大尺寸喷射沉积铝合金管坯的制备及楔压致密化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷射沉积技术在制备大尺寸高性能材料方面具有独特的优越性,但沉积坯中含有一定的孔隙度使直接应用受到限制,须经适当的后续致密化加工才能体现其优异性能。目前由于受到设备吨位及成本的制约,对大尺寸喷射沉积坯件的塑性成形难以实现。因此,立足于工程实际需要,探索此类多孔坯实用可行的致密化方法,对解决大尺寸快速凝固结构材料的制备与后续塑性加工等难题乃至喷射沉积技术的应用与发展具有十分重要的意义。本论文结合“十五”科技攻关重点项目,采用喷射沉积技术制备大尺寸铝合金8009Al、8009Al/SiCp和A356管坯;辅以热/力模拟实验和有限元数值模拟等手段研究热变形工艺参数对管坯组织与性能及其致密化过程的影响;首次采用大尺寸喷射沉积管坯楔形压制新工艺,从工艺原理、致密化机制及压制力等方面系统地研究大尺寸喷射沉积管坯的楔压变形与致密化规律。主要研究内容和结论如下:
     (1)通过多层喷射沉积技术研究了大尺寸铝合金8009Al、8009Al/SiCp和A356管坯的制备工艺,分析了主要工艺参数对管坯组织和性能的影响,得到优化的工艺参数:雾化气体N2压力0.7~0.85MPa,喷射高度200~240mm,SiCp输送压力~0.5MPa;对于8009Al和A356,熔体液流直径分别为3.4~3.8mm和3.2~3.6mm;熔体过热度250~300℃;基体转速20~60 r·min-1;雾化器扫描周期30~50s。在此基础上成功制备出尺寸为Φouter350mm×Φinner280mm×600mm的8009Al及其复合材料管坯,其晶粒尺寸为0.3~1μm,复合材料中SiCp分布均匀; A356管坯尺寸为Φouter820mm×Φinner760mm×550mm,晶粒尺寸为4~5μm。管坯形状规整,致密度~83%-88%,为后续致密化加工研究提供了合适的材料。
     (2)通过Gleeble-1500热/力模拟试验研究了喷射共沉积8009Al/SiCp复合材料的热压缩流变行为,结合对显微组织的分析,研究了该材料高温塑性变形致密化及材料变形中的强/软化机制:复合材料的变形强化包括因致密化引起的增强和基体金属加工硬化以及SiCp增强作用;动态回复是基体软化的主要方式;道次间保温阶段的软化程度与温度和保温时间有关。分析了变形量、温度等参数对多孔材料致密化效果的影响,并基于实验数据对该致密化过程进行了有限元数值模拟,理论预测、数值模拟和实验结果三者有较好的一致,为合理制定喷射沉积管坯的后续致密化加工提供了必要的材料数据和工艺依据。
     (3)基于多道次局部小变形累积致整体成形的思路,采用一种新颖的大尺寸喷射沉积管坯致密化加工方法-楔形压制工艺。从工艺原理、工艺参数、楔压过程中多孔坯微观组织的演变、致密化过程及压制力等方面,结合有限元数值模拟研究了喷射沉积多孔管坯的楔压变形与致密化规律。通过该工艺在较小吨位压力机上成功实现了对Φ300mm的8009Al及其SiCp增强复合材料管坯的致密化加工,得到的管坯形状规整,致密度和成形性能有效改善。
     8009Al的适宜热加工温度为460~480℃,以利于降低变形抗力并保持材料的快凝组织特征和优异的力学性能;道次压下量应兼顾加工效率和管坯的形状及表面质量:管坯楔压初期,道次压下量宜在10%左右,管坯基本致密后可适当提高但不应超过20%,同时压制步进量应小于楔形压头施压面宽度。
     变形程度30%前,管坯经历了较快的致密化过程;增强颗粒对管坯楔压中的致密化过程产生影响:SiCp的局部团聚并增加孔隙使复合材料管坯的致密化速率在楔压后期较未增强材料缓慢。楔压工艺的主要目的是消除/减少孔洞,楔压过程中管壁的剪切流动不如挤压或轧制充分,SiCp的局部团聚使复合材料的力学性能低于未增强材料,但致密后其可加工性提高。
     管坯楔压过程近似平面应变,其结果是管壁变薄,孔隙度减小,伴随着扩径与较小的轴向伸展。楔压初期的摩擦与致密化引起变形区壁厚方向的密度差异,这种差异随变形过程的继续而减小。
     在管坯外表面包覆可塑性包套有利于保持管坯整体温度的均匀,并适当增加压制中的静水压力,促进管坯变形均匀和致密化,改善了喷射沉积低塑性难变形多孔管坯楔压中的可加工性。
     (4)对尺寸达Φ800mm的喷射沉积A356合金管坯楔压致密化加工结果进一步表明,楔压工艺在大尺寸喷射沉积管坯的后续致密化方面有较好的实用性;喷射沉积A356合金的最佳热处理工艺参数为:538℃固溶3h,160℃时效10h;热处理后合金中的Si球化且其它第二相无明显长大;良好的力学性能得益于孔隙等缺陷的有效消除、喷射沉积细晶组织、时效强化、Si颗粒的球化及其颗粒增强效应;经楔压致密并热处理的管坯试样拉伸强度和延伸率分别为330MPa和10.5%。
Spray deposition(SD) technology exhibits many unique advantages in fabricating large-size high-performance materials. However, its direct applications are limited due to the small amount of residual porosity in the as-deposited preforms. So, proper densification processing should be developed. But it is very difficult to densify the large-size spray deposited preforms because of the limited tonnage of the press and high processing costs. It is of practical significance to develop a feasible densification method for the fabrication of large-scale rapid-solidification structural materials as well as the applications of SD. In the present dissertation, combined with a key project supported by the National Key Program of 10th Five-year Plan, large-sized spray deposited aluminum alloys and SiCp reinforced composites tubular preforms were prepared by spray deposition process. With the assistances of hot compression tests and finite element method (FEM), the effects of processing parameters on the microstructures, mechanical properties and the densification mechanism of the compacted samples were investigated. A novel densification process termed as tube wedge pressing(WP) was developed for the first time, and the deformation and densification behaviors of the large SD tube preforms during WP were studied systematically. The main researches and conclusions are as follows.
     (1) 8009Al, 8009Al/SiCp and A356 alloy tubular preforms were prepared by a kind of spray deposition processing termed as multi-layer spray deposition, the effects of the main processing parameters on the microstructures and mechanical properties of the deposited preforms were analyzed, and the optimized processing parameters include, atomization pressure 0.7~0.85MPa,spray height 200~240mm,transportation pressure of SiC powder ~0.5MPa, diameter of melt stream 3.4~3.8mm for 8009Al and 3.2~3.6mm for A356, super-heat of the melt 250~300℃, rotate velocity of substrate 20~60r·min-1, scanning cycle of atomizer 30~50s. 8009Al and 8009Al/SiCp tubular preforms in dimension ofΦouter350mm×Φinner280mm×600mm and A356 alloy tubes ofΦouter820mm×Φinner760mm×550mm were successfully prepared with good shape and homogenous structure. The grain size of the as-deposited preforms was 0.3~1μm for 8009Al and 4~5μm for A356 alloy respectively, and the relative density of the preforms ranged from 83% to 88%.
     (2) The deformation behavior of the 8009Al/SiCp composite preforms was investigated by using high-temperature compression experiment via Gleeble-1500 thermal-mechanical simulator. The high-temperature deformation, densification and strengthening/softening mechanