可吸收增强型β-磷酸三钙(β-TCP)生物陶瓷颈椎间融合器的设计研发与初步动物实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】:β-磷酸三钙(β-TCP)生物陶瓷是近年来逐渐兴起并应用于临床上的新型生物材料。因其良好的生物相容性、可降解性及骨传导作用,作为骨修复材料已广泛应用于骨科临床,修复因创伤、肿瘤、炎症、骨病等所致的骨缺损等。但以往由于其力学性能弱而只能应用于非负重部位。我们和上海贝奥路公司合作,研制出增强型β-TCP生物陶瓷,将力学性能良好而生物学性能较差的致密陶瓷与生物学性能良好而力学性能较差的多孔陶瓷结合在一起。在获取国人颈椎椎体间隙的三维图像,并利用较多志愿者获取国人颈椎椎体间隙解剖学数据的形态学基础上,通过增强型β-TCP技术,设计研发了增强型β-TCP颈椎椎体间融合器,测量其力学强度等表面特征,并建立山羊颈椎前路手术模型,对其进行初步的动物实验,观察并评估其临床效应,为进一步改进和临床应用提供基础。
     【方法】:(一)、选取青年男性新鲜尸体标本,排除颈椎畸形,创伤,肿瘤及明显退行性变,解冻后取下头颈部标本,在头部中立位,颈部自然弯曲的体位行64排CT薄层扫描及MRI扫描,然后将颈椎标本以外固定支架固定于相同体位,清除颈椎上下椎体间隙的纤维环,髓核及软骨终板,注射硅胶以获得颈椎椎体间隙的三维模型,并对三维模型进行测量和三维扫描,获得国人颈椎椎体间隙的三维图像。将CT扫描、MRI扫描、硅胶模型直接测量的三种方法所得到的数据进行对比,优选出CT更适合于颈椎椎体间隙的测量。(二)、随机选取符合条件的青年志愿者97人,其中男性63人(21~29岁,平均年龄25.2岁);女性34例(20~29岁,平均年龄24.3岁)。按性别分组分别进行CT扫描。获取国人颈椎椎体间隙的解剖学资料。(三)、在前两部分的形态学基础上,通过增强型β-TCP制造技术,制作出增强型β-TCP颈椎椎体间融合器,测量评估理化性能,力学性能等特性。(四)、取10只20~25kg的2岁成年山羊,雌雄不限,随机分为两组,每组5只山羊:A组为实验组,即β-TCP颈椎椎体间融合器组;B组为对照组,即自体三面皮质骨髂骨组。制作出山羊颈椎前路减压融合模型,每只山羊行颈椎前路单节段椎间盘切除术。切除椎间盘后刮除软骨终板,在减压槽内分别放入β-TCP颈椎椎体间融合器及自体三面皮质骨髂骨。植入后前路加用CervicalLock钢板固定。术后即刻摄颈椎侧位片,饲养动物8周。(五)、8周后处死动物,摄颈椎侧位X线片及CT薄层扫描,并行矢状位重建。术后即刻和术后8周的侧位X线片对比评估手术节段的高度变化;CT扫描评估椎体间融合情况。
     【结果】:(一)、通过硅胶塑形法获得颈椎椎体间隙的三维模型,从而得到国人颈椎椎体间隙的三维图像,并验证了CT、MRI扫描在颈椎测量的准确性。(二)、国人颈椎椎体间隙前后径值为:男性16.35~19.81mm,女性14.98~17.43mm;左右径值:男性为18.55~22.50mm,女性为16.55~20.69mm;正中矢状面颈椎椎体间隙前缘高度值为:男性7.26~9.03mm,女性5.36~5.98mm;椎体中点高度:男性为8.01~9.24mm,女性为7.65~8.12mm;椎体后缘高度:男性为5.01~5.22mm,女性为4.76~5.03mm。颈椎从上向下,椎体间隙逐渐增大;同节段椎体间隙男性明显比女性大。(三)利用增强型β-TCP技术制作增强型β-TCP颈椎椎体间融合器,整体呈盒状,横截面似梯形,外围为致密部分,中心为多孔部分。宽×深×高约为12mm×9mm×8mm。比单纯的多孔β-TCP力学强度明显增加,能较好的将支撑作用与骨传导作用结合在一起。(四)、山羊颈椎前路椎体间融合模型是研究人类颈椎的较好的动物模型,该模型所获得的实验结果具有较大可信性及准确性。(五)、增强型β-TCP颈椎椎体间融合器组能较好的的维持颈椎椎体间隙高度,术后即刻及术后8周的结果没有统计学差异;两组均能获得椎体间融合,结果没有统计学差异。
     【结论】:增强型β-TCP颈椎椎体间融合器弹性模量与人体骨骼相近,100%降解,具有良好的应用前景。增强型β-TCP颈椎椎体间融合器可为颈椎椎体间融合提供足够的椎间支撑作用,不亚于自体髂骨的椎间融合效果。增强型β-TCP颈椎椎体间融合器的椎间支撑能力、生物力学性能及椎间融合效果均适合颈椎椎体间融合的应用。
[Objective]:In recent years,[3-tricalcium phosphate(β-TCP) bioceramic was more and more popular and became the neotype of biomaterial in clinical medicine. Because of its good capability of biocompatibility,degradation and bone conduction,β-TCP bioceramic was extensively utilized in clinical orthopedics as materials for bone repair,repairing the bone defect caused by trauma,tumor,inflammation and osteopathia.But since its poor mechanical property,the application was restricted to replace non-weight loading part.The absorbable dense/porousβ-TCP bioceramic was designed with the help of Bio-Lu company,combining the dense ceramic which had good mechanical property but poor biocompatibility and the porous ceramic which had good biocompatibility but poor mechanical property.Then the absorbable dense/porousβ-TCP cervical intervertebral fusion cage was invented via the above technique,on the morphological basis of three-dimensional images and large sample anatomic data of Chinese cervical intervertebral space.Besides,we measured the mechanical intensity of the cage,established anterior cervical discectomy goat model, and carried out initial experiments on observation and evaluation of clinical effects, which provided the evidence for clinical application.
     [Methods]:ⅠSix young male fresh cadavers were chosen which had no cervical vertebrae deformation,trauma,tumor and obviously degeneration.After defrosting, their head and neck were separated from the body and then 64 row thin sheet CT scan and MRI scan were undertaken on the head neutral position and the natural neck curve.Afterwards,the cervical spine specimens were fixed on the same position by the external fixation.All the anulus fibrosus,nucleus and cartilaginous endplate of cervical intervertebral spaces were removed and replaced by injecting silica gel to get the three-dimensional model of cervical intervertebral spaces.The models were measured and scanned so as to get three-dimensional images of Chinese cervical intervertebral spaces.Compared the data from those three methods of CT scan,MRI scan and silica gel model,CT scan was considered as a more suitable method of cervical intervertebral space measurement especially for large samples.Ⅱ.97 qualified young volunteers were chosen randomly,including 63 male(21~29 years old,average age 25.2 years) and 34 female(20~29 years old,average age 24.3 years). They took cervical spine CT scan grouped by gender.By this means,the anatomic data of Chinese cervical intervertebral spaces were gained.Based on the morphological data of the above experiments,the absorbable dense/porousβ-TCP bioceramic cervical intervertebral fusion cage was produced,its physical chemistry property and mechanical property was measured as well.Ⅳ.10 two years old adult goats,20~25kg,male or female,were divided into two groups:5 goats in group A wereβ-TCP bioceramic cervical intervertebral fusion cage group,and the other 5 in group B were autogenic iliac bone group as control.Anterior cervical decompression and fusion goat model was established.After anterior cervical discectomy at single level,cartilaginous end-plate was removed,thenβ-TCP bioceramic cervical intervertebral fusion cage and autogenic iliac bone was implanted separately.At last anterior plate was fixed.Lateral cervical X-ray photo was taken after operation.The goats were raised 8 weeks.Ⅴ.The goats were sacrificed to take lateral cervical X-ray and CT scan.The sagittal reconstruction was established afterwards.X-ray was used to evaluate the change of the operated cervical intervertebral space height.CT scan and reconstruction was to compare intervertebral fusion.
     [Results]:Ⅰ.The three-dimensional images of Chinese cervical intervertebral space are gained by silica gel moulding which is used to get the three-dimensional model of cervical intervertebral space.The accuracy of CT scan and MRI scan is proven.Ⅱ. The anterioposterior length of Chinese cervical intervertebral space is 16.35~19.81mm in male,14.98~17.43mm in female.It is 18.55~22.50mm in male and 16.55~20.69mm in female from left to right.On midsagittal plane,the height of anterior cervical intervertebral space is 7.26~9.03mm in male and 5.36~5.98mm in female.The height of middle point is 8.01~9.24mm in male,7.65~8.12mm in female.Posterior border is 5.01~5.22mm in male,4.76~5.03mm in female.The intervertebral space is larger and larger from above down and male has larger space than the same level of female.Ⅲ.The absorbable dense/porousβ-TCP bioceramic cervical intervertebral fusion cage's shape is like a box,has a ladder-shaped cross section,porous in center and dense surrounding.It is about 12mm in width,9mm in depth and 8mm in height.The mechanical intensity of the dense/porous one is significantly augmented than the simply porous so that it is able to perform supportive role and bone conduction better.Ⅳ.The anterior cervical intervertebral fusion model of goat is a good animal model for human cervical spine research.So results from this model is accurate and creditable.Ⅴ.The absorbable dense/porousβ-TCP bioceramic cervical intervertebral fusion cages are able to maintained the height of cervical intervertebral space.And there is no statistical difference of intervertebral fusion rate between these two groups.
     [Conelusions]:The absorbable dense/porousβ-TCP bioceramic cervical intervertebral fusion cage we designed is absorbable.Its elastic modulus is similar to human bone.It provides enough support for cervical intervertevral fusion,and produces fusion not less than auto-iliac bone at least.In conclusion,the absorbable dense/porousβ-TCP bioceramic cervical intervertebral fusion cage has good supporting ability,biocompatibility,mechanical property and intervertebral fusion effect,which indicates its perspective clinical application in cervical intervertebral fusion.
引文
1. Robinson RA, Smith GW. Anterior cervical disc removal and interbody fusion for cervical disc syndrome [J]. Bull Johns Hopkins Hospital, 1955, 96: 223-224
    
