:11-8.
    17. Kozak JA, Heilman AE, O' Brien JP. Anterior lumbar fusion options. Technique and graft materials. Clin Orthop,1994,(300):45-51.
    18. Grobler LJ, Robertson PA, Novotny JE, et al. Etiology of spondylolisthesis:assessment of the role played by lumbar facet joint morphology. Spine, 1993,18(1):80-91.
    1.张亚峰,杨惠林,唐天驷等.后路椎体间融合术后融合器脱出的原因及其翻修术.中国脊柱脊髓杂志,2006, l6(12):909-12.
    2.任先军,焦文仓.椎体终板的解剖与椎间植骨融合的相关性研究.中国矫形外科杂志,2002, 9(6): 590-2.
    3.Hollowell JP, Vollmer DG, Wilson CR, et al. Biomechanical analysis of thoracolumbar interbody constructs: How important is the endplate? Spine, 1996,21(9):1032-6.
    4.Kozak JA,Heilman AE, O'Brien JP. Anterior lumbar fusion options. Technique and graftmaterials. Clin Orthop, 1994,(300):45-51.
    5.Oki S, Matsuda Y, Shibala T, et al. Morphologic differences of the vascularbuds in the vertebral endplate: Scanning electron microsopic study. Spine, 1996,21:174-7.
    6.Silva MJ. Wang C, Keaveny TM,et al .Direct and computed tomography thickness measurements of the human lumbar vertebral shell and endplate. Bone, 1994,15(4): 409-14.
    7.Lim TH, Kwon H, Jeon CH,et al .Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion. Spine ,2001,2:951-6.
    8.Emey SE, Boleta MJ,Banks MA, et al .Robinson anterior cervical fusion comparison of the standard and modified techniques. Spine,1994, 19(6):660-3.
    9. Grant JP, Oxland TR, Dvorak ME. Mapping the structural properties of the lumbsacral vertebral endplat. Spine, 2001,26(8):889-96.
    10.Grant JP, Oxland TR, Dvorak MF, et al. The effects of bone density and disc degeneration on the structural property distributions in the lowerlumbar vertebral endplates. Orthop Res,2002,20(5):1115-20.
    11.Zhou Y, Luo G, Chu TW, et al. Biomechanical change of lumbar unilateral graded facetectomy and strategies of its microsurgical reconstruction: report of 23 cases. Zhonghua Yi Xue Za Zhi. 2007 , 87(19):1334-8.
    1. Kanayama M, Cunningham BW, Haggerty CJ, et al. In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. J Neurosurg, 2000, 93(2 Suppl): 259 -65.
    2. Glazer PA, Colliou O, Klisch SM, et al. Biomechanical analysis of multilevel fixation methods in the lumbar spine. Spine,1997,22(2):171-82.
    3. Nibu K, Panjabi MM,Oxland T, et al. Multidirectional stabilizing potential of BAK interbody spinal fusion system for anterior surgery.Spinal disord, 1997, 10(4):357-62.
    4. Oxland TR, Hoffer Z, Nydegger T, et al. A comparative biomechanical investigation of anterior lumbar interbody cages: central and bilateral approaches. J Bone joint surg Am,2000, 82(3): 383- 93.
    5. Rathonyi GC, Oxland TR, Gerich U, et al. The role of supplemental translaminar screws in anterior lumbar interbody fixation:a biomechanical study. Eur Spine J, 1998, 7(5):400-7.
    6. Edwards WT. Biomechanics of the spine: spine stabilization. How much is enough? North American Spine Society. Monterey, CA, 1990.
    7. Edward WT, Hayes WC, White AA,et al. Variation of lumbar spine stiffness with load. JBiomech Eng. 1987,109(1):35–42.
    8.Gurr KR, McAfee PC, Shih CH. Biomechanical analysis of anterior and posterior instrumenttation systems after corpectomy. J Bone Joint Surg Am, 1988,70(8):1182–91.
    9. Gurr KR, McAfee PC, Shih CM. Biomechanical analysis of posterior instrumentation systems after decompressive laminectory. J Bone Joint Surg Am. 1988,70(5):680–91.
    10. Gurr KR, McAfee PC, Warden K, et al. Roentgenographic and biomechanical analysis of lumbar fusion: A canine model. J Orthop Res 1989,7:838-48.
    11.Krijnen MR; Mensch D; van Dieen JH, et al. Primary spinal segment stability with a stand-alone cage: in vitro evaluation of a successful goat model. Acta Orthop. 2006 ,77(3): 454-61
    12.McAfee PC, Farey ID, Suttterlin CE,et al. The effect of spinal implant rigidity on vertebral bone density. Acanine model. Spine, 1991,16(6 Suppl):190–7.
    13.McAfee PC, Farey ID, Suttterlin CE,et al. 1989 Volvo Award in basic science. Device-related osteoporosis with spinal instrumenttation. Spine 1989,14(9):919–26.
    14. Ha KY, Schendel MJ, Lewis JL,et al. Effect of immobilization and configuration on lumbar adjacent-segment biomechanics. J Spinal Disord 1993,6(2):99–105.
    15. Nagata H, Schendel MJ, Transfeldt EE, et al. The effects of immobiliza-tion of long segments of the spine on the adjacent and distal facet force and lumbosacral motion. Spine,1993,18(16):2471–9.
    16. Weiner BK, Fraser RD. Spine update lumbar interbody cages.Spine, 1998,23(5): 634-40.
    17. Ray CD, Blumenthal S, Klara P, et al. Interbody cages. J Neurosurg, 2000, 93(2 Suppl): 338-40.
    18.张春才,海涌,侯铁胜,等. BAK椎间融合器治疗退行性下腰椎失稳症的临床初步报告.中国矫形外科杂志,2000,7(4):346-8.
    19.赵杰,王新伟.斜向单放BAK植入后路腰椎椎体间融合术的生物力学及临床研究.中国脊柱脊髓杂志, 2000, 10(4):208-11.
    20.赵杰,海涌.侧后方斜向植入单枚BAK的腰椎椎体间融合术:临床初步报告.第二军医大学学报,2000,21(1):77-80.
    21. Eck KR, Bridwell KH, Ungacta FF, et al. Analysis of titanium mesh cages in adults with minimum two-year follow-up. Spine, 2000,25(18): 2407–15.
    22. Kuslich SD, Danielson G, Dowdle JD, et al. Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine, 2000,25(18):2656–62.
    23. Kuslich SD, Ulstrom CL, Griffith SL, et al.The Bagby and Kuslich method of lumbar interbody fusion. History, techniques, and 2-year follow-up results of a United States prospective, multicenter trial. Spine, 1998,23(11):1267–78.
    24. Pitzen T, Geisler FH, Matthis D, et al .Motion of threaded cages in posterior lumbar interbody fusion. Eur Spine J,2000,9(6): 571–6.
    25. Goh JCH, Wong HK, Thambyah A, et al. Influence of PLIF cage size on lumbar spine stability. Spine, 2000, 25(1):35-40.
    26. Schlegel KF, Pon A. The biomechanics of posterior lumbar (PLIF) spondylolisthesis. Clin Orth, 1985,(193):115-9.
    27. Tencer AF, Hampton D, Eddy S. Biomechanical properties of threaded inserts for lumbar interbody spinal fusion.Spine, 1995, 20(22):2408-14.
    28. Yang KH, King AL. Mechanism of facet local transmission as a hypothesis for low- back pain. Spine, 1984,9(6):557-65.
    29. Sharma M, Langrana NA, Podriguez J. Role of ligaments and facets in lumbar spinal stability. Spine 1995, 20(8):887-900
    30. Grobler LJ, Robertson PA, Novotny JE, et al. Etiology of spondylolisthesis: Assessment of the role played by lumbar facet joint morphology. Spine 1993; 18(1): 80-91.
    31 Shirazi-Adl A. Finite-element evaluation of contact loads on facets of an L2-L3 lumbar segment in complex loads. Spine, 1991,16(5):533-41.
    32 Videman T, Nurminen M, Troup JDG. 1990 Volvo Award in clinical sciences. Lumbar spinal pathology in cadaveric material in relation to history of back pain, occupation and physical loading. Spine, 1990,15(8):728-40.
    33.Abumi K, Panjabi M, Kramer K. Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine, 1990;15(11):1142-7.
    34.张亚峰,杨惠林,唐天驷等.后路椎体间融合术后融合器脱出的原因及其翻修术.中国脊柱脊髓杂志,2006, l6(12):909-12.
    35. Brodke DS, Dick JC, Kunz DN, et al. Posterior lumbar interbody fusion: a biomechanical compareison, including a new threaded cage. Spine,1997,22(1):26-31.
    36. Tencer AF, Hampton D, Eddy S. Biomechanical properties of threaded inserts for lumbar interbody spinal fusion. Spine, 1995, 20(22):2408-14.
