羧酸酯插入式乙氧基化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乙二醇单烷基醚羧酸酯是一类重要的精细化学品,合成该类化合物的传统方法主要分两步进行,即先制备乙二醇单烷基醚,再将之与羧酸或其衍生物经酯化反应得目标产物。新开发的环氧乙烷对羧酸酯的插入式反应将上述两步反应缩减为一步反应,并使原子经济性达到100%。已见报道的催化羧酸酯与环氧乙烷的插入乙氧基化反应的催化剂主要有DBU(1,8-diazabicyclo [5.4.0] undec-7-ene)及其类似物、Lewis酸与有机胺的复合物、烷氧基碱土金属盐和铝镁复合氧化物等,其中铝镁复合氧化物催化活性高、产物分布性窄、安全性好以及性价比高等优点使其更具开发价值。
     以铝镁复合氧化物为催化剂,包括本实验室在内的国内外研究团队已经成功开发了乙酸乙酯、长链脂肪酸甲酯和油脂的插入式乙氧基化反应。但是,该催化技术能否推广到含不饱和结构的原料如丙烯酸甲酯、丙烯酸苯酯、乙酸苯酯和乙酸乙烯酯等羧酸酯原料中仍未知,突破上述原料限制的关键在于深入了解羧酸酯的残基结构影响插入式乙氧基化反应的内在规律。因此本文首要解决的问题是考察羧酸酯的残基结构如何影响插入式乙氧基化反应,研究对不同结构的羧酸酯实施插入式乙氧基化反应的可能性和可行性。
     虽然本实验室和其他研究团队利用各自的催化技术已经开发了多个具有显著工业化潜能的羧酸酯插入式乙氧基化产物,但迄今为止该技术仍未得到大规模推广。阻碍该技术进一步产业化的关键技术在于催化剂的工业放大,这是因为工业催化剂制备过程中保持高催化活性与追求高生产效率构成矛盾。因此本文要解决的第二个关键问题是探索合适的催化剂制备工艺,在保持高催化活性的前提下追求高生产效率,以推进羧酸酯插入式乙氧基化反应的工业化进程。
     针对上述两大瓶颈问题,本文主要研究具有不同残基结构羧酸酯的插入式乙氧基化反应,探索残基结构影响该类反应的内在规律,在此基础上进一步考察其它促进羧酸酯一步法乙氧基化反应的因素;同时研究对合成铝镁复合氧化物催化剂最有益的制备工艺,在此基础上进一步优化催化剂制备的工艺条件,并进行催化剂制备扩试试验。在本文实验范围内,得到以下主要结果和结论。
     考察了羧酸酯原料中不同残基的空间效应和电子效应,研究其对插入式乙氧基化反应的引发反应温度、反应表观活化能、产物选择性和多种酯基共存体系中的反应竞争性等影响。由实验结果得到以下结论:原料或中间体羧酸酯的残基结构是影响其乙氧基化反应的反应速率、反应竞争性和产物选择性的根本要素;受残基电子效应和空间效应的影响,羧酸酯的乙氧基化反应总体表现出酯键键长较长或反应位受位阻影响较小的羧酸酯更易于发生插入式乙氧基化反应,具体表现为引发反应温度低、反应速率快和活化能小。本文的研究结论可以较好解释以下实验结果:(1)对多种酯基共存的羧酸酯原料而言,插入式乙氧基化反应优先发生在化学键长较长的酯基位,因此4-乙酰氧基苯甲酸甲酯与环氧乙烷反应的产物主要是4-(2-乙酰氧基乙氧基)苯甲酸甲酯。(2)在含不同键长的羧酸酯的反应体系中,乙氧基化反应优先发生在键长较长的羧酸酯酯分子中,因此乙酸苯酯的乙氧基化反应产物主要是乙二醇苯醚乙酸酯,对苯二酚二乙酸酯的乙氧基化反应产物主要是乙酸-4-(2-乙酰氧基乙氧基)苯酯。(3)由于羧酸酯插入式乙氧基化反应产物仍为羧酸酯,故新生成的羧酸酯还可以继续与环氧乙烷发生插入式乙氧基化反应。但是,产物羧酸酯与原料羧酸酯的酯基的键长和受空间位阻的影响具有一定差异,因此后续插入式乙氧基化反应速率随着乙氧基化反应的推进而不断变化:由于产物羧酸酯的位阻效应大于原料羧酸酯,故十二酸甲酯与环氧乙烷的反应速率随乙氧基化反应进行而不断下降;由于产物羧酸酯的位阻效应较原料羧酸酯削弱,故棕榈硬脂与环氧乙烷的反应先慢后快;由于产物羧酸酯的位阻效应较弱,故乙酸乙酯和甲基丙烯酸甲酯的乙氧基化反应速率随环氧乙烷加合数的增加变化不大;受中等环状化合物的环张力的影响,γ-丁内酯与环氧乙烷的乙氧基化反应速率先缓慢增加,在平均加合数在3.3左右时,反应速率迅速增大并达到恒定值。
     考察了反应温度、反应压力、溶剂和添加剂等因素对一步法插入反应的影响,以寻求羧酸酯插入式乙氧基化反应的其它促进因素。实验结果表明:(1)反应温度和反应压力提高,能有效地提高羧酸酯插入式乙氧基化反应的速率。(2)加入溶剂使体系的黏度降低,因此也大大提高羧酸酯的乙氧基化反应速率。(3)不同添加剂对催化剂有不同辅助作用,故对羧酸酯的插入式乙氧基化反应的影响也不尽相同:由于碱性添加剂或酸性添加剂可分别与催化剂表面的酸碱性活性位点发生相互作用,导致催化剂表面总活性位点数减少,因此添加十二酸、十六烷基三甲基溴化铵、六次甲基四胺和十二醇等添加剂降低了十二酸甲酯乙氧基化反应的速率;添加三氯化铝和三乙胺等添加剂使甲基丙烯酸甲酯乙氧基化反应速率急剧降低;由于无机盐与催化剂的酸碱性活性位点无明显相互作用,因此添加碘化钾对十二酸甲酯乙氧基化反应速率无明显影响;研究添加剂对丙烯酸苯酯单EO加合数产物乙二醇苯醚丙烯酸酯(GPA)选择性的影响时发现,添加BF_3、AlCl_3等Lewis酸或[MIMPS]_3PW_(12)O_(40)离子液体降低了GPA的收率;添加NaOH、Na_2CO_3、NaHCO_3、NH3等无机碱,N(Et)_3、六次甲基四胺等有机碱,MIMPS、BMIMCl等离子液体或卤化钾等添加剂均不同程度地提高了GPA收率。
     以共沉淀法制备的铝镁复合氧化物具有高比表面积、中等强度碱性及布朗斯特酸性的双活性中心,可催化以十二醇为代表的脂肪醇的乙氧基化反应和羧酸酯的插入式乙氧基化反应。以影响催化剂放大的关键瓶颈因素,催化剂前体的过滤速率,表征催化剂的制备效率,以十二酸甲酯插入式乙氧基化反应表征催化剂的催化活性,探索了工艺扩试试验中催化剂的制备工艺,并优化了催化剂的制备工艺条件。以NH3-(NH4)2CO_3和NaOH-Na_2CO_3的复合物为沉淀剂,可在保持原优化工艺条件下催化剂高活性的同时,大大提高催化剂制备效率。以摩尔比4:6的NH3-(NH4)2CO_3与NaOH-Na_2CO_3为沉淀剂,催化剂前体悬浮液的过滤速率较NaOH-Na_2CO_3为沉淀剂快3.1倍,所得催化剂的催化活性为2.3gEO/gCat/min。优化的催化剂制备工艺条件为:将铝镁混合溶液(200g/L)和沉淀剂以10mL/min的加料速率同时流加到带有慢速机械搅拌(300r/min)的2L三口烧瓶中,共沉淀反应结束后在70oC下的老化6h,该优化工艺条件下所制备催化剂的活性为2.4gEO/gCat/min。
     考察了不同工艺对催化剂制备效率和催化剂活性的影响。由实验结果得到以下结论:在适当的且稳定的pH环境下,大比例返混物料和弱剪切力条件下有效控制铝镁离子形成晶核和晶体生长速率可在工艺扩试规模上保持催化剂高催化活性的同时大大提高催化剂的制备效率。本文的研究结论可以较好解释以下实验结果:(1)在混合乳化泵-釜式混合工艺中,随着返混物料比例的增加,催化剂的制备效率和催化活性均得到提高;(2)由于后继批次的返混比例更大,双物料连续流加工艺和静态混合-釜式混合工艺中后继批次催化剂的制备效率和催化活性均大于前一批次;(3)因混合剪切力显著增强,混合乳化泵-釜式混合工艺制备催化剂的效率和催化活性显著低于弱剪切力的其它工艺。
The (poly) ethylene glycol monoalkyl ether carboxylic acid esters (PEGMAECAEs)are vital fine chemicals, and are widely used in many fields due to the different acyl groups,(poly) ethylene glycol or alkoxy blocks in the molecules. Usually, PEGMAECAEs areprepared via a two-step synthetic route with ethylene glycol, alcohol, and carboxylic acidas starting materials. Novel one pot synthetic strategy with carboxylic esters and ethyleneoxide as raw materials is more atomic economy than the multi-step procedures. The onepot procedure was catalyzed by DBU (1,8-diazabicyclo [5.4.0] undec-7-ene) and theanalogues, the composite of Lewis acid and organic base, alkoxy alkaline earth metal saltor Al/Mg composite oxide. In which, Al/Mg composite oxide was one of the potentialindustrial development value due to the higher catalytic activity, narrower productdistribution, security and higher cost performance of products.
     Using Al-Mg composite oxide as the catalyst, home or abroad, including ourresearching team had successfully developed one-step inserted ethoxylation of carboxylicesters such as ethyl acetate, the long-chain fatty acid methyl esters, oil and grease.However, whether the catalytic technologies could be extended to the raw materials suchas methyl methacrylate, phenyl acrylate, phenyl acetate, and vinyl acetate is still unknown.The key breakthrough of the above raw materials restrictions lies in the comprehensiveunderstanding the inherent laws of one-step inserted ethoxylation of carboxylic esterswhich was influenced by the building blocks in the molecules. Hence, the most importantquestion of this paper is to explore the relationship between the residue blocks and thereactivity of carboxylic esters.
     Our laboratory and other research teams have been developed the insertedethoxylation techniques of many carboxylic esters with significant industrializationpotential, while such technology has not been promoted in a large-scale. The majorobstacle of the novel technology with industrialization potential was the catalystpreparation. Therefore, the second key problem is to explore suitable catalyst preparationprocess.
     In response to those two bottlenecks problems, the inserted ethoxyaltion with thecarboxylic esters of different residue blocks was studied, the inherent laws of the affectionof the residue blocks was deduced. The promoting factors of the reaction were alsoinvestigated. At the same time, the most useful process for the synthesis of Al-Mgcomposite oxide catalyst was optimized. Based on the above-mentioned conditions, theprocess conditions of the catalyst preparation both in laboratory scale and the expansionpilot scale were also investigated. Within the scope of this study, the following main resultsand conclusions were reached.
     The spatial effect and the electronic effect of the carboxylic ester feedstock withdifferent residues blocks were investigated by the initiating temperature, activation energy,product selectivity and the reaction competitive in the system with different ester groups.The main findings of the present study were as follows: The fundamental element of the ethoxylation rate, the reaction competitives and the product selectivity was the chemicalbond natures of the raw materials or the inermediates. By the influence of electronic effectsand spatial effects of the residues, the overall performance of the reaction was promotedwith the longer bond length or smaller steric effect of the esters. The promotedperformance of the reaction was manifested as lower initiating temperature, higher reactionrate and lower activation energy. The conclusions of the above can be better explain thefollowing experimental results:(1) In the carboxylic ester feedstock of different estergroups, the inserted ethoxylation reaction prefer to occurring in the bond of longer length,so the main product of the ethoxylation of methyl4-acetyloxybenzoate and ethylene oxidewas methyl4-(2-acetoxyethoxy) benzoate.(2) In the carboxylic ester feedstock withdifferent bond length, the inserted ethoxylation reaction prefer to occurring in themolecular with longer bond length, therefore the main product of the ethoxylation ofphenyl acetate was ethylene glycol phenyl ether acetate and the main product of theethoxylation of the hydroquinone diacetate was4-(2-acetoxyethoxy) phenyl acetate.(3)Since the ethoxylated product of carboxylic ester was still carboxylic ester, the novelintermediates could react with ethylene oxide by inserted ethoxylation strategy. However,the bond nature such as bond length and the steric effect, were different between thestarting material and the intermediates, therefore the subsequent inserted ethoxylation ratewas varying with the bond nature changed: due to the steric effect enhanced, the reactionrate of the ethoxylation of methyl laurate was declining; due to the steric effect weakened,the reaction rate of the ethoxylation of palm stearin was increasing; due to the weakersteric effect of both the starting material and the intermediates, the reaction rate of ethylacetate or methyl methacrylate with ethylene oxide was almost constant value; due to theintermediate’s bond length shorter than raw material, the reaction rate of phenyl acetatewas drastically decreasing; affected by the medium-tension of the ring of the cycliccompounds, the ethoxylation reaction rate of the γ-butyrolactone was very slow at first,then gradually increased as the reaction progressing, the reaction rate increased rapidly andreached a constant value after the average adduct number of about3.3.
     To find the other contributing factors of the inserted ethoxylation of carboxylic esters,some other factors such as reaction temperature, pressure, solvents, and additives were alsoinvestigated. Experimental results show that:(1) the reaction rate could be effectivelyimproved by the reaction temperature or pressure increasing;(2) the reaction rate couldalso be improved by using petroleum ether as solvent which reduced the viscosity of thereaction mixture;(3) the reaction performance was changed by inserting additives inreaction systems due to the different promoted role: The alkaline additives or acidicadditives could neutralize the active site of the catalyst respectively, leading to the decreasein the total active sites of the catalyst, therefore the addition of lauric acid, cetyl trimethylammonium bromide (CTAB), hexamethylenetetramine (HMTA), lauryl alcohol and otheradditives could reduce the reaction rate of methyl laurate; the addition of aluminumtrichloride and triethylamine could reduce the reaction rate of methyl methacrylatedrastically; due to the weak interaction between inorganic salt and the catalyst, the additionof potassium iodide almost no effect the reaction rate of methyl laurate; the influence of additives to the reaction selectivity of phenyl acrylate was also investigated, the resultwas that the addition of Lewis acid such as BF_3, AlCl_3or room temperature ionic liquidsuch as [MIMPS]_3PW_(12)O_(40)reduced the yield of GPA; the addition of inorganic basessuch as Na_2CO_3, NaHCO_3,NaOH, NH3, the organic bases such as N(Et)_3, hexamethylenetetramine, the room temperature ionic liquid such as MIMPS, BMIMCl, and potassiumhalide additives improved the yield of GPA.
     Al–Mg composite oxide with higher specific surface areas, Bronsted acidic activesites and medium strength alkaline active sites, was prepared by coprecipitate procedure,which could catalyze the ethoxylation of ethylene oxide and fatty alcohol such asdodecanol and the inserted ethoxylation of ethylene oxide and the carboxylic ester. Todiscover a process in pilot scale of the catalyst preparation, and optimize the preparationconditions of the catalyst, the efficiency of the catalyst preparation was evaluated by thefiltration rate of the catalyst precursor. The catalytic activity of the catalyst wascharacterized by the inserted ethoxylation of methyl laurate. Using NH3-(NH4)2CO_3andNaOH-Na_2CO_3complex as the precipitating agent, the catalyst with high activity wasobtained by efficiency of the catalyst preparation procedure. With a molar ratio of4:6,NH3-(NH4)2CO_3NaOH-Na_2CO_3as precipitant, the catalyst precursors suspensionfiltration rate was3.1times faster than that of NaOH-Na_2CO_3as precipitant, the catalyticactivity of the resulting catalyst was2.3gEO/gCat/min. The optimized reactionconditions were as follows:200g/L Al-Mg salts mixture, a feed rate of10mL/min, slowmechanical stirring of300rounds/min, and aging at70oC for further6h. The catalystactivity under the optimized conditions was2.4gEO/gCat/min.
     The effects of different process on catalyst activity and the efficiency of the catalystpreparation were studied. The main findings of the present study were as follows: in aproper and stable pH environment, a large proportion back mixing and weak shearing forcecould effective control the formation of nuclei and the crystal growth rate of Al-Mg ion,result in the higher catalytic activity on the expanded pilot scale, and the efficiency of thepreparation was greatly improved. The conclusions of this study could better explain thefollowing experimental results:(1) in the mixed pump-batch mixing process, with theincrease in the proportion of material back mixing, the preparation of the catalystefficiency and the catalytic activity was improved;(2) since the subsequent batches of agreater proportion of back mixing, the catalyst efficiency and the catalytic activity washigher than that in the previous batch by the continuously feeding-batch mixing processesand static mixing-the batch mixing process;(3) due to the mixing shear significantlyenhanced in the mixed pump, the catalyst efficiency and the catalytic activity by the mixedpump-batch mixing process was lower than the other procedure.
引文
[1] Schmidt K., Hildebrandt F.-I., Zugenmaier P. Investigations on cellulose-carbanilates and cellulose-carbanilate-acetates in dilute solutions[J]. ACS Symp. Ser.,1999,737(Polysaccharide Applications):127-142.
    [2] Hama I., Okamoto T., Nakamura H. Preparation and properties of ethoxylated fatty methyl esternonionics[J]. J. Am. Oil Chem. Soc.,1995,72(7):781-784.
    [3] Cox M. F., Weerasooriya U. Methyl ester ethoxylates[J]. J. Am. Oil Chem. Soc.,1997,74(7):847-859.
    [4] Ranu B. C., Dey S. S., Hajra A. Highly efficient acylation of alcohols, amines and thiols undersolvent-free and catalyst-free conditions[J]. Green Chem.,2003,5(1):44-46.
    [5] Jackson A. W., Stakes C., Fulton D. A. The formation of core cross-linked star polymer and nanogelassemblies facilitated by the formation of dynamic covalent imine bonds[J]. Polym. Chem.,2011,2(11):2500-2511.
    [6] Knifton J. F., Marquis E. T. Synthesis of hydroxy-terminated polybutadienes using glycol ether acetatesolvents[P]. US,1991694590:1991-05-02.
    [7] Sapota A., Skrzypinska-Gawrysiak M.2-ethoxyethyl acetate. Documentation of permissibleoccupational exposure values[J]. Podstawy Metody Oceny Srodowiska Pr.,2011,27(2):145-167.
    [8] Malek J. Reductions by metal alkoxyaluminum hydrides. Part ii. Carboxylic acids and derivatives,nitrogen compounds, and sulfur compounds[M]. Prague: Wiley,1988, pages
    [9] Johanson G. Toxicity review of ethylene glycol monomethyl ether and its acetate ester[J]. Crit. Rev.Toxicol.,2000,30(3):307-345.
    [10] Szymanska J. A., Frydrych B.2-methoxyethyl acetate. Documentation of permissible occupationalexposure values[J]. Podstawy Metody Oceny Srodowiska Pr.,2010,26(4):141-158.
    [11] Staples C. A., Boatman R. J., Cano M. L. Ethylene glycol ethers: An environmental risk assessment[J].Chemosphere,1998,36(7):1585-1613.
    [12] Sakai T., Araki T., Masuyama Y. Determination of urinary alkoxyacetic acids by a rapid and simplemethod for biological monitoring of workers exposed to glycol ethers and their acetates[J].International archives of occupational and environmental health,1993,64(7):495-498.
    [13] Plaisance H., Desmettres P., Leonardis T., Pennequin-Cardinal A., Locoge N., Galloo J. C. Passivesampling of glycol ethers and their acetates in indoor air[J]. J. Environ. Monit.,2008,10(4):
    [14] Jackh R., Gelbke H. P., Helmstadter G. In vitro cytotoxicity of glycol ethers and oxidation products incho cells[J]. Toxicol. Lett.,1985,26(1):73-77.
    [15] Etiemble J. Glycol ethers: A variable toxicity depending of their compounds[J]. Actualite Chimique,2003,(11-12):
    [16]傅鹏远,杨春.负载型硫酸锆催化剂催化合成乙二醇单乙醚乙酸酯[J].南京师大学报(自然科学版),2009,(03):71-75.
    [17]熊士荣,俞善信.硫酸氢钠催化合成乙二醇单甲醚乙酸酯[J].工业催化,2004,(08):30-32.
    [18]朱新宝,刘准,吴晓春,陈惠华,谢樊成,蔡向阳.乙二醇丁醚醋酸酯的合成方法[P].中国专利,200910028447.9:2009-01-20.
    [19]朱新宝,刘准,曹惠庆,吴逊,何长碧,吴亦飞.二元醇醚酯的合成方法[P].中国专利,200910028448.3:2009-01-20.
    [20]朱驯.乙二醇单乙醚醋酸酯的合成工艺改进研究[J].应用化工,2006,(04):298-312.
    [21]苏秋芳,刘宝生,黄军左,陈小平. Sol-gel负载磷钨酸催化合成乙二醇单乙醚醋酸酯[J].精细化工中间体,2005,(05):55-57.
    [22] Mihailovic M. L., Miloradovic M. The reaction of lead tetraacetate with some acyclic hydroxyethers[J]. Tetrahedron,1966,22(2):723-738.
    [23]秦怡生,陈荣福,秦旭东,张益军,张学军,蒋大智,曹建强.一种制备乙二醇乙醚醋酸酯的方法[P].中国专利,201010254307.6:2010-08-16.
    [24]傅鹏远,杨春. Zr(so4)24h2o/sba-15固体酸催化剂的制备及其催化性能[J].应用化学,2010,(08):924-930.
    [25]吴文莉,万辉,管国锋.低温陈化法制备固体超强酸so42-/sno2-al2o3催化剂[J].石油化工,2010,(05):548-552.
    [26] Secen H., Kalpar A. H. Efficient acetylation of primary and secondary aliphatic alcohols with aceticanhydride in the presence of graphite bisulfate[J]. Turk. J. Chem.,1999,23(1):27-30.
    [27]杨建国,龚国珍,梁学正,王有菲,权南南,鲍少华,何鸣元.一种制备乙二醇甲醚醋酸酯的方法[P].中国专利,200810033876.0:2008-02-26.
    [28] Ranu B. C., Hajra A. Highly selective one-pot conversion of thp and mom ethers to acetates by indiumtriiodide-catalysed deprotection and subsequent transesterification by ethyl acetate[J]. J. Chem. Soc.,Perkin Trans.1,2001,(18):2262-2265.
    [29] Bevinakatti H. S., Banerji A. A. Lipase catalysis: Factors governing transesterification[J]. Biotechnol.Lett.,1988,10(6):397-398.
    [30] Miao J., Wan H., Guan G. Synthesis of immobilized bronsted acidic ionic liquid on silica gel asheterogeneous catalyst for esterification[J]. Catal. Commun.,2011,12(5):353-356.
    [31] Yan X., Hui W., Guofeng G. Preparation and catalytic properties of1-(3-sulfonic group)propyl-3-methyl imidazolium phosphotungstate[J]. Shiyou Huagong,2009,38(12):1270-1275.
    [32] Cai Z., Lu Z., Li X. Preparation of ethylene glycol monoethyl ether acetate using a tubular reactor[J].Chin. J. Chem. Eng.,2003,11(3):338-340.
    [33] Fang Y., Shen Y., Xia Y., Ji S., Wang Y., Tan B. Inserting ethoxyl into ethyl acetate catalyzed byinorganic al-mg composite oxides[J]. AIChE Annu. Meet., Conf. Proc.,2005:113f/111-113f/118.
    [34] Xia Y.-M., Shen Y.-A., Ji S.-R., Fang Y., Wang Y.-Y., Tan B. One-step production of alkoxylated ethylacetate with narrow adduct distribution[J]. J. Chem. Technol. Biotechnol.,2007,82(1):47-50.
    [35] Zhang S., Wei Y., Yin S., Au C.-T. Solid sodium stannate as a high-efficiency superbase catalyst foranti-markovnikov hydroamination and hydroalkoxylation of electron-deficient olefins under mildconditions[J]. Catal. Commun.,2011,12(8):712-716.
    [36] Samori P., Surin M., Palermo V., Lazzaroni R., Leclere P. Functional polymers: Scanning forcemicroscopy insights[J]. Phys. Chem. Chem. Phys.,2006,8(34):3927-3938.
    [37] Griesser T., Kuhlmann J.-C., Wieser M., Kern W., Trimmel G. Uv-induced modulation of the refractiveindex and the surface properties of photoreactive polymers bearing n-phenylamide groups[J].Macromolecules,2009,42(3):725-731.
    [38] Ohtani N., Koyanagi A., Ueda Y., Sakamoto K., Yoshioka M. The properties and application of a novelamphiphilic polymer as an active interfacial modifier[J]. Nippon Keshohin Gijutsusha Kaishi,2009,43(4):247-253.
    [39] Cho C. Y., Kang H. A., Lee H. U., Jung S. Y. Method for manufacturing cosmetic sheets with goodbiocompatibility and controlled ingredient release[P]. KR,2010226:2010-01-04.
    [40] Ozaydin-Ince G., Coclite A. M., Gleason K. K. Cvd of polymeric thin films: Applications in sensors,biotechnology, microelectronics/organic electronics, microfluidics, mems, composites andmembranes[J]. Rep. Prog. Phys.,2012,75(1):016501/016501-016501/016540.
    [41] Ishihara K. Recent biotechnology and human material[J]. Kemikaru Enjiniyaringu,2002,47(8):590-595.
    [42] Lutz J.-F. Polymerization of oligo(ethylene glycol)(meth)acrylates: Toward new generations of smartbiocompatible materials[J]. J. Polym. Sci., Part A Polym. Chem.,2008,46(11):3459-3470.
    [43] Morita S., Tanaka M., Ozaki Y. Time-resolved in situ atr-ir observations of the process of sorption ofwater into a poly(2-methoxyethyl acrylate) film[J]. Langmuir,2007,23(7):3750-3761.
    [44] Morita S., Tanaka M., Kitagawa K., Ozaki Y. Hydration structure of poly(2-methoxyethyl acrylate):Comparison with a2-methoxyethyl acetate model monomer[J]. J. Biomater. Sci., Polym. Ed.,2010,21(14):1925-1935.
    [45] Lutz J. F., Hoth A., Schade K. Design of oligo (ethylene glycol)-based thermoresponsive polymers: Anoptimization study[J]. Des. Monomers Polym.,2009,12(4):343-353.
    [46] Alejski K., Emmons M., Sobczynska A., Lukosek M. Kinetics of oxyethylation of fatty acid methylester in a batch reactor[J]. Inz. Chem. Procesowa,2006,27(4):1399-1410.
    [47] Akdemir O., Badi N., Pfeifer S., Zarafshani Z., Laschewsky A., Wischerhoff E., Lutz J.-F. Design ofthermoresponsive materials by atrp of oligo(ethylene glycol)-based (macro)monomers[J]. ACS Symp.Ser.,2009,1023(Controlled/Living Radical Polymerization: Progress in ATRP):189-202.
    [48] Han S., Hagiwara M., Ishizone T. Synthesis of thermally sensitive water-soluble polymethacrylates byliving anionic polymerizations of oligo(ethylene glycol) methyl ether methacrylates[J].Macromolecules,2003,36(22):8312-8319.
    [49] Ishizone T., Seki A., Hagiwara M., Han S., Yokoyama H., Oyane A., Deffieux A., Carlotti S. Anionicpolymerizations of oligo(ethylene glycol) alkyl ether methacrylates: Effect of side chain length andω-alkyl group of side chain on cloud point in water[J]. Macromolecules,2008,41(8):2963-2967.
    [50] Hua F., Jiang X., Zhao B. Synthesis of well-defined thermosensitive diblock copolymers with pendantmethoxytris(oxyethylene) groups and temperature-induced micellization in dilute aqueous solutions[J].PMSE Prepr.,2006,95:175-176.
    [51] Hua F., Jiang X., Zhao B. Temperature-induced self-association of doubly thermosensitive diblockcopolymers with pendant methoxytris(oxyethylene) groups in dilute aqueous solutions[J].Macromolecules,2006,39(10):3476-3479.
    [52] Hua F., Jiang X., Li D., Zhao B. Well-defined thermosensitive, water-soluble polyacrylates andpolystyrenics with short pendant oligo(ethylene glycol) groups synthesized by nitroxide-mediatedradical polymerization[J]. J. Polym. Sci., Part A Polym. Chem.,2006,44(8):2454-2467.
    [53] Yamamoto S.-I., Pietrasik J., Matyjaszewski K. The effect of structure on the thermoresponsive natureof well-defined poly(oligo(ethylene oxide) methacrylates) synthesized by atrp[J]. J. Polym. Sci., Part APolym. Chem.,2007,46(1):194-202.
    [54] Yoon J. A., Kowalewski T., Matyjaszewski K. Comparison of thermoresponsive deswelling kinetics ofpoly(oligo(ethylene oxide) methacrylate)-based thermoresponsive hydrogels prepared by "graft-from"atrp[J]. Macromolecules,2011,44(7):2261-2268.
    [55] Ward M. A., Georgiou T. K. Thermoresponsive triblock copolymers based on methacrylate monomers:Effect of molecular weight and composition[J]. Soft Matter,2012,8(9):2737-2745.
    [56] Wang W., Liang H., Cheikh Al Ghanami R., Hamilton L., Fraylich M., Shakesheff K. M., Saunders B.,Alexander C. Biodegradable thermoresponsive microparticle dispersions for injectable cell deliveryprepared using a single-step process[J]. Adv. Mater.,2009,21(18):1809-1813.
    [57] Trongsatitkul T., Budhlall B. M. Multicore-shell pnipam-co-pegma microcapsules for cellencapsulation[J]. Langmuir,2011,27(22):13468-13480.
    [58] Tan I., Zarafshani Z., Lutz J.-F., Titirici M.-M. Pegylated chromatography: Efficient bioseparation onsilica monoliths grafted with smart biocompatible polymers[J]. ACS Appl. Mater. Interfaces,2009,1(9):1869-1872.
    [59] Skrabania K., Kristen J., Laschewsky A., Akdemir O., Hoth A., Lutz J.-F. Design, synthesis, andaqueous aggregation behavior of nonionic single and multiple thermoresponsive polymers[J].Langmuir,2007,23(1):84-93.
    [60] Kaneko T., Hamada K., Kuboshima Y., Akashi M. Reversible thermoresponsiveaggregation/deaggregation of water-dispersed polymeric nanospheres exhibiting structuraltransformation[J]. Langmuir,2005,21(21):9698-9703.
    [61] Jones J. A., Novo N., Flagler K., Pagnucco C. D., Carew S., Cheong C., Kong X. Z., Burke N. a. D.,Stover H. D. H. Thermoresponsive copolymers of methacrylic acid and poly(ethylene glycol) methylether methacrylate[J]. J. Polym. Sci., Part A Polym. Chem.,2005,43(23):6095-6104.
    [62] Hu J., Zhang X., Wang D., Hu X., Liu T., Zhang G., Liu S. Ultrasensitive ratiometric fluorescent phand temperature probes constructed from dye-labeled thermoresponsive double hydrophilic blockcopolymers[J]. J. Mater. Chem.,2011,21(47):19030-19038.
    [63] Gao W., Xu D., Lim D. W., Craig S. L., Chilkoti A. In situ growth of a thermoresponsive polymer froma genetically engineered elastin-like polypeptide[J]. Polym. Chem.,2011,2(7):1561-1566.
    [64] Li D., Jones G. L., Dunlap J. R., Hua F., Zhao B. Thermosensitive hairy hybrid nanoparticlessynthesized by surface-initiated atom transfer radical polymerization[J]. Langmuir,2006,22(7):3344-3351.
    [65] Gelbrich T., Feyen M., Schmidt A. M. Magnetic thermoresponsive core-shell nanoparticles[J].Macromolecules,2006,39(9):3469-3472.
    [66] Marten G. U., Gelbrich T., Schmidt A. M. Hybrid biofunctional nanostructures as stimuli-responsivecatalytic systems[J]. Beilstein J. Org. Chem.,2010,6:98.
    [67] Zhang R., Seki A., Ishizone T., Yokoyama H. Reduced hydrophobic interaction of polystyrene surfacesby spontaneous segregation of block copolymers with oligo (ethylene glycol) methyl ethermethacrylate blocks: Force measurements in water using atomic force microscope with hydrophobicprobes[J]. Langmuir,2008,24(10):5527-5533.
    [68] Gao X., Kucerka N., Nieh M.-P., Katsaras J., Zhu S., Brash J. L., Sheardown H. Chain conformation ofa new class of peg-based thermoresponsive polymer brushes grafted on silicon as determined byneutron reflectometry[J]. Langmuir,2009,25(17):10271-10278.
    [69] Ernst O., Lieske A., Hollaender A., Lankenau A., Duschl C. Tuning of thermo-responsiveself-assembly monolayers on gold for cell-type-specific control of adhesion[J]. Langmuir,2008,24(18):10259-10264.
    [70] Watanabe M., Nagasaka H., Ogata N. Redox activity of vinylferrocene copolymers by electronhopping reaction in the absence of fluid solvents[J]. J. Phys. Chem.,1995,99(32):12294-12300.
    [71] Yoshimoto N., Tomonaga Y., Ishikawa M., Morita M. Ionic conductance of polymeric electrolytesconsisting of magnesium salts dissolved in cross-linked polymer matrix with linear polyether[J].Electrochim. Acta,2001,46(8):1195-1200.
    [72] Morita M., Ishikawa M., Matsuda Y. Ionic conductivities of polymeric solid electrolyte filmscontaining rare earth ions[J]. J. Alloys Compd.,1997,250(1-2):524-527.
    [73] Li J., Khan I. M. Electroactive block copolymers[J]. Macromol. Symp.,1995,91(Recent Advances inthe Synthesis and Characterization of Block and Graft Copolymers):141-155.
    [74] Li J., Khan I. M. Mixed (electronic and ionic) conductive solid polymer matrix.1. Synthesis andproperties of poly(2,5,8,11,14,17,20,23-octaoxapentacosylmethacrylate)-block-poly(4-vinylpyridine)[J]. Makromol. Chem.,1991,192(12):3043-3050.
    [75] Kishimoto K., Suzawa T., Yokota T., Mukai T., Ohno H., Kato T. Nano-segregated polymeric filmexhibiting high ionic conductivities[J]. J. Am. Chem. Soc.,2005,127(44):15618-15623.
    [76] Guo D., Wang J., Lei J. Synthesis and characterization of an acrylate-copolymer-based antistatic agentcomposed of a single-ion conductive polymer electrolyte[J]. J. Appl. Polym. Sci.,2011,119(5):2674-2682.
    [77] Toshihiro O., Yasushi N. Cement dispersant [P]. JP,2000233956:1999-02-10.
    [78] Zhou K., Liu J., Li Z. Synthesis of a novel polycarboxylate superplasticizer with high performance[J].Asian J. Chem.,2011,23(5):2276-2280.
    [79] Shin J.-Y., Hong J.-S., Suh J.-K., Lee Y.-S. Effects of polycarboxylate-type superplasticizer on fluidityand hydration behavior of cement paste[J]. Korean Journal of Chemical Engineering,2008,25(6):1553-1561
    [80] Liu J., Ran Q., Miao C., Zhou D. Synthesis and characterization of comb-like copolymer dispersantwith methoxy poly (ethylene oxide) side chains[J]. Polym.-Plast. Technol. Eng.,2011,50(1):59-66.
    [81]徐瑜,徐伟明.功能单体丙烯酸-2-甲氧基乙酯的绿色合成[J].杭州师范大学学报自然科学版,2010,9(5):361-362.
    [82]张华承,郝爱友,曹善健.丙烯酸甲氧基乙酯的合成方法[J].化学试剂,2008,30(12):947.
    [83]马斐,袁良杰,王颖,夏峥嵘,阚永乐,陈淑藩,杨君.一种聚羧酸系减水剂大分子单体的合成方法[P].中国专利,201010570350.3:2010-12-02.
    [84]张建锋,王家丰,宋永良,李秋平,李洪涛,丁继英.一种聚羧酸减水剂大单体的制备方法[P].中国专利,200910098905.6:2009-05-25.
    [85] Yildiz I., Mccaughan B., Cruickshank S. F., Callan J. F., Raymo F. M. Biocompatible cdse-znscore-shell quantum dots coated with hydrophilic polythiols[J]. Langmuir,2009,25(12):7090-7096.
    [86] Yildiz I., Impellizzeri S., Deniz E., Mccaughan B., Callan J. F., Raymo F. M. Supramolecular strategiesto construct biocompatible and photoswitchable fluorescent assemblies[J]. J. Am. Chem. Soc.,2011,133(4):871-879.
    [87] Yildiz I., Deniz E., Mccaughan B., Cruickshank S. F., Callan J. F., Raymo F. M. Hydrophilic cdse-znscore-shell quantum dots with reactive functional groups on their surface[J]. Langmuir,2010,26(13):11503-11511.
    [88] Gunes D., Karagoz B., Bicak N. Synthesis of methacrylate-based functional monomers via boron esteracidolysis and their polymerization[J]. Des. Monomers Polym.,2009,12(5):445-454.
    [89] Aoyama T., Tsuiki T. Manufacture of (meth)acrylate esters by transesterification with titaniumcompound catalysts, and recovery and reuse of the catalysts[P]. JP,2009279584:2009-12-09.
    [90] Aoyama T., Tsuiki T. Preparation of alkoxyalkyl (meth)acrylate esters while recyclingtransesterification catalysts[P]. JP,2009288571:2009-12-21.
    [91] Fury J. J., Altenhofer E. F., Sedaghat-Herati R. Synthesis of new poly(ethyleneglycol)-block-poly(ester sulfide) dendrimers[J]. Tetrahedron Lett.,2009,50(29):4205-4207.
    [92] Cai L., Wang K., Wang S. Poly(ethylene glycol)-grafted poly(propylene fumarate) networks andparabolic dependence of mc3t3cell behavior on the network composition[J]. Biomaterials,2010,31(16):4457-4466.
    [93] Caruso F., Qiao G. G., Blencowe A. R., Goh T. K., Connal L. A., Such G. K. Preparation of acrosslinked multilayer film[P]. US,20110250353:2011-03-10.
    [94] Shokeen M., Pressly E. D., Hagooly A., Zheleznyak A., Ramos N., Fiamengo A. L., Welch M. J.,Hawker C. J., Anderson C. J. Evaluation of multivalent, functional polymeric nanoparticles forimaging applications[J]. ACS Nano,2011,5(2):738-747.
    [95] Skodova M., Hruby M., Filippov S. K., Karlsson G., Mackova H., Spirkova M., Kankova D., SteinhartM., Stepanek P., Ulbrich K. Novel polymeric nanoparticles assembled by metal ion addition[J].Macromol. Chem. Phys.,2011,212(21):2339-2348.
    [96] Braddock J. Uv curable inkjet inks-a new energy cure development[J]. Ink Maker,2007,85(8):25-28.
    [97] Chen S., Huang R., Xue Y. Non-yellowing uv-curable plastic top finish[J]. Tuliao Gongye,2004,34(10):25-29,30.
    [98] Yokoi K. Active radiation curable ink composition, ink composition for inkjet recording, printed matter,and method of producing molded article of printed matter[P]. EP,2011160178:2011-03-29.
    [99] Yokoi K., Araki K. Actinic ray curable ink-jet ink composition, printed article, shaped printed product,and printed article forming method[P]. EP,2011174449:2011-07-19.
    [100] Yokoi K., Matsumura T. Ink compositions containing photoradical-generating polymers and ink-jetrecording methods[P]. US,2010715415:2010-03-02.
    [101] Woolrich B., Hayata Y., Wright V. Photocurable colorless inkjet ink[P]. GB,20122611:2012-02-15.
    [102] Wolfe M. S., Anton W. L., Lee H. H., Berge C. T. Method of preparing encapsulated pigmentdispersions[P]. WO,201165009:2011-12-15.
    [103] Ganapathiappan S. Manufacture of encapsulated pigment for use in inkjet inks[P]. US,2010831818:20100707.
    [104] Roberts C. C., Held R. P., Mcintyre P. F., Jackson C. Ab block copolymer dispersants having an inkvehicle soluble block, aqueous ink jet ink comprising this dispersion and a method of printingthereof[P]. WO,200965330:2009-11-20.
    [105] Rot A., Zaks-Rot I. Photopolymerizable compositions for making optical materials and processmaking them[P]. US,1994257143:1994-06-09.
    [106] Fukushima H., Motonaga A., Suda E., Nakajima M., Takeshita K., Kutsukake Y. Composition forplastic lenses[P]. EP,1991101703:1991-02-07.
    [107] Nakamoto H., Fukushima H. Plastic lens[P]. EP,1985100623:1985-01-22.
    [108] Nunez I. M., Mcgee J. A., Seelye D. E. Crosslink agents and dual radical cure polymer[P]. US,2008168944:2008-07-08.
    [109] Lehman C., Freeman C. High refractive index ophthalmic device materials[P]. WO,200942903:2009-05-05.
    [110] Su K., Lu R., Wright D., Makita D. Disposable plastic molds and using the disposable molds for lensmanufacture[P]. US,2004992224:2004-11-18.
    [111] Bright E. M. Acrylic polyesters for optical plastics[P]. WO,19894986:1989-11-07.
    [112] Wiand R. C. Production of novel photochromic articles[P]. WO,200786176:2007-11-30.
    [113] Berzon R. A., Johnson E., Mosse H. Surface casting onto a polycarbonate photochromic substrate[P].WO,200622153:2006-06-07.
    [114] Gupta A., Blum R. D., Iyer V. S. Impregnation of plastic substrates with photochromic additives[P].US,1996669738:1996-06-26.
    [115] Berzon R. Optical coating composition and method for production of photochromic lens with reducedyellowing[P]. US,2008142452:2008-06-19.
    [116] Berzon R., Chen X., Dang H. T., Harmon R., Lockwood M. J., Obordo J. O., Valeri R. A. A methodfor adding thermoset overmold coating layer comprising acrylate and photochromic dye to lenswithin mold[P]. US,2007820752:2007-06-20.
    [117] Li X., Wan W., Panchal C. J. Transparent bacterial cellulose nanocomposite hydrogels with highmechanical strength[P]. WO,20102040:20101223.
    [118] Song L., Hu W., Zhang H., Wang G., Yang H., Zhu S. In vitro evaluation of chemically cross-linkedshape-memory acrylate-methacrylate copolymer networks as ocular implants[J]. J. Phys. Chem. B,2010,114(21):7172-7178.
    [119] Yoshii E. Cytotoxic effects of acrylates and methacrylates: Relationships of monomer structures andcytotoxicity[J]. J. Biomed. Mater. Res.,1997,37(4):517-524.
    [120] Herold R. D., Okoroafor M. O. The use of vinyl esters in the preparation of ophthalmic lenses[J].PPG Technol. J.,1996,2(1):33-43.
    [121] Schuster M., Turecek C., Mateos A., Stampfl J., Liska R., Varga F. Evaluation of biocompatiblephotopolymers ii: Further reactive diluents[J]. Monatsh. Chem.,2007,138(4):261-268.
    [122] Song L., Hu W., Wang G., Niu G., Zhang H., Cao H., Wang K., Yang H., Zhu S. Tailored(meth)acrylate shape-memory polymer networks for ophthalmic applications[J]. Macromol. Biosci.,2010,10(10):1194-1202.
    [123] Vanderbilt D. P. High refractive index hydrogel compositions for ophthalmic implants[P]. WO,1999266781999-11-12.
    [124] Laredo W. R., Jiang X. Low-tack, hydrophobic ophthalmic device materials[P]. US,2012367914:2012-02-07.
    [125] Laredo W. R., Freeman C., Callaghan T. A. High refractive index, acrylic ophthalmic device materialswith reduced glistenings[P]. US,2011164290:2011-06-20.
    [126] Laredo W. R. Ophthalmic and otorhinolaryngological device acrylic materials[P]. US,2010861454:2010-08-23.
    [127] Freeman C. High refractive index ophthalmic device materials[P]. WO,200870970:2008-07-24.
    [128] Ojio T., Niwa K., Kawaguchi T. Soft intraocular lens material[P]. US,1999252222:1999-02-18.
    [129] Argal S. R. S., Hussain M. T., Malshe V. C., Patil A. B. Polymeric composition for ocular devices[P].WO,201152976:2011-07-05.
    [130] Yokota A., Nakahata Y., Sunada I. Intraocular lenses with reduced voids and their manufacture by castmolding[P]. JP,2010106521:2010-05-06.
    [131] Benz P. H., Ors J. A. Optical polymers useful for hydrophilic lens materials with good combination ofhigh refractive index and mechanical properties[P]. US,2007849234:2007-08-31.
    [132]杨槐,宋黎,王国杰,胡望,张红斌,朱思泉.一种具有形状记忆功能的眼用植入材料及制备方法[P].中国专利,201010101464.3:2010-01-26.
    [133]杨槐,宋黎,牛国光,张红斌,胡望,朱思泉,王国杰.一种丙烯酸酯类形状记忆性人工晶状体材料及制备方法[P].200910085962.0:2009-06-05.
    [134] Tao S., Zhao Y., Wan Y., Zhai Q., Liu P., Wang D., Wu F. Dual-wavelength sensitized photopolymerfor holographic data storage[J]. Jpn. J. Appl. Phys.,2010,49(8):1-5.
    [135] Bae K.-Y., Lim D.-H., Park J.-W., Kim H.-J. Kinetic and optical analysis of the high refractive prismsheets[J]. Koen Yoshishu-Nippon Setchaku Gakkai Nenji Taikai,2010,48th:44-45.
    [136] Barad A., Shchori E. Long lasting dental restorations[P]. WO,2011104704:2011-02-22.
    [137] Zhang K. Dental implant and prosthetic device preparation kit[P]. WO,200879926:2008-10-15.
    [138] Velamakanni B. V., Jones T. D. Dental articles including a ceramic and microparticle coating andmethod of making the same[P]. WO,201146923:2011-08-08.
    [139] Velamakanni B. V., Jones T. D., Mitra S. B., Patel A. N. Polymer coated dental articles[P]. WO,201146909:2011-08-08.
    [140] Velamakanni B. V., Jones T. D., Patel A. N. Aesthetic and abrasion resistant coated dental articles[P].WO,201146915:2011-08-08.
    [141] Velamakanni B. V., Jones T. D., Patel A. N. Coated dental crowns[P]. WO,201146920:2011-08-08.
    [142] Kalgutkar R. S., Amos D. T., Mckenzie T. L. Orthodontic composition with polymeric particlefillers[P]. WO,20076959:2008-09-19.
    [143] Falsafi A., Oxman J. D., Ton T. T., Brennan J. V., Cinader D. K., Jr., Velamakanni B. V., Mitra S. B.Methods of using a dental composition having an acidic component and a photobleachable dye suchas aminoanthraquinone or azo dye[P]. WO,200787192:2007-12-12.
    [144] Lukac I., Zvara I., Hrdlovic P. Acylation of2-phenoxyethyl esters of2-methyl-and3-phenyl-2-propenoic acids[J]. Collect. Czech. Chem. Commun.,1984,49(11):2635-2637.
    [145] Wang Y., Wu R., Fan Y., Xu X. Synthesis and characterization of new fluoride-releasing monomerand dental composite[J]. Polym. Prepr.(Am. Chem. Soc., Div. Polym. Chem.),2010,51(1):509-510.
    [146] Nakanishi S., Ueda M. Facile synthesis of novel monodisperse liquid-crystalline oligomers based onmichael adducts from millipede cyanoacetates[J]. Chem. Lett.,2007,36(3):452-453.
    [147] Li L., Xing X., Liu Z. Triply-responsive (thermo/light/ph) copolymeric hydrogel ofn-isopropylacrylamide with an azobenzene-containing monomer[J]. J. Appl. Polym. Sci.,2012,124(2):1128-1136.
    [148] Chen J., Serizawa T., Komiyama M. Binding analysis of peptides that recognize preferentiallycis-azobenzene groups of synthetic polymers[J]. J. Pept. Sci.,2011,17(2):163-168.
    [149] Oh J. K., Stoeeva V., Rademacher J., Farwaha R., Winnik M. A. Synthesis, characterization, andemulsion polymerization of polymerizable coumarin derivatives[J]. J. Polym. Sci., Part A Polym.Chem.,2004,42(14):3479-3489.
    [150] Kattimuttathu I S., Foerst G., Schubert R., Bartsch E. Synthesis and micellization properties of newanionic reactive surfactants based on hydrogenated cardanol[J]. J. Surfactants Deterg.,2012,15(2):207-215.
    [151] Kong X., He Z., Gopee H., Cammidge A. N. Synthesis and liquid crystal properties of triphenyleneliquid crystals bearing polymerizable acrylate and methacrylate groups[J]. Liq. Cryst.,2011,38(8):943-955.
    [152] De S., Koley D., Ramakrishnan S. Folding a polymer via two-point interaction with an externalfolding agent: Use of h-bonding and charge-transfer interactions[J]. Macromolecules,2010,43(7):3183-3192.
    [153]李正正,郭和军,苏俊作,王汝栋.棉籽油二乙二醇甲醚酯新型生物柴油制备[J].当代化工,2012,(02):116-119.
    [154]张红云,马志卿,李永峰,孙国社,徐卫昌.豆油乙二醇乙醚酯生物柴油燃料特性研究[J].拖拉机与农用运输车,2007,(05):36-38.
    [155]张红云,李庆会,李永峰,马志卿.豆油乙二醇乙醚酯生物柴油研究[J].可再生能源,2010,(03):43-47.
    [156] Gao G., Feng Y., Guo H., Liu S. Synthesis, structure characterization, and engine performance test ofethylene glycol n-propyl ether palm oil monoester as biodiesel[J]. Energy Fuels,2011,25(10):4686-4692.
    [157] Littau C., Miller D. Optimization of surfactant systems containing methyl ester ethoxylates[J]. SofwJ.,1998,124(11):690-697.
    [158] Szwach I., Hreczuch W., Fochtman P. Comparative evaluation of environmental impact of fattyalcohol ethoxylates and fatty acid methyl ester ethoxylates as nonionic surfactants[J]. World Conf.Deterg.,5th,2003:163-165.
    [159] Hama I., Sakaki M., Sasamoto H. Effects of ethoxylate structure on surfactant properties ofethoxylated fatty methyl esters[J]. J. Am. Oil Chem. Soc.,1997,74(7):823-827.
    [160] Hreczuch W. Ethoxylated rapeseed oil acid methyl esters as new ingredients for detergentformulations[J]. Tenside, Surfactants, Deterg.,2001,38(2):72-79.
    [161] Zimoch J., Hreczuch W., Trathnigg B., Meissner J., Bialowas E., Szymanowski J. Detergency anddynamic surface tension reduction of oxyethylated fatty acid methyl esters[J]. Tenside, Surfactants,Deterg.,2002,39(2):8-16.
    [162] Woskowicz M., Zgoda M. M. Polyoxyethylenated methyl esters of rape oil fatty acids as non-ionicsurfactants in a model drug form with albendazole[J]. Polim. Med.,2005,35(4):25-38.
    [163] Chang J. N., Olejnik O., Firestone B. A. Opthalmic emulsion comprising cyclosporin[P]. US,2005255821:2005-10-19.
    [164] Muller T., Brancq B., Milius A., Okori N., Vaille C., Gauvrit C. Ethoxylated rapeseed oil derivativesas novel adjuvants for herbicides[J]. Pest Manage. Sci.,2002,58(12):1243-1249.
    [165] Gauvrit C., Muller T., Milius A., Trouve G. Ethoxylated rapeseed oil derivatives as non-ionicadjuvants for glyphosate[J]. Pest Manage. Sci.,2007,63(7):707-713.
    [166]郭和军,王煊军.高级脂肪酸醚酯类化合物[P].中国专利,201110041033.7:2011-02-21.
    [167] Dierker M., Schaefer H. J. Surfactants from oleic, erucic and petroselinic acid: Synthesis andproperties[J]. Eur. J. Lipid Sci. Technol.,2009,112(1):122-136.
    [168] Korenaga T., Kadowaki K., Ema T., Sakai T. Reestimation of the taft's substituent constant of thepentafluorophenyl group[J]. J. Org. Chem.,2004,69(21):7340-7343.
    [169] Zhu H.-J., Pittman C. U., Jr. Reductions of carboxylic acids and esters with nabh4in diglyme at162°[J]. Synth. Commun.,2003,33(10):1733-1750.
    [170] Hreczuch W. Comparison of the kinetics and composition of ethoxylated methyl dodecanoate andethoxylated dodecanol with narrow and broad distribution of homologs[J]. J. Surfactants Deterg.,1999,2(3):287-292.
    [171] Funahashi K. New ring opening reactions of three membered heterocycles, oxiranes, aziridines, andthiiranes, with phenyl acetate[J]. Chem. Lett.,1978,(9):1043-1044.
    [172] Green M. J. Process for the preparation of glycol derivatives.[P]. EP,140545:1983-09-07.
    [173] Chem S. U., Horst S. Verfahren zur herstellung von carbonsaeureestern von alkylenglykolethern[P].DE,2951080:1981-07-02.
    [174] Chem S. U. D., Horst S. Verfahren zur herstellung von carbonsaeureestern vonalkylenglykolethern[P]. DE,3008174:1981-9-24.
    [175]胡蔚秋,严默林.环氧乙烷一步合成乙二醇单烷基醚乙酸酯[J].高等化学工程学报,1998,12(3):277-281.
    [176] Leach B. E., Shannon M. L., Wharry D. L. Alkoxylation process using calcium based catalysts[P]. US,47756543:1987-04-28.
    [177] Bruce E. Leach A., John Lin C. P., Austin C. L. A., Donald T Robertson A. Process for akoxylation ofesters and products produced thereform[P]. US,5220046:1991-08-22.
    [178] Weerasooriya U., Robertson D. T. Process for alkoxylation of ester and products producedthereform[P]. US,5386045:1992-08-05.
    [179] Ansgar B., Uwe P. Use of alkaline earth salts of polycarboxylic acid monoesters as alkoxylationcatalysts.[P]. EP,337239:1991-03-20.
    [180] Detlef W., Gernot K. Process for the preparation of alkoxylates using ester compounds as catalysts.[P].EP,657410:1995-06-14
    [181]刘广宇,孙永强,李秋小.椰子油脂乙氧基化物的合成[J].日用化学工业,2007,(06):374-377.
    [182]赵艳涛,孙永强,康保安.月桂酸甲酯烷氧基化反应动力学研究[J].日用化学工业,2009,(05):
    [183] Ansgar B., H-Christian R. The use of calcined hydrotalcites as catalysts for ethoxylating orpropoxylating fatty acid esters[P]. DE,3914131:1990-10-31.
    [184] Hama I., Okamoto T., Sasamoto H., Nakamura H. Method of manufacturing a fatty acid ester of apolyoxyalkylene alkyl ether[P]. US,96629068:1996-04-08.
    [185] Hama I., Okamoto T., Hidai E., Yamada K. Direct ethoxylation of fatty methyl ester over al-mgcomposite oxide catalyst[J]. J. Am. Oil Chem. Soc.,1997,74(1):19-24.
    [186]陈健,方云,杨澄宇,阮小云.乙氧基化脂肪酸甲酯的性能及丙氧基化改性研究[J].日用化学工业,2004,(02):
    [187]沈永安,方云,王义友,吉峙润.环氧乙烷嵌入乙酸乙酯合成(低聚)乙二醇乙醚乙酸酯[J].精细化工,2005,(09):712-714.
    [188]许志钢,方银军,方云.通过一步法乙氧基化反应降低棕榈硬脂的熔点[J].中国洗涤用品工业,2009,(05):
    [189]杨澄宇,方云,陈健,阮小云.天然油脂一步法烷氧基化及其产物乳化性能研究[J].精细化工,2004,(04):
    [190]张建锋,王家丰,宋永良,李秋平,李洪涛,丁继英.一种聚羧酸减水剂大单体的制备方法[P].中国专利,200910098905.6:2010-12-01
    [191] Yi W., Cao R., Peng W., Wen H., Yan Q., Zhou B., Ma L., Song H. Synthesis and biologicalevaluation of novel4-hydroxybenzaldehyde derivatives as tyrosinase inhibitors[J]. Eur. J. Med.Chem.,2010,45(2):639-646.
    [192] Kukovinets O. S., Yamansarova E. T., Kasradze V. G., Lozhkina E. A., Zainullin R. A., Abdullin M. I.Synthesis of biologically active substances based on phenoxyethanol derivatives[J]. Russ. J. Org.Chem.,2005,41(5):673-677.
    [193]杨槐,宋黎,王国杰,胡望,张红斌,朱思泉.一种具有形状记忆功能的眼用植入材料及制备方法[P].中国专利,201010101464.3:2010-07-28.
    [194]杨槐,宋黎,牛国光,张红斌,望胡.,朱思泉,王国杰.一种丙烯酸酯类形状记忆性人工晶状体材料及制备方法[P].中国专利,200910085962.0:2009-10-28
    [195] Brown R. K., Eastham A. M. Chemistry of ethylene oxide. Vi. The acid-catalyzed reaction of ethyleneoxide with ethanol-water mixtures[J]. Can. J. Chem.,1960,38(Copyright (C)2013AmericanChemical Society (ACS). All Rights Reserved.):2039-2041.
    [196] Othmer D. F., Thakar M. S. Production of glycol by the hydration of ethylene oxide[J]. J. Ind. Eng.Chem.(Washington, D. C.),1958,50(Copyright (C)2013American Chemical Society (ACS). AllRights Reserved.):1235-1244.
    [197] Petrov A. A. The reactions of organic α-oxides with alcohols and carbonyl compounds in the presenceof boron trifluoride[J]. Zh. Obshch. Khim.,1940,10(Copyright (C)2013American Chemical Society(ACS). All Rights Reserved.):981-996.
    [198] Sexton A. R., Britton E. C. Synthesis and identification of propylene glycol phenyl ethers[J]. J. Am.Chem. Soc.,1948,70(Copyright (C)2013American Chemical Society (ACS). All Rights Reserved.):3606-3607.
    [199] Van L. O. E., Backer H. J. Formation of the epoxide of butadiene sulfone[J]. Recl. Trav. Chim.Pays-Bas Belg.,1949,68(Copyright (C)2013American Chemical Society (ACS). All RightsReserved.):1137-1142.
    [200] Mckay A. F., Brownell H. H. Syntheses of substituted β,β'-dichlorodiethylamines[J]. J. Org. Chem.,1950,15(Copyright (C)2013American Chemical Society (ACS). All Rights Reserved.):648-653.
    [201] Emerson W. S. Syntheses with styrene oxide[J]. J. Am. Chem. Soc.,1945,67(Copyright (C)2013American Chemical Society (ACS). All Rights Reserved.):516-518.
    [202] Lee J. T., Thomas P. J., Alper H. Synthesis of β-lactones by the regioselective, cobalt and lewis acidcatalyzed carbonylation of simple and functionalized epoxides[J]. J. Org. Chem.,2001,66(Copyright(C)2013American Chemical Society (ACS). All Rights Reserved.):5424-5426.
    [203] Shachat N., Greenwald H. L. Mechanism of ethylene oxide condensation.
    [204] Kuznetsova E. N., Shishkin G. V. Diazabicycloalkanes with nitrogen atoms in bridgehead positions.20. Synthesis of naphtho[2,3-b]-1,4-diazabicyclo[2.2.2]octene[J]. Khim. Geterotsikl. Soedin.,1991,(Copyright (C)2013American Chemical Society (ACS). All Rights Reserved.):97-100.
    [205] Jones P. R., Rothenberger S. D. Nucleophilic aromatic substitution with elimination in adinitrosalicylic lactone or ester via meisenheimer intermediates[J]. J. Org. Chem.,1986,51(Copyright(C)2013American Chemical Society (ACS). All Rights Reserved.):3016-3023.
    [206] Yi C. S., Martinelli L. C., Blanton C. D., Jr. Synthesis of n-methyl-1-oxa-5-aza[10]paracyclophane: Aconformationally restricted analog of phenoxypropylamines[J]. J. Org. Chem.,1978,43(Copyright (C)2013American Chemical Society (ACS). All Rights Reserved.):405-409.
    [207] Graham D. E., Copes J. P. Carboxylic amides as fungicides to eumycotina in phanerogamia pantlife[P]. US4195096A:
    [208] Dulcere J. P., Rodriguez J. Cohalogenation of alkenes in ethylene oxide: Efficient methodology forthe preparation or alkyl vinyl ether precursors of γ,δ-unsaturated aldehydes[J]. Synthesis,1993,(Copyright (C)2013American Chemical Society (ACS). All Rights Reserved.):399-405.