    2. Smith GW, Robinson RA. The treatment of certain cervical-spine disorders by anterior removal of the intervertebral disc and interbody fusion [J]. J Bone Joint Surg Am, 1958,40A(3): 607-624
    
    3. Robinson RA. The problem of neck pain: its alleviation by anterior removal of intervertebral disc with interbody fusion in the cervical spine [J]. J Med Assoc State Ala, 1963,33:1-14
    
    4. Jonathan Stieber, Kevin Brown, Gordon Donald, et al. Anterior cervical decompression and fusion with plate fixation in an ambulatory surgery center.The Spine Journal, 2003,3(5): 151-152
    
    5. Cauthen JC, Kinard RE, Vogler JB, et al. Outcome analysis of noninstrumented anterior cervical discectomy and interbody fusion in 348 patients [J].Spine, 1998, 23:188-192
    
    6. Cancedda R, Giannoni P, Mastrogiacomo M. A tissue engineering approach to bone repair in large animal models and in clinical practice [J]. Biomaterials, 2007. 28(29): 4240-4250.
    
    7. Younger EM, Chapman MW. Morbidity at bone graft donor sites [J]. J Orthop Trauma, 1989,3(3):192-195.
    
    8. Khan Y, et al. Tissue engineering of bone: material and matrix considerations [J]. J Bone Joint Surg Am, 2008, 90 Suppl 1: 36-42.
    
    9. Bruder SP, Fox BS. Tissue engineering of bone. Cell based strategies [J]. Clin Orthop Relat Res, 1999,367 Suppl: S68-83
    
    10. Cho DY, Lee WY, Sheu PC. Treatment of multilevel cervical fusion with cages [J]. Surgical Neurology, 2004,62 (5):378-385
    
    11. Profeta G, de Falco R, lanniciello G, et al. Preliminary experience with anterior cervical microdiscectomy and interbody titanium cage fusion (Novus CT2Ti ) in patients with cervical disc disease [J].Surg Neurol, 2000, 53: 417 - 426.
    