    37. Murakami H, Horton WC, Kawahara N, et al. Anterior lumbar interbody fusion using two standard cylindrical threaded cages, a single mega-cage, or dual nested cages: a biomechanical comparison. J Orthop Sci, 2001,6(4): 343-8.
    38. Heth JA, Hitchon PW, Goel VK, et al. A biomechanical comparison between anterior and transverse interbody fusion cages. Spine, 2001, 26(12): 261-7.
    39. McAfee PC. Interbody fusion cages in reconstructive operations on the spine. J Bone Joint Surg Am, 1999,81(6): 859-80.
    40.Rapoff AJ, Ghanayem AJ, Zdeblick TA. Biomechanical comparison of posterior lumbarinterbody fusion cages. Spine 1997;22(20):2375–9.
    41. Kim Y. Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segments. Spine, 2001, 26(13):1437-42.
    42. Pitzen T, Geisler FH, Matthis D, et al. Motion of threaded cages in posterior lumbar interbody fusion. Eur Spine J, 2000, 9(6): 571-6.
    43. Mulholland RC. Cages: outcome and complications. Eur Spine J,2000,9(1 Suppl): 110-3.
    44. Naderi S, Arda N, Complication of cages. J Neurosurg, 2001,95(2 Suppl):282-3.
    45. Ketder A, Wilke B,Died R, et al. Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading. J Neurosurg, 2000(1 Suppl), 92: 87-92.
    46. Died RH, Krammer M, Kettler A, et al. Pullout test with three lumbar interbody fusion cages. Spine, 2002,27(10): 1029-36.
    47. Tsantrizos A, Baramki HG, Zeidman S, et al. Segmental stability and compressive strength of posterior lumbar interbody fusion implants.Spine. 2000,25(15): 1899-907.
    1. Fantigrossi A, Galbusera F, Raimondi MT, et al. Biomechanical analysis of cages for posterior lumbar interbody fusion. Med Eng Phys, 2007, 29(1): 101–9.
    2. Zhong ZC, Wei SH, Wang JP, et al. Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med Eng Phys ,2006,28(1): 90–8.
    3.Vadapalli S, Sairyo K, Goel VK, et al. Biomechanical Rationale for Using Polyetheretherketone (PEEK) Spacers for Lumbar Interbody Fusion–A Finite Element Study. Spine, 2006,31(26):992–8 .
    4.Keyak JH, Meagher JM, Skinner HB, et al. Automated three-dimensional finite element modeling of bone: A new method. J Biomed Eng, 1990, 12: 389-7.
    5. Camacho DLA, Hopper RH, Lin GM, et al. An improved method for finite element mesh generation of generateon of geometrically complex structures with application to skullbase. J Biomech, 1997, 30(10): 1067-70.
    6.杨国标,徐峰.基于Hangmann骨折的植骨融合钢板内固定术有限元稳定性分析.力学季刊,2005,2693):491-6.
    7.佟大可,蔡郑东,吴建国,等.骶骨肿瘤切除术后骨盆三维有限元模型的建立及相关应力分析.医用生物力学,2005,20(4): 231-4.
    8. Viceconti M, Bellingeri L, Cristofolini L, et al. A comparative study on different methods of automatic mesh generation of human fumurs. Med Eng Phys,1998,20(1):1-10.
    9. Chiang MF, Zhong ZC, Chen CS,et al. Biomechanical Comparison of Instrumented Posterior Lumbar Interbody Fusion With One or Two Cages by Finite Element Analysis.Spine ,2006,31(19): 682–9
    10. Pitzen T, Geisler FH, Matthis D,et al. Motion of threaded cages in posterior lumbar interbody fusion. Eur Spine J.2000,9(6):571–6.
    11. Pitzen T, Geisler FH, Matthis D,et al. The influence of cancellous bone density on load shearing in human lumbar spine: a compression between an intact and surgically altered motion segment. Eur Spine J 2001,10:23–9.
    12. Kim Y. Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segments. Spine.2001,26(13):1437–42.
    13. Pitzen T, Matthis D, Steudel WI. The effect of posterior instrumentation following PLIF with BAK cages is most pronounced in weak bone. Acta Neurochir (Wien) ,2002,144(2):121–8.
    14. Palm WJ, Rosenberg WS, Keaveny TM. Load transfer mechanisms in cylindrical interdody cages constructs. Spine, 2002,27:2101–7.