    [209] Fujita S., Arai M. Catalytic reaction of supercritical and subcritical carbon dioxide. Synthesis ofdimethyl carbonate using solid base catalysts[J]. Chorinkai Saishin Gijutsu,2001,5(Copyright (C)2013American Chemical Society (ACS). All Rights Reserved.):79-83.
    [210] Ikushima Y., Kawanami H. New development in material synthesis employing supercritical water andsupercritical carbon dioxide as reaction field[J]. Chorinkai Saishin Gijutsu,2002,6(Copyright (C)2013American Chemical Society (ACS). All Rights Reserved.):1-5.
    [211] Miyazawa M., Narantsetseg M., Yokoyama H., Yamaguchi S., Hirai Y. Palladium(ii)-catalyzedstereocontrolled cyclization via hemiacetal intermediates: Total synthesis of5-epi-prelactone c[J].Heterocycles,2004,63(Copyright (C)2013American Chemical Society (ACS). All RightsReserved.):1017-1021.
    [212]刘佳.酸酐的嵌入式烷氧基化反应研究[D].[硕士学位论文],无锡,江南大学,2012.
    [213]杜以波,段雪.负载型水滑石催化剂及脂肪族醇醚醋酸酯的制备方法[P].北京,99103539.9:1999.
    [214]黄军左,黄克明,苏秋芳,王乐夫.镁铝复合氧化物催化合成醇醚醋酸酯的研究[J].合成技术及应用,2005,20(1):50-53.
    [215]黄军左,刘宝生,苏秋芳,王乐夫. Egeea合成中焙烧温度对mg-al-o催化性能的影响研究[J].天然气化工,2005,30(3):65-67.
    [216]方云,夏咏梅.一种铝-镁催化剂及用其催化合成烷氧基羧酸酯醚的方法[P].中国专利,200510038866.2:
    [217] Hu X., Fang Y. One-stepsynthesis of polyethylene glycol methylether methacrylate[C].2009AIChEAnnual meeting, American Institute of Chemical Institute,
    [218]吉峙润,方云,贾言,胡学一.环氧丙烷嵌入乙酸酐合成1,2-丙二醇二乙酸酯的绿色化学途径[J].精细化工,2007,24(4):413-416.
    [219] Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A.Montgomery, T. V. Jr., K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B.Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X.Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.Yazyev, A. J. Austin, R. Cammi, C. Pomelli, W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D.K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B.Johnson, W. Chen, W. Wong, C. Gonzalez,J. A. Pople, Gaussian03R. B., Gaussian, Inc., PittsburghPA,,2003.
    [220] Lee C., Yang W., Parr R. G. Development of the colle-salvetti correlation-energy formula into afunctional of the electron density[J]. Physical Review B,1988,37(2):785.
    [221] Becke A. D. Density‐functional thermochemistry. Iii. The role of exact exchange[J]. The Journal ofChemical Physics,1993,98:5648.
    [222] Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior[J].Physical Review A,1988,38(6):3098.
    [223]闫丽岗,韩建英,吴文清.双酯含量对脂肪酸甲酯乙氧基化物性能的影响[J].日用化学品科学,2011,(6):30-33.
    [224]陈健.乙氧基化脂肪酸甲酯的工业性合成试验[D].[硕士学位论文],无锡,江南大学,2004.
    [225]沈永安.羧酸酯一步法嵌入式烷氧基化反应研究[D].[硕士学位论文],无锡,江南大学,2005.
    [226] Barroso M. N., Galetti A. E., Abello M. C. Ni catalysts supported over mgal2o4modified with pr forhydrogen production from ethanol steam reforming[J]. Appl. Catal., A,2011,394(1-2):124-131.
    [227] Guo J., Lou H., Zhao H., Wang X., Zheng X. Novel synthesis of high surface area mgal2o4spinel ascatalyst support[J]. Mater. Lett.,2004,58(12-13):1920-1923.
    [228] Aramendia M. A., Aviles Y., Borau V., Luque J. M., Marinas J. M., Ruiz J. R., Urbano F. J. Thermaldecomposition of mg/al and mg/ga layered-double hydroxides: A spectroscopic study[J]. J. Mater.Chem.,1999,9(7):1603-1607.
    [229] Wu G., Wang X., Wei W., Sun Y. Fluorine-modified mg-al mixed oxides: A solid base with variablebasic sites and tunable basicity[J]. Appl. Catal., A,2010,377(1-2):107-113.
    [230] Silva C. C. C. M., Ribeiro N. F. P., Souza M. M. V. M., Aranda D. a. G. Biodiesel production fromsoybean oil and methanol using hydrotalcites as catalyst[J]. Fuel Process. Technol.,2010,91(2):205-210.
    [231] Oezdemir H., Faruk Oeksuezoemer M. A., Ali Guerkaynak M. Preparation and characterization of nibased catalysts for the catalytic partial oxidation of methane: Effect of support basicity on h2/co ratioand carbon deposition[J]. Int. J. Hydrogen Energy,2010,35(22):12147-12160.
    [232] Fornasari G., Gloeckler R., Livi M., Vaccari A. Role of the mg/al atomic ratio in hydrotalcite-basedcatalysts for nox storage/reduction[J]. Appl. Clay Sci.,2005,29(3-4):258-266.
    [233] Zhang X. Hydrothermal synthesis and catalytic performance of high-surface-area mesoporousnanocrystallite mgal2o4as catalyst support[J]. Mater. Chem. Phys.,2009,116(2-3):415-420.
    [234] Villegas L., Masset F., Guilhaume N. Wet impregnation of alumina-washcoated monoliths: Effect ofthe drying procedure on ni distribution and on autothermal reforming activity[J]. Appl. Catal., A,2007,320:43-55.
    [235] Deng X., Fang Z., Liu Y.-H., Yu C.-L. Production of biodiesel from jatropha oil catalyzed bynanosized solid basic catalyst[J]. Energy (Oxford, U. K.),2011,36(2):777-784.
    [236] Climent M. J., Corma A., Iborra S., Epping K., Velty A. Increasing the basicity and catalytic activityof hydrotalcites by different synthesis procedures[J]. J. Catal.,2004,225(2):316-326.
    [237] Fraile J. M., Garcia N., Mayoral J. A., Pires E., Roldan L. The basicity of mixed oxides and theinfluence of alkaline metals: The case of transesterification reactions[J]. Appl. Catal., A,2010,387(1-2):67-74.
    [238] Coleman L. J. I., Epling W., Hudgins R. R., Croiset E. Ni/mg-al mixed oxide catalyst for the steamreforming of ethanol[J]. Appl. Catal., A,2009,363(1-2):52-63.
    [239] Sehested J., Gelten J. a. P., Helveg S. Sintering of nickel catalysts: Effects of time, atmosphere,temperature, nickel-carrier interactions, and dopants[J]. Appl. Catal., A,2006,309(2):237-246.
    [240] Amhoud A., Bennani M. N., Abouarnadasse S., Mbarki M. Synthesis, characterization, and testing ofcatalysts derived from mg-al-co3layered double hydroxides[J]. Phys. Chem. News,2011,58:105-109.
    [241] Kustrowski P., Chmielarz L., Bozek E., Sawalha M., Roessner F. Acidity and basicity of hydrotalcitederived mixed mg-al oxides studied by test reaction of mboh conversion and temperatureprogrammed desorption of nh3and co2[J]. Mater. Res. Bull.,2004,39(2):263-281.
    [242] Climent M. J., Corma A., De Frutos P., Iborra S., Noy M., Velty A., Concepcion P. Chemicals frombiomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea withhydrotalcite catalysts. The role of acid-base pairs[J]. J. Catal.,2010,269(1):140-149.
    [243] Li F.-T., Zhao Y., Liu Y., Hao Y.-J., Liu R.-H., Zhao D.-S. Solution combustion synthesis and visiblelight-induced photocatalytic activity of mixed amorphous and crystalline mgal2o4nanopowders[J].Chem. Eng. J.(Amsterdam, Neth.),2011,173(3):750-759.
    [244] Perez-Ramirez J., Abello S., Van Der Pers N. M. Memory effect of activated mg-al hydrotalcite: Insitu xrd studies during decomposition and gas-phase reconstruction[J]. Chem.--Eur. J.,2007,13(3):870-878.
    [245] Yuan S., Li Y., Zhang Q., Wang H. Zno/mg-al layered double hydroxides as strongly adsorptivephotocatalysts[J]. Res. Chem. Intermed.,2009,35(6-7):685-692.
    [246] Paul M., Pal N., Mondal J., Sasidharan M., Bhaumik A. New mesoporous magnesium-aluminummixed oxide and its catalytic activity in liquid phase baeyer-villiger oxidation reaction[J]. Chem. Eng.Sci.,2012,71:564-572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700