    12. MajdME,VadhvaM, Holt RT. Anterior cervical reconstruction usingtitanium cages with anterior plating [J]. Spine, 1999, 24 (15) :1604 - 1610.
    13. Kinoshita A, Kataoka K, Taneda M. Multilevel vertebral body replacement with a titanium mesh spacer for aneurysmal bone cyst: technical note[J]. Minim Invasive Neurosurg, 1999,42 (3): 156 -158.
    
    14. Martjin VD, Theo HS, Sugihara, et al. The effect of cage stiffness on the rate of lumbar interbody fusion: an in vivo model using poly( L- lactic acid) and Titanium cages[J]. Spine, 2002,27( 2): 682- 688.
    
    15. Theo HS, Ralph M, Martijn VD, et al. Changes in bone architecture during spinal fusion: three years follow- up and the role of cage stiffness [J]. Spine, 2003, 28( 16): 1802-1809.
    
    16. Kanayama M, Hashimoto T, ShigenobuK,OhaF, et al. Pitfalls of anterior cervical fusion using titanium mesh and local autograft [J].J Spinal Disord Tech, 2003,16(6): 513-518
    
    17. CahillD W, Martin GJ, Hajjar MV, et al.Suitability of bioresorbable cages for anterior cervical fusion [J]. J Neurosurg,2003,98 (2) :195-201
    
    18. Bostman OM, Pihlajamkai HK. Adverse tissue reactions to bioabsorbable fixation devices [J].Clin Orthop, 2000, 371: 216-227.
    
    19.卢建熙.多孔生物陶瓷的研究进展[J].材料科学与工程,2000, 18:775-776
    
    20. Driskell TD, et al. Development of ceramic and ceramic composite devices for maxillofacial applications [J]. J Biomed Mater Res, 1972. 6(1): 345-361
    
    21. Winter, M. et al. Comparative histocompatibility testing of seven calcium phosphate ceramics[J]. Biomaterials, 1981. 2(3): 159-160.
    
    22. Descamps M, Duhoo T, Monchau F, et al. Manufacture of macroporous β-tricalcium phosphate bioceramics[J]. J Eur Ceram Soc, 2008, 11(28):149-157
    
    23. Lu J, et al. Relationship between bioceramics sintering and micro-particles-induced cellular damages [J]. J Mater Sci Mater Med, 2004.15(4): 361-365.
    
    24. Farina NM, et al. In vivo behaviour of two different biphasic ceramic implanted in mandibular bone of dogs [J]. J Mater Sci Mater Med, 2008,19(4): 1565-1573.
    
    25. Arai E, et al. Regenerating the fibula with beta-tricalcium phosphate minimizes morbidity after fibula resection [J]. Clin Orthop Relat Res, 2005,431: 233-237.
    
    26. Nakagawa N, et al. The effectiveness of RA wrist fusion using Beta-TCP without autogenous iliac bone grafting: a report of four cases [J]. Hand Surg, 2006,11(1-2): 71-75.
    
    27. Dai LY, Jiang LS. Single-level instrumented posterolateral fusion of lumbar spine with beta-tricalcium phosphate versus autograft: a prospective, randomized study with 3-year follow-up [J]. Spine, 2008,33(12): 1299-1304.
    
    28. Ohyama T, et al. Beta-tricalcium phosphate as a substitute for autograft in interbody fusion cages in the canine lumbar spine [J]. J Neurosurg, 2002, 97 (3 Suppl): 350-354.
    
    29. Dai LY, Jiang LS. Anterior cervical fusion with interbody cage containing beta-tricalcium phosphate augmented with plate fixation: a prospective randomized study with 2-year follow-up [J]. Eur Spine J, 2008. 17(5):698-705.
    
    30. Muschik M, et al. Beta-tricalcium phosphate as a bone substitute for dorsal spinal fusion in adolescent idiopathic scoliosis: preliminary results of a prospective clinical study [J]. Eur Spine J, 2001, 10 Suppl 2:S178-184.
    
    31. Epstein NE. A preliminary study of the efficacy of Beta Tricalcium Phosphate as a bone expander for instrumented posterolateral lumbar fusions [J]. J Spinal Disord Tech, 2006,19(6): 424-429.
    
    32. Delecrin J, et al. A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective, randomized study [J]. Spine, 2000, 25(5): 563-569.
    
    33. Linovitz RJ, Peppers TA. Use of an advanced formulation of beta-tricalcium phosphate as a bone extender in interbody lumbar fusion [J]. Orthopedics, 2002, 25(5 Suppl): S585-589.
    