    15. Polikeit A, Ferguson SJ, Nolte LP,et al. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages:finite element analysis. Eur Spine J .2002,12(4):413–20.
    16.Goel VK, Monroe BT, Gilbertson LG, et al. Interlaminar shear stress and laminae separation in a disc. Spine. 1995,20:689-98.
    17.Goel VK, Kin Ye, Lim TH, et al. An analytical investigation of the mechanics of spinal instrumentation. Spine. 1998, 13(9):1003-11.
    18.Goto K, Tajima N, Chosa E, et al. Effect of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis). J Orthop Sci. 2005, 8:577-84.
    19.Chen CS, Chen CK, Liu CL. A biomechanical comparison of posterolateral fusion and posterior fusion in the lumbar spine. J Spinal Disorders Tech, 2002,15(1):53-63.
    20.Yamamoto I, Panjabi MM,Crisco T,et al.Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 1989,14(11):1256-60.
    21.Shirazi-Adl A, Dammak M, Paiement G. Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants. J Biomed Mater Res 1993,27(2):167–75.
    22. Young Kim. Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segments. Spine, 2001,26(13): 1437–42.
    23. Clayton A, Mark P, Peter MC. Stress analysis of interbody fusion- finite element modeling of intervertebral implant and vertebral body. Clinical Biomechanics . 2003, 18 :265–72
    24.Pilliar RM, Lee JM, Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop 1986,(208):108-13
    1.Cassinelli EH, HWallach C, Hanscom B, et al. Prospective clinical outcomes of revision fusion surgery in patients with pseudarthrosis after posterior lumbar interbody fusions using stand-alone metallic cages. Spine J.2006;6(4):428-34.
    2.Fogel GR, Toohey JS, Neidre A,et al. Outcomes of L1-L2 posterior lumbar interbody fusion with the Lumbar I/F cage and the variable screw placement system: reporting unexpected poor fusion results at L1-L2. Spine J. 2006;6(4):421-7.
    3.张亚峰,杨惠林,唐天驷,等.后路椎体间融合术后融合器脱出的原因及其翻修术.中国脊柱脊髓杂志,2006;16(12):909-12.
    4.张绍东,吴小涛,茅祖斌,等.后路腰椎椎间融合器融合术的并发症分析.中国脊柱脊髓杂志,2006,16(7):493-7.
    5.Chen L,Yang H,Tang T.Cage migration spondylolisthesis treated with posterior lumbar interbody fusion using BAK cages.Spine,2005,30(19):2171-5.
    6. Pitzen T, Geisler FH, Matthis D, et al .Motion of threaded cages in posterior lumbar interbody fusion. Eur Spine J,2000;9(6): 571–6.
    7. Eck KR, Bridwell KH, Ungacta FF, et al. Analysis of titanium mesh cages in adults with minimum two-year follow-up. Spine, 2000,25(18): 2407–15.
    8. Kuslich SD, Danielson G, Dowdle JD, et al. Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine, 2000,25(20):2656–62.
    9.McAfee PC, Farey ID, Suttterlin CE,et al. The effect of spinal implant rigidity on vertebral bone density. A canine model. Spine, 1991;16(6 Suppl):S190–7.
    10. Ha KY, Schendel MJ, Lewis JL,et al. Effect of immobilization and configuration on lumbar adjacent-segment biomechanics. J Spinal Disord 1993;6(2):99–105.
    11. Nagata H, Schendel MJ, Transfeldt EE, et al. The effects of immobilization of long segments of the spine on the adjacent and distal facet force and lumbosacral motion. Spine,1993;18(16):2471–9.
    12.蔡维山,郭东明,刘恩志,等.后路可扩张型椎体间融合笼治疗退行性下腰椎不稳症.广东医学,2007,28(5):764-6.
    13.钟波夫,徐中和,郭东明,等.可扩张型腰椎椎问融合器在退行性腰椎疾病中的应用评价.中国临床解剖学杂志,2007,25(3):344-6.
    14.董健文,戎利民,蔡道章,等.单独置入扩张型椎间融合器再次修复复发性腰椎间盘突出症重建腰椎稳定性.中国组织工程研究与临床康复,2008,12(26):5015-8.
    15.文益民,蓝旭,张军华,等.扩张型椎间融合器治疗腰椎不稳定的临床观察.中国矫形外科杂志,2007,15(21):1604-6.
    16.Abumi K, Panjabi M, Kramer K, et al. Biomechanical evaluation of 1umhar spinal stability after graded facetectomies. Spine,1990;15(11):1142-7.