    34. Zhang F, et al. Bioinspired structure of bioceramics for bone regeneration in load-bearing sites[J]. Acta Biomater, 2007. 3(6):896-904.
    1.Robinson RA,Smith GW.Anterior cervical disc removal and interbody fusion for cervical disc syndrome[J].Bull Johns Hopkins Hospital,1955,96:223-224
    2.Smith GW,Robinson RA.The treatment of certain cervical-spine disorders by anterior removal of the intervertebral disc and interbody fusion[J].J Bone Joint Surg Am,1958,40A(3):607-624
    3.Robinson RA.The problem of neck pain:its alleviation by anterior removal of intervertebral disc with interbody fusion in the cervical spine[J].J Med Assoc State Ala,1963,33:1-14
    4.Jonathan Stieber,Kevin Brown,Gordon Donald,et al.Anterior cervical decompression and fusion with plate fixation in an ambulatory surgery center.The Spine Journal,2003,3(5):151-152
    5.Cauthen JC,Kinard RE,Vogler JB,et al.Outcome analysis of noninstrumented anterior cervical discectomy and interbody fusion in 348 patients[J].Spine,1998,23:188-192
    6.Cancedda R,Giannoni P,Mastrogiacomo M.A tissue engineering approach to bone repair in large animal models and in clinical practice[J].Biomaterials,2007.28(29):4240-4250.
    7.Younger EM,Chapman MW.Morbidity at bone graft donor sites [J].J Orthop Trauma,1989,3(3):192-195.
    8.Khan Y,Yaszemski MJ,Mikos AG,et al.Tissue engineering of bone:material and matrix considerations[J].J Bone Joint Surg Am,2008,90Suppl 1:36-42.
    9.Bruder SP,Fox BS.Tissue engineering of bone.Cell based strategies[J].Clin Orthop Relat Res,1999,367 Suppl:S68-83
    10.Cbo DY,Lee WY,Sheu PC.Treatment of multilevel cervical fusion with cages[J].Surgical Neurology,2004,62(5):378-385
    11.王柏川,王闵,樊仕才等.人体中、下段颈椎曲率的测量及意义[J].中国临床解剖学杂志,2001,19(2):179-181
    12.张亘瑷,江建明,金大地.人工颈椎间盘置换术的解剖学参数测量[J].中国临床解剖学杂志,2006,24(3):283-286
    13.谢兴国,许仕全,代小思等.颈椎体间隙的应用解剖学研究[J].川北医学院学报,2000,15(4):7-8
    14.Lu J,Ebraheim NA,Yang H,et al.Anatomic bases for anterior spinal surgery:surgical anatomy of the cervical vertebral body and disc space[J].Surg Radio Anat,1999,21(4):235-239
    15.Tanaka M,Nakahara S,Inoue H.A pathologic study of discs in the elderly.Separation between the cartilaginous endplate and the vertebral body[J].Spine 1993,18(11):1456-1462
    16.Pait TG,Killefer JA,Arnautovic KI.Surgical Anatomy of the Anterior Cervical Spine:The Disc Space,Vertebral Artery,and Associated Bony Structures[EB/OL].:Neurosurgery online,1996-4-17
    17.Kwon BK,Song F,Morrison WB,et al.Morphologic Evaluation of cervical spine anatomy with computed Tomography[J].J Spinal Disord Tech,2004,17(2):102-107
    1.Martjin VD,Theo HS,Sugihara,et al.The effect of cage stiffness on the rate of lumbar interbody fusion:an in vivo model using poly(L-lactic acid) and Titanium cages[J].Spine,2002,27(2):682-688.
    2.Theo HS,Ralph M,Martijn VD,et al.Changes in bone architecture during spinal fusion:three years follow-up and the role of cage stiffness [J].Spine,2003,28(16):1802-1809.
    3.Kanayama M,Hashimoto T,ShigenobuK,OhaF,et al.Pitfalls of anterior cervical fusion using titanium mesh and local autograft[J].J Spinal Disord Tech,2003,16(6):513-518
    4.CahillD W,Martin G J,Hajjar MV,et aI.Suitability of bioresorbable cages for anterior cervical fusion[J].J Neurosurg,2003,98(2):195-201
    5.谢兴国,许仕全,代小思等.颈椎体间隙的应用解剖学研究[J].川北医学院学报,2000,15(4):7-8
    6.Lu J,Ebraheim NA,Yang H,et al.Anatomic bases for anterior spinal surgery:surgical anatomy of the cervical vertebral body and disc space[J].Surg Radio Anat,1999,21(4):235-239
    7o Tanaka M,Nakahara S,Inoue H.A pathologic study of discs in the elderly.Separation between the cartilaginous endplate and the vertebral body[J].Spine 1993,18(11):1456-1462
    8.张亘瑷,江建明,金大地.人工颈椎间盘置换术的解剖学参数测量[J].中国临床解剖学杂志,2006,24(3):283-286
    9.Pair TG,Killefer JA,Arnautovic KI.Surgical Anatomy of the Anterior Cervical Spine:The Disc Space,Vertebral Artery,and Associated Bony Structures[EB/OL].:Neurosurgery online,1996-4-17
    10.Kwon BK,Song F,Morrison WB,et al.Morphologic Evaluation of cervical spine anatomy with computed Tomography[J].J Spinal Disord Tech,2004,17(2):102-107
    1. Robinson RA, Smith GW. Anterior cervical disc removal and interbody fusion for cervical disc syndrome [J]. Bull Johns Hopkins Hospital, 1955, 96: 223-224
    
    2. Smith GW, Robinson RA. The treatment of certain cervical-spine disorders by anterior removal of the interverte bral disc and interbody fusion [J]. J Bone Joint Surg Am, 1958,40A(3): 607-624
    
    3. Robinson RA. The problem of neck pain: its alleviation by anterior removal of interverte bral disc with interbody fusion in the cervical spine [J]. J Med Assoc State Ala, 1963,33:1-14
    
    4. Cho DY, Lee WY, Sheu PC. Treatment of multilevel cervical fusion with cages [J]. Surgical Neurology, 2004,62 (5):378-385
    
    5. Zhang F, Chang J, Lu J, et al. et al. Bioinspired structure of bioceramics for bone regeneration in load-bearing sites[J]. Acta Biomater, 2007. 3(6):896-904
    
    6. Zhang F, Chang J, Lu J, et al. Fabrication and Mechanical Properties of Dense/Porous β-Tricalcium phosphate bioceramics [J]. Key Engineering Materials Vols. 330-332, 2007: 907-910
    
    7. Arai E, Nakashima H, Tsukushi S, et al. Regenerating the fibula with beta-tricalcium phosphate minimizes morbidity after fibula resection [J].Clin Orthop Relat Res, 2005, 431: 233-237.
    
    8. Nakagawa N, Saegusa Y, Abe S, et al. The effectiveness of RA wrist fusion using Beta-TCP without autogenous iliac bone grafting: a report of four cases [J]. Hand Surg, 2006,11(1-2): 71-75.
    
    9. Dai LY, Jiang LS. Single-level instrumented posterolateral fusion of lumbar spine with beta-tricalcium phosphate versus autograft: a prospective, randomized study with 3-year follow-up [J]. Spine, 2008,33(12): 1299-1304.
    
    10. Ohyama T, Kubo Y, Iwata H, et al. Beta-tricalcium phosphate as a substitute for autograft in interbody fusion cages in the canine lumbar spine [J]. J Neurosurg, 2002, 97 (3 Suppl): 350-354.
    11. Dai LY, Jiang LS. Anterior cervical fusion with interbody cage containing beta-tricalcium phosphate augmented with plate fixation: a prospective randomized study with 2-year follow-up [J]. Eur Spine J, 2008. 17(5):698-705.
    
    12. Ramay HRR, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering [J]. Biomaterials, 2004, 25(21): 5171-5180
    
    13. Ashizuka M, Nakatsu M, Ishida E. Mechanical properties of disopside glass-ceramics containing tricalcium Phosphate [J]. Journal of the Ceramic Society of Japan, 1990, 98(2): 204-207
    1. Robinson RA, Smith GW. Anterior cervical disc removal and interbody fusion for cervical disc syndrome [J]. Bull Johns Hopkins Hospital, 1955, 96: 223-224
    
    2. Smith GW, Robinson RA. The treatment of certain cervical-spine disorders by anterior removal of the intervertebral disc and interbody fusion [J]. J Bone Joint Surg Am, 1958,40A(3): 607-624
    
    3. Robinson RA. The problem of neck pain: its alleviation by anterior removal of intervertebral disc with interbody fusion in the cervical spine [J]. J Med Assoc State Ala, 1963,33:1-14
    
    4. Stieber J, Brown K, Donald G, et al. Anterior cervical decompression and fusion with plate fixation in an ambulatory surgery center [J].The Spine Journal, 2003,3( 5):151-152.
    
    5. Cauthen JC, Kinard RE, Vogler JB,et al. Outcome analysis of noninstrumented anterior cervical discectomy and interbody fusion in 348 patients [J]. Spine, 1998, 23:188-192 .
    
    6. Stull DE, Kneisl JS. Incidental neoplasm in iliac crest antograft procured for anterior cervical fusion [J]. Spine, 2002,7( 8): 221-223.
    
    7. Cho DY, Lee WY, Sheu PC. Treatment of multilevel cervical fusion with cages [J]. Surgical Neurology, 2004, 62 (5):378-385.
    
    8. Kanayama M ,Hashimoto T, Shigenobu K, et al. Pitfalls of anterior cervical fusion using titanium mesh and local autograft [J].J S pinalD isord Tech, 2003,16(6): 513-518.
    
    9. Cahill DW, Martin GJ, Hajjar MV, et al.Suitability of bioresorbable cages for anterior cervical fusion [J]. J Neurosurg, 2003,98 (2): 195-201.
    
    10. Kandziora F, Pflugmacher R, Scholz M, Comparison Between Sheep and Human Cervical Spines[J]. Spine, 2001, 26(9): 1028-1037
    
    11. Hans-Joachim W, Annette K, Lutz E. Are sheep spines a valid biomechanical model for human spines? [J]. Spine, 1997, 22(20):2365-2374
    12.黄师,候铁胜,赵鑫等.山羊颈椎能成为人类颈椎的良好模型吗?[J].中国临床解剖学杂志,2008,26(3):329-331
    13.Zdeblick T,Wilson D,Cooke M,et al.Anterior cervical discectomy and fusion.A comparison of techniques in an animal model[J].Spine,1992,17:S418-S426.
    14.Zeblick T,Ghanayem AJ,Rapoff AJ,et al.Cervical interbody fusion cages:An animal model with and without bone morphologic protein[J].Spine,1998,23(7):758-765
    15.Pflugmacher R,Schleicher P,Gumnior S,et al.Biomechanical comparison of bioabsorble cervical spine interbody fusion cages[J].Spine,2004,29(16):1717-1722
    16.Kandziora F,Pflugmacher R,Scholz M,et al.Bioabsobable interbody cages in a sheep cervical spine fusion model[J].Spine,2004,29(17):1845-1855
    17.Krijnen M,Valstar ER,Smit TH,et al.Does bioabsorable cage material influence segment stability in spinal interbody fusion?[J].Clin Ortho and Rela Reser,2006,448:33-38
    18.Krijnen M,Mullender MG,Smit TH,et al.Radiographic,histologic,and chemical evaluation of bioresorbable 70-30 poly-I-lactide-co-d,I-lactide interbody fusion cages in a goat model[J].Spine,2006,31(14):1559-1567
    19.Thomas KA,Toth JM,Crawford NR,et al.Bioresorbable Polylactide Interbody Implants in an ovine anterior cervical discectomy and fusion model[J].Spine,2008,33(7):734-742
    20.Slivka M,Spenciner DB,Seim HB,et al.High rate of fusion in sheep cervical spines following anterior interbody surgery with absorbable and nonabsorbable implant devices[J].Spine,2006,31(24):2772-2777
    21.Lee MY,Chang GL,Chang JH,et al.Biomechanical Evaluation of Cervical Spine Fixation After Healing in a Destabilized Cervical Spine Model in Sheep[J].J of Trauma Injury Infection and Critical Care,2006,60:1307-1314
    1. Hojo Y, Kotani Y, Ito M, et al. A biomechanical and histological evaluation of a bioresorbable lumbar interbody fusion cage[J]. Biomate2rials, 2005, 26 (15): 2643 - 2651.
    
    2. Coe JD, Vaccaro AR. Instrumented transforaminal lumbar interbodyfusion with bioresorbable polymer implants and iliac crest autograft[J].Spine, 2005, 30( Suppl 17): S76- 83.
    
    3. Ray CD.Threaded titanium cages for lumbar interbody fusions [J].Spine, 1997, 22( 6): 667- 679.
    
    4. Brantigan JW, Steffee AD. A carbon fiber implant to aid interbody lumbar fusion: two- year clinical results in the first 26 patients [J]. Spine, 1993,18(14): 2106- 2117.
    
    5. Toth JM,Wang M, Estes BT.Polyetheretherketone as a biomaterial for spinal applications[J].Biomaterials, 2006, 27( 3): 324-334.
    
    6. Shah RR, Mohammed S, Saifuddin A, et al. Comparison of plain radiographs with CT scan to evaluate interbody fusion following the use of titanium interbody cages and transpedicular instrumentation [J]. Eur Spine J, 2003,12(4): 378- 385.
    
    7. Robinson RA, Smith GW. Anterior cervical disc removal and interbody fusion for cervical disc syndrome [J]. Bull Johns Hopkins Hospital, 1955,96: 223-224
    
    8. Smith GW, Robinson RA. The treatment of certain cervical-spine disorders by anterior removal of the intervertebral disc and interbody fusion [J]. J Bone Joint Surg Am, 1958,40A(3): 607-624
    
    9. Robinson RA. The problem of neck pain: its alleviation by anterior removal of intervertebral disc with interbody fusion in the cervical spine [J]. J Med Assoc State Ala, 1963,33: 1-14
    
    10. Dennis S, Watkins R, Landaker S, et al. Comparison of disc space heights after anterior lumber interbody fusion [J]. Spine, 1989,14: 876-878
    
    11. Kumar A, Kozak JA, Doherty BJ, et al. Interspace distraction and graft subsidence after anterior lumber fusion with femoral struct allograft [J]. Spine, 1993,18: 2393-2400
    
    12. Weiner BK, Fraser RD. Spine update luber interbody fusion cages. Spine, 19998,23: 634-640
    
    13. Wilke HJ, Kettler A, Goetz C, et al. Subsidence resulting from simulated postoperative neck movements: an intro investigation with a new cervical fusion cage [J]. Spine,2000,25(21): 2762-2770
    1.Schimandle J,Boden S.Spine update:Animal Use in Spinal Research[J].Spine,1994,19:2474-2477.
    2.余家阔,吴文,戴先进,等.颈椎病生物力学发病机制实验研究[J].安徽医科大学学报,1990,25(1):47-50
    3.陈立,詹红生,应航等.长时间异常应力负荷下兔颈椎间盘的组织病理学观察[J].中国骨伤,2003,16(6):374-376
    4.王卫明,金大地,瞿东滨.大鼠颈椎间盘老化及退变过程中髓核形态变化规律的实验研究[J].中国临床解剖学杂志,2005,23(4):413-417
    5.Whitehill R,Miran DJ,Fechner RE,et al.Cervical ligametous instability in a canine in vivo model[J].Spine,1987,12(10):959-963
    6.Osti OL,Vemonroberts B,Fraser RD.Anulus tears and intervertebral disc degeneration:An experimental study using an animal model[J].Spine,1990,15(8):762-767
    7.Miyamoto S,Yonenoku K,Keiro O.Experimental cervical spondylosis in the mouse[J].Spine,1991,16(10):495-500
    8.郝永强,施杞,郑松国,等.大鼠颈椎病实验模型的设计与建立[J].中国矫形外科杂志,1999,6(4):282-284
    9.张军,齐越峰,孙树椿.家兔颈椎两侧肌肉平衡失调对椎动脉血流的影响[J].中国骨伤,2002,15(5):280-281
    10.王拥军,施杞,沈培芝,等.动静力失衡性大鼠颈椎间盘退变模型的动态观察[J].中国中西医结合杂志,2001,21(3):199-202
    11.Wang YJ,Shi Q.,Lu WW,et al.Cervical Intervertebral Disc Degeneration Induced by Unbalanced Dynamic and Static Forces[J].Spine,2006,31(14):1532-1538
    12.王拥军,施杞,周泉等.兔风寒湿痹证型颈椎病模型的建立[J].中西医结合学报,2007,5(1):39-44
    13.Hosoda Y,Yoshimura Y,Higaki S.A new breed of mouse showing multiple osteochondral lesions:Twy mouse[J].Ryumachi, 1981,21(Suppl):157-164.
    14.Uchida K,Kenzo D.Progressive changes in neurofilament proteins and growth-associatedp rotein-43 immunoreactivities at the site of cervical spinal cord compression in spinal hyperostotic mice[J].Spine,2002,27(5):480-486
    15.Yamaura I,Yone K,Nakahara S,et al.Mechanism of destructive pathologic changes in the spinal cord under chronic mechanical compression[J].Spine,2002,27(1):21-26
    16.Uchida K,Baba H,Maezawa Y,et al.Increased expression of neurotrophins and their receptors in the mechanically compressed spinal cord of the spinal hyperostotic mouse(twy/twy)[J].Acta Neuropathol,2003,106(1):29-36
    17.Xu K,Uchida K,Nakajima H,et al.Targeted retrograde transfection of adenovirus vector carrying brain-derived neurotrophic factor gene prevents loss of mouse(twy-twy) anterior horn neurons in vivo sustaining mechanical compression[J].Spine,2006,31(17):1867-1874
    18.Hukuda S,ilson CB.Experimental cervical myrlopathy:effects of compression and ischemia on the canine cervical cord[J].J Neurosurg,1972,37(6):631-652.
    19.Kanchiku T,Taguchi T,Keneko K,et al.A new rabbit model for the study on cervical compressive myelopathy[J].J Orthop Res,2001,19(4):605-613
    20.Al-Meffty O,Harkey HL,Marawil M,et al.Eeperimental chronic compression cervical myelopathy[J].J Neurosurg,1993,79(4):550- 561
    21.蔡钦林,杨文,黄云钟,等.犬慢性压迫性颈脊髓的实验研究[J].中国脊柱脊髓杂志,1996,6(5):210-212.
    22.吴叶,侯树勋,何海龙,等.颈脊髓慢性压迫模型的建立及其病理改变[J]‘中国脊柱脊髓杂志,2006,16(1):57-62
    23.Shimizu K,Nakamura M,Nishikawa Y,et al.Spinal Kyphosis Causes Demyeiination and Neuronal Loss in the Spinal Cord[J].Spine,2005, 30(21):2388-2392
    24.戎利民,李佛保,蔡道章 等.脊髓型颈椎病动物模型的初步建立[J].解剖学研究,2001,23(4):313-315
    25.王欢,李雷,王海义,等.椎动脉受压动物模型[J].中国医科大学学报,1997,26(2):156-157
    26.朱明双,郑重,黄勇,等.注射硬化剂法制作家兔椎动脉型颈椎病模型[J].中医正骨,2000,12(12):11-13
    27.郑祖根,沈忆新,董天华 等.实验性椎动脉闭塞及其外科治疗[J].中华外科杂志,1989,27(12):732-735
    28.张军,孙树椿.神经根型颈椎病(急性期)动物模型的建立[J].中国中医骨伤科杂志,2000,8(1):12-16
    29.Schmidt R,Richter M,Claes L,et al.Limitations of the Cervical Porcine Spine in Evaluating Spinal Implants in Comparison With Human Cervical Spinal Segments[J].Spine,2005,30(11):1275-1282
    30.Rubino F,Deutsch H,Pamoukian V,et al.Minimally invasive spine surgery:an animal model for endoscopic approach to the anterior cervical and upper thoracic spine[J].J Laparoendosc Adv Surg Tech A,2000,10:309-313.
    31.Kandziora F,Pflugmacher R,Scholz M,Comparison Between Sheep and Human Cervical Spines[J].Spine,2001,26(9):1028-1037
    32.Hans-Joachim W,Annette K,Lutz E.Are sheep spines a valid biomechanical model for human spines?[J].Spine,1997,22(20):2365-2374
    33.黄师,候铁胜,赵鑫等.山羊颈椎能成为人类颈椎的良好模型吗?[J].中国临床解剖学杂志,2008,26(3):329-331
    34.Zdeblick T,Wilson D,Cooke M,et al.Anterior cervical discectomy and fusion.A comparison of techniques in an animal model[J].Spine,1992,17:S418-S426.
    35.Zeblick T,Ghanayem AJ,Rapoff AJ,et al.Cervical interbody fusion cages:An animal model with and without bone morphologic protein[J].Spine, 1998, 23(7): 758-765
    