    17. Sharma M, Langrana NA, Podriguez J. Role of ligaments and facets in lumbar spinal stability. Spine, 1995; 20(8):887-990.
    18, Zhou Yue, Luo Gang, Chu Tongwei, et al. Biomechanical change of lumbar unilateral graded facetectomy and strategies of its microsurgical reconstruction: report of 23 cases. Zhanghua Yi Xue Za Zhi . 2008,87(19):1134–8.
    19. McAfee PC. Interbody fusion cages in reconstructive operations on the spine. J Bone Joint Surg, 1999, 81(6): 859-80.
    20. Zinreich SJ, Long DM, Davis R, et al. Three-dimensional CT imaging in postsurgical“failed back”syndrome. J Comput Assist Tomogr, 1990, 14(4): 574-80.
    21.董智勇,邝冠明,郑召民.脊柱融合动物模型的研究进展.中国脊柱脊髓杂志,2006,16(2):158-60.
    22.Peterson B, Whang PG, Iqlesias R, et al. Osteoinductivity of commercially available demineralized bone matrix.Preparations in a spine fusion model. J Bone Joint Surg Am. 2004;86-A(10):2243-50.
    23.Cheng JCY, Guo X, Law LP, et a1. How dose recombinant bone morphogenetic protein-4 enhance posterior spinal fusion. Spine. 2002,27(5):467-74.
    24.Yoshihiro H, Yoshihisa K, Manabu I, et al. A biomechanical and histological evaluation of a bioresorbable lumbar interbody fusion cage. Biomaterials. 2005,(26):2643-51.
    25.Krijnen MR, Mensch D, van Dieen JH, et al. Primary spinal segment stability with a stand-alone cage: in vitro evaluation of a successful goat model. Acta Orthop, 2006,77(3):454-61.
    26. Kanayama M, Cunningham BW, Weis JC,et al. Maturation of the posterolateral spinal fusion and its effect on load-sharing of spinalinstrumentation. An in vivo sheep model. J Bone Joint Surg Am,1997;79(11):1710-20.
    27. MaAfee PC, Regan JJ, Farey ID, et al. The biomechanical and histomorphometric properties of anterior lumbar fusions: a canine model. J Spinal Discord, 1988, 1(2): 101-10.
    28. Fraser RD. Interbody, posterior, and combined lumbar fusions. Spine, 1995,20(24 Suppl): 167-77.
    29. Hibbs RA, Swift WE. Developmental abnormalities at the lurnbosacral juncture casuing pain and disability. Surg Gynecol Obstet, 1929,48:604-12.
    30. Cleveland M, Bosworth DM, Thompson FR.. Pseudarthrosis in the lumbosacral spine. J Bone Joint Surg Am, 1948, 30A(2):302-12.
    31. Thompson WAL, Cristina AG, Healy WA. Lumbosacral spine fusion. A method of bilateral posterolateral fusion combined with a Hibbs fusion. J Bone Joint Surg Am, 1974,56:1643-7.
    32.Blumenthal SL, Gill K. Can lumbar spine radiographs accurately determine fusion in postoperative patients? Correlation of routine radiographs with a second surgical look at lumbar fusions.Spine, 1993, 18(9):1186-9.
    33. Kant AP, Daum WJ, Dean SM, et al. Evaluation of lumbar spine fusion. Plain radiographs versus direct surgical exploration and observation.Spine,1995,20(21):2313-17.
    34. Ray CD, Blumenthal S, Klara P, et al. Interbody cages. J Neurosurg, 2000, 93: 338-40.
    35.靳安民,袁野,曹虹,等.单双侧小关节分级切除的有限元分析.中国临床解剖学杂志,2002,20(6):473-4.
    36.Sharma M, Langrana NA, Rodriguez J. Role of ligaments and facets in lumbar spinal stability. Spine. 1995;20(8):887-900.
    37.董凡,侯筱魁.小关节在腰椎结构刚度中的作用.中华外科杂志,1993,31(7):417-20.
    38.Oxland TR, Lund T. Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur spine J. 2000;9 (suppl 1):S95-101.
    39.Vadapalli S, Robon M, Biyani A,et al .Effect of lumbar interbody cage geometry on construct stability: a cadaveric study. Spine. 2006;31(19):2189-94
    40.Zhao J, HaiY, Ordway NR, eta1. Posterior lumbar interbody fusion using posterolateral placement of a single cylindrical threaded cage. Spine. 2000;25(4):425-30.
    1.Weiner BK, Fraser RD. Spine update lumbar interbody cages. Spine, 1998, 23(5): 634-40.
    2. Bergmark A. Stability of the lumbar spine: a study in mechanical engineering. Acta Orthop Scand Suppl 1989, 230:1-54.
    3. Kummer B. Biomechanische aspekte zur instabilitat der wirbelsaule in fuchs GA(ed). Die instabile Wirbelsaule.Stuttgart :Thieme,1991:8
    4. Evans JH, Eng B, Sc M. Biomechanics of lumbar fusion. Clin Orthop 1985,193:38-46.
    5. Brodke DS, Dick JC, Kuni DN. Posterior lumbar interbody fusion:A biomechanical comparison, including a new threaded cage .Spine, 1997,22(l):26-31.
    6. Kuslich SD, Ulstrom CL, Friffith SL, et al. The Bagby and Kuslich method of lumbar interbody fusion:History, techniques, and 2-year follow-up results of a United States prospective, multi-center trial. Spine, 1998,23(11):1267-79.
    7. Alfonso F,Fabio G,Manuela TR,et a1.Biomechanical analysis of cages for posterior lumbar interbody fusion. Med Eng Phys, 2007, 29(1):101-9.
    8. Brantigan JW, Steffee AD, Lewis MI, et a1. Lumber interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system:two year results from a Food and Drug Administration investigational device exemption clinical trial.Spine J,2000,25(11):1437-46.
    9.Kuslich SD, Danielson G, Dowdle JD, et a1.Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage.Spine J,2000,25 (20):2656-62.
    10. Maurer TB, Ochsner PE, Schwarzer G, et al. Increased loosening of cemented straight stem prostheses made from titanium alloys. An analysis and comparison with protheses made of cobalt-chromium- nickel alloy. Int Orthop, 2001,25(2):77-80.
    11. Brantigan JW, Steffee AD, Geiger JM. A carbon fiber implant to aid interbody lumbar fusion.Mechanical testing. Spine, 1991, 16(6 Suppl):277-82.
    12. Matsumura A,Taneichi H,Suda K,et a1.Comparative study of radiographic disc height changes using two different interbody devices for transforaminal lumb ar interbody fusion:open box vs.fenestrated tube interbody cage.Spine,2006,31(23):E871-6.
    13. Fantigrossi A,Galbusera F,Raimondi MT,et a1.Biomechanical analysis of cages for posterior 1umbar interbody fusion.Med Eng Phys,2007,29(1):101-9.
    14. Kulkarni AG,Hee HT,Wong HK.Solis cage(PEEK) for anterior cervical fusion:preliminary radiological resuits with emphasis on fusion and subsidence.Spine J,2007,7(2):205-9.
    15. Cutler AR,Siddiqui S,Mohan AI ,et a1.Comparison of po1yetheretherketone cages with femoral cortical bone allograft as a single-piece interbody spacer in transforaminal lumbar interbody fusion.J Neurosurg Spine,2006,5(6):534-9.
    16.Jockisch KA, Brown SA, Bauer TW, et al. Biological response to chopped-carbon fiber-reinforced peek . J Biomed Mater Res.1992, 26(2):133-46.
    17. Belangero WD, KoberleG, Hadier WA .Inflammatory reaction of rat striated muscle to particles of carbon flber reinforced carbon Braz. J Med Biol Res, 1993,26(8):819-26.
    18. Ibnez J,Carreno A,Garcia-Amorena C,et a1.Results of the biocompatible osteoconducfive polymer(BOP)as an intersomatic graft in anterior cervical surgery.Acta Neurochir(Wien),1998,140(2):126-33.
    19. Smit TH,Krijnen MR,Vail Dijk M,et a1.Application of polylactides in spinal cages:studies in a goat mode1.J Mater Sci Mater Med,2006,17(12):1237-44.
    20. Lazennec JY,Madi A,Rousseau MA,et a1.Evaluation of the 96/4 PLDLLA polymer resorbable lumbar interbody cage in a long term animal model.Eur Spine J,2006,15(10):1545-53.
    21.刘恩志,郭东明,蔡维山.撑开型椎间融合器在腰椎不稳症治疗中应用.国际外科学杂志, 2007, 34( 7):452-5.
    22.钟波夫,徐中和,郭东明,等.可扩张型腰椎椎问融合器在退行性腰椎疾病中的应用评价.中国解剖学杂志,2007,25(3):344-6.