    36. Pflugmacher R, Schleicher P, Gumnior S, et al. Biomechanical comparison of bioabsorble cervical spine interbody fusion cages [J].Spine, 2004, 29(16): 1717-1722
    
    37. Kandziora F, Pflugmacher R, Scholz M, et al. Bioabsobable interbody cages in a sheep cervical spine fusion model [J]. Spine, 2004, 29(17): 1845-1855
    
    38. Krijnen M, Valstar ER, Smit TH, et al. Does bioabsorable cage material influence segment stability in spinal interbody fusion? [J]. Clin Ortho and Rela Reser, 2006,448: 33-38
    
    39. Krijnen M, Mullender MG, Smit TH, et al. Radiographic, histologic, and chemical evaluation of bioresorbable 70-30 poly-I-lactide-co-d, I-lactide interbody fusion cages in a goat model [J]. Spine, 2006, 31(14):1559-1567
    
    40. Thomas KA, Toth JM, Crawford NR, et al. Bioresorbable Polylactide Interbody Implants in an ovine anterior cervical discectomy and fusion model [J]. Spine, 2008, 33(7):734-742
    
    41. Slivka M, Spenciner DB, Seim HB, et al. High rate of fusion in sheep cervical spines following anterior interbody surgery with absorbable and nonabsorbable implant devices [J]. Spine, 2006, 31(24): 2772-2777
    
    42. Lee MY, Chang GL, Chang JH, et al. Biomechanical Evaluation of Cervical Spine Fixation After Healing in a Destabilized Cervical Spine Model in Sheep [J]. J of Trauma Injury Infection and Critical Care, 2006, 60:1307-1314
    1.Cauthen JC,Kinard RE,Vogler JB,et al.Outcome analysis of noninstrumented anterior cervical discectomy and interbody fusion in 348 patients[J].Spine,1998,23:188-192
    2.Cancedda R,Giannoni P,Mastrogiacomo M.A tissue engineering approach to bone repair in large animal models and in clinical practice [J].Biomaterials,2007.28(29):4240-4250.
    3.Younger EM,Chapman MW.Morbidity at bone graft donor sites[J].J Orthop Trauma,1989,3(3):192-195.
    4.Khan Y,Yaszemski MJ,Mikos AG,et al.Tissue engineering of bone:material and matrix considerations[J].J Bone Joint Surg Am,2008,90Suppl 1:36-42..
    5.Bruder SB,Fox BS.Tissue engineering of bone.Cell based strategies.Clin Orthop Relat Res,1999,367 Suppl:S68-83.
    6.卢建熙.多孔生物陶瓷的研究进展[J].材料科学与工程,2000,18:775-776
    7.Driskell TD.Development of ceramic and ceramic composite devices for maxillofacial applications[J].J Biomed Mater Res,1972.6(1):345-361
    8.Winter M,Griss P,Degroot K,et al.Comparative histocompatibility testing of seven calcium phosphate ceramics[J].8iomaterials,1981.2(3):159-160.
    9.Descamps M,Duhoo T,Monchau F,et al.Manufacture of macroporous β-tricalcium phosphate bioceramics[J].J Eur Ceram Soc,2008,11(28):149-157
    10.Klawitter JJ,Bagwell JG,Weinstein AM,et al.An evaluation of bone growth into porous high density polyethylene[J].J Biomed Mater Res,1976.10(2):311-323.
    11.Lu JX,Flautre B,Anselme K,et al.Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo[J].J Mater Sci Mater Med,1999,10(2):111-120.
    12. Lu JX, Blary MC, Vavasseur S et al. Relationship between bioceramics sintering and micro-particles-induced cellular damages [J]. J Mater Sci Mater Med, 2004, 15(4): 361-365.
    
    13. Hinz P, Wolf E, Schwesinger G, et al. A new resorbable bone void filler in trauma: early clinical experience and histologic evaluation [J]. Orthopedics, 2002, 25 (5 Suppl): S597-600.
    
    14. Farina NM, Guzon FM, Pena ML, et al. In vivo behaviour of two different biphasic ceramic implanted in mandibular bone of dogs [J]. J Mater Sci Mater Med, 2008,19(4): 1565-1573.
    
    15. Gaasbeek RDA, Toonen HG, van Heerwaarden RJ, et al. Mechanism of bone incorporation of beta-TCP bone substitute in open wedge tibial osteotomy in patients [J]. Biomaterials, 2005, 26(33): 6713-6719.
    
    16. Ogose A, Hotta T, Hatano H, et al. Histological examination of beta-tricalcium phosphate graft in human femur [J]. J Biomed Mater Res, 2002,63(5): 601-604.
    