    23. Wilder D, Grobler LJ, Oxland TR, et al .Mechanical efficacy of the BAK interbody fusion system: simulated pre and postoperative conditions in a chagma baboon.Procs of the ISSLS annual meeting .1993:132.
    24.Rapoff AJ, Ghanayem AJ, Zdeblick TA. Biomechanical comparison of posterior lumbar interbody fusion cages. Spine 1997;22(20):2375-9.
    25. Tencer AF, Hampton D, Eddy S. Biomechanical properties of threaded inserts for lumbar interbody spinal fusion . Spine 1995;20(24):2408-14.
    26. Sandhu HS, Turner S, Kabo JM, et al. Distractive properties of a threaded interbody fusion device. An in vivo model. Spine,1996,21(10):1201-10.
    27.Tsantrizos A, Baramki HG, Zeidman S,et al. Segmental stability and compressive strength of posterior lumbar interbody fusion implants. Spine, 2000, 25 (15):1899-907.
    28. Kanayama M, Cunningham BW, Haggerty CJ, et al. In vitro biomechanical investigation of the stability and stress shielding effect of lumbar interbody fusion devices. J Neurosurg, 2000,93(2 Suppl):259-65.
    29. Lund T, Oxland TR, Jost B, et al. Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br, 1998,80(2): 351-59.
    30.赵杰,王新伟,侯铁胜,等.斜向单放BAK植入后路腰椎椎体间融合术的生物力学及临床研究.中国脊柱脊髓杂志,2000, 10(4):208-11.
    31. Diedrich O, Luring C. Auswirkung der dorsalen intersomatischen Spondylodese auf das sagittale lumbale Wirbelsaulenprofil. Effect of posterior lumbar interbody fusion on the lumbar sagittal spinal profile. Z-Orthop-Ihre-Grenzgeb. 2003,141(4): 425-32.
    32. Parisini P, Di Silvestre , et al. Circumferential fusion by posterior approach in lumbosacral instability with or without pedicle screw fixation: a comparison of methods. Chir-Organi-Mov. 2001; 86(2): 127-42.
    33. Mcafee PC, Farely ID, Sutterlin CE, et al. 1989 Volvo Award in basic science. Device-related osteoporosis with spinal instrumentation. Spine. 1989,14(9):919-26.
    34. Mcafee PC, Farely ID, Sutterlin CE, et al. The effect of spinal implant rigidity on vertebral bone density. Spine . 1991,16(6 Suppl):190-7.
    35. Jacobs RR, Montesano PX, Jackson RP. Enhancement of lumbar spine fusion by use of translaminar facet joint screw. Spine 1989;14:12.
    36. Zdeblick TA. A prospection,randomized study of lumbar fusion. Spine, 1993;18:983.
    37. Pillar RW, Lee JM,Maniatopoulos D, et al. Observation on the effect of movements on bone ingrowth into porous-surfaced implants. Clin Orthop, 2000, 208:108-17.
    38. Kim Y. Preditions of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segment. Spine, 2001, 26:1437-42.
    39. Haseganna K, Abe M, Washion T, et al. An experimental study on the interface strength between titanium mesh cages and vertebra in reference to vertebral bone mineral density. Spine, 2001,26:953-963.
    40. Lee SW, Lim TH, et al . Biomechanical effect of anterior grafting devices on the rotational stability of spinal constructs. J Spinal Disord. 2000 Apr; 13(2): 150-5
    41.Dietl RH, Krammer M, Kettler A, et al. Pullout test with three lumbar interbody fusion cages. Spine,2002,27(10):1029-36.
    42. McAfee PC, Cunningham BW, Lee GA,et al. Revision strategies for salvaging or improving failed cylindrical Cages. Spine,1999, 24(20):2147-53.
    43. Oxland TR, Crisco JJ, Panjabi MM, et al .The effect of injury in rotational coupling at the lumbosacral joint. A biomechanical investigation. Spine 1992;17:74-80.
    44.李惠友,朱青安,钟世镇等.双侧小关节分级切除对腰椎稳定性影响的三维运动研究.中华骨科杂志,1995,15(10):692-4.
    45.李惠友,朱青安,钟世镇等.单侧小关节分级切除对腰椎稳定性影响的三维运动研究.中国脊柱脊髓杂志, 1996,6(5):206-9.
    46. Yoganandan N, Myklebust J, Cusick J. Functional biomechanics of the thoracolumbar vertebral cortex. Clincical Biomechanics,1988,3:11-8.