    17. Nicholas RW, Lange TA. Granular tricalcium phosphate grafting of cavitary lesions in human bone[J]. Clin Orthop Relat Res, 1994, 306:197-203.
    
    18. Lu JX, Gallur A, Flautre B, et al. Comparative study of tissue reactions to calcium phosphate ceramics among cancellous, cortical, and medullar bone sites in rabbits [J]. J Biomed Mater Res, 1998,42(3): 357-367
    
    19. Cartmell, S. Controlled release scaffolds for bone tissue engineering [J]. J Pharm Sci, 2008.
    
    20. Silverman LD, Lukashova L, Herman OT, et al. Release of gentamicin from a tricalcium phosphate bone implant [J]. J Orthop Res, 2007. 25(1):23-29.
    
    21. Steffen T, Stoll T, Arvinte T, et al. Porous tricalcium phosphate and transforming growth factor used for anterior spine surgery [J]. Eur Spine J, 2001, 10 Suppl 2: S132-140.
    
    22. Clarke SA, Brooks RA, Lee PTH, et al. The effect of osteogenic growth factors on bone growth into a ceramic filled defect around an implant [J]. J Orthop Res, 2004, 22(5): 1016-1024.
    
    23. Niedhart C, Maus U,Miltner 0, et al. The effect of basic fibroblast growth factor on bone regeneration when released from a novel in situ setting tricalcium phosphate cement [J]. J Biomed Mater Res A, 2004,69(4): 680-685.
    
    24. Maus U, Andereya S, Ohnsorge JAK, et al. A bFGF/TCP-composite inhibits bone formation in a sheep model [J]. J Biomed Mater Res B Appl Biomater, 2008, 85(1): 87-92.
    
    25. Lind M, Overgaard S, Glerup H, et al. Transforming growth factor-beta 1 adsorbed to tricalciumphosphate coated implants increases peri-implant bone remodeling [J]. Biomaterials, 2001, 22(3): 189-193.
    
    26. Yoshii T, Sotome S, Torigoe I, et al. Fresh bone marrow introduction into porous scaffolds using a simple low-pressure loading method for effective osteogenesis in a rabbit model [J]. J Orthop Res, 2008.
    
    27. Nade S, Armstrong L, Mccartney E, et al. Osteogenesis after bone and bone marrow transplantation. The ability of ceramic materials to sustain osteogenesis from transplanted bone marrow cells: preliminary studies [J]. Clin Orthop Relat Res, 1983,181: 255-263.
    
    28. Erbe EM, Marx JG, Clineff TD, et al. Potential of an ultraporous beta-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft [J]. Eur Spine J, 2001, 10 (Suppl 2): S141-146.
    
    29. Gan Y, Dai KR, Zhang P, et al. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion [J]. Biomaterials, 2008, 29(29): 3973-3982.
    
    30. Slater M, Patava J, Kingham K, et al. Involvement of platelets in stimulating osteogenic activity [J]. J Orthop Res, 1995,13(5): 655-663.
    
    31. Kovacs K, Velich N, Huszar T, et al. Comparative study of beta-tricalcium phosphate mixed with platelet-rich plasma versus beta-tricalcium phosphate, a bone substitute material in dentistry [J]. Acta Vet Hung, 2003, 51(4): 475-484.
    
    32. Wiltfang F, Schlegel KA, Schultze-Mosgau S, et al. Sinus floor augmentation with beta-tricalciumphosphate (beta-TCP): does platelet-rich plasma promote its osseous integration and degradation? [J]. Clin Oral Implants Res, 2003,14(2): 213-218.
    
    33. Li H, Zou XN, Xue QY, et al. Anterior lumbar interbody fusion with carbon fiber cage loaded with bioceramics and platelet-rich plasma. An experimental study on pigs [J]. Eur Spine J, 2004.13(4): 354-358.
    
    34. van Hemert WLW, Willems K, Anderson PG, et al. Tricalcium phosphate granules or rigid wedge preforms in open wedge high tibial osteotomy: a radiological study with a new evaluation system [J]. Knee, 2004.11(6):451-456.
    
    35. Arai E, Nakashima H, Tsukushi S, et al. Regenerating the fibula with beta-tricalcium phosphate minimizes morbidity after fibula resection [J]. Clin Orthop Relat Res, 2005,431: 233-237.
    
    36. Nakagawa N, Saegusa Y, Abe S, et al. The effectiveness of RA wrist fusion using Beta-TCP without autogenous iliac bone grafting: a report of four cases [J]. Hand Surg, 2006,11(1-2): 71-75.
    
    37. Dai LY, Jiang LS. Single-level instrumented posterolateral fusion of lumbar spine with beta-tricalcium phosphate versus autograft: a prospective, randomized study with 3-year follow-up [J]. Spine, 2008,33(12): 1299-1304.
    
    38. Ohyama T, Kubo Y, Iwata H, et al. Beta-tricalcium phosphate as a substitute for autograft in interbody fusion cages in the canine lumbar spine [J]. J Neurosurg, 2002, 97 (3 Suppl): 350-354.
    
    39. Dai LY, Jiang LS. Anterior cervical fusion with interbody cage containing beta-tricalcium phosphate augmented with plate fixation: a prospective randomized study with 2-year follow-up [J]. Eur Spine J, 2008. 17(5):698-705.
    
    40. Muschik M, Ludwig R, Halbhubner S, et al. Beta-tricalcium phosphate as a bone substitute for dorsal spinal fusion in adolescent idiopathic scoliosis: preliminary results of a prospective clinical study [J]. Eur Spine J, 2001,10 Suppl 2: S178-184.
    
    41. Epstein NE. A preliminary study of the efficacy of Beta Tricalcium Phosphate as a bone expander for instrumented posterolateral lumbar fusions [J]. J Spinal Disord Tech, 2006,19(6): 424-429.
    
    42. Delecrin J, Takahashi S, Gouin F, et al. A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective, randomized study [J]. Spine, 2000, 25(5): 563-569.
    
    43. Linovitz RJ, Peppers TA. Use of an advanced formulation of beta-tricalcium phosphate as a bone extender in interbody lumbar fusion [J]. Orthopedics, 2002, 25(5 Suppl): S585-589.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700