    47. Kozak JA, Heilman AE, O' Brien JP. Anterior lumbar fusion options. Technique and graft materials. Clin Orthop, 1994,(300):45-51.
    48. Grobler LJ, Robertson PA, Novotny JE, et al. Etiology of spondylolisthesis:assessment of the role played by lumbar facet joint morphology. Spine, 1993,18(l):80-91.
    1. Keyak JH, Meagher JM, Skinner HB, et al. Automated three-dimensional finite element modeling of bone: A new method. J Biomed Eng, 1990, 12: 389-97.
    2. Camacho DLA, Hopper RH, Lin GM. An improved method for finite element mesh generation of generation of geometrically complex structures with application to skullbase. J Biomech,1997,30(10):1067-70.
    3.杨国标,徐峰.基于Hangmann骨折的植骨融合钢板内固定术有限元稳定性分析.力学季刊,2005,26(3):491-6.
    4.佟大可,蔡郑东,吴建国,等.骶骨肿瘤切除术后骨盆三维有限元模型的建立及相关应力分析.医用生物力学,2005,20(4): 231-4.
    5. Belytschko T, Kulak RF, Schultz AB, et al. Finite element stress analysis of an intervertebral disc. J Biomechanics 1974,7(3): 277-85.
    6. Liu,YK, Ray G, Hirsch C. The resistance of the lumbar spine to direct shear. Orthop Clin North Am. 1975,6(1):33-49.
    7. Hakim NS, King AI. Static and dynamic response analysis of a vertbra with experimental vertification. J Biomechanics,1979,12:277-92.
    8. Shirazi AdlA, et al. Stress analysis of the lumbar discbody unit in compression. Spine, 1984,9(2):120-34.
    9. Yoganandan N, Myklebust JB. Mathematical and finite element analysis of spine iniuries. Crit Rev Biomed Eng.1987,15(1):29-93.
    10. Balasubramanium K, Ranu HS, King AI. Vertebral response to laminectomy. J Biomechanics. 1979,12(11):813-23.
    11. Ranu HS. Three dimensional surgical simulations of the spine. J Biomed Eng.1982,4(4):285-8.
    12. Yong KH, King AI. Mechanism of facet load transmission as a hypothesis for low-back pain. Spine,1984,9(6):557-65.
    13. Ueno K, Liu YK. A three dimensional nonlinear finite element model of lumbar interverterbral joint in torsion. J Biomech Eng.1987,109(3):200-9.
    14. Goel VK, Kim YZ, Lim TH, et al. Analytical in investigation of the mechanics of spinal instrumenation. Spine.1988,13(9):1003-11.
    15. Alfonso F, Fabio G, Manuela T, et al. Biomechanical analysis of cages for posterior lumbarinterbody fusion. Med Eng Phys, 2007, 29(1): 101–9.
    16. Zhong ZC, Wei SH, Wang JP, et al. Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med Eng Phys , 2006,28(1): 90–8.
    17. Vadapalli S, Sairyo K, Goel VK, et al. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion–a finite element study. Spine, 2006,31(26):992–8 .
    18. Adams MA . Mechanical testing of the spine. An appraisal of methodology, results and conclusions. Spine .1995,20(19): 2151-6.
    19. Wilke HJ, Wenges K, Claes L. Testing criteria for spinal implants recommendations for the standardisation of in vitro stability testing of spinal implants. Eur Spine J .1998, 7: 148-54.
    20. Pitzen T, Geisler FH, Matthis D,et al. Motion of threaded cages in posterior lumbar interbody fusion. Eur Spine J . 2000, 9 (6): 571-6.
    21. Pitzen1 T, Matthis D, Steudel WI. The effect of posterior instrumentation following PLIF with BAK cages is most pronounced in weak bone. Acta Neurochir (Wien) . 2002, 144(2): 121–8.
    22. Polikeit A , Ferguson SJ, Nolte LP, et al. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J . 2003, 12 (4): 413–20.
    23. Clayton Adam, Mark Pearcy,Peter McCombe, et al. Stress analysis of interbody fusion–finite element modeling of intervertebral implant and vertebral body. Clinical Biomechanics. 2003, 18 :265–72.
    24. Chiang MF, Zhong ZC, Chen CS, et al. Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis. Spine. 2006, 31(19):682–9.
    25. Fantigrossi A, Galbusera F, Raimondi MT, et al. Biomechanical analysis of cages for posterior lumbar interbody fusion. Med Eng Phys. 2007, 29(1):101–9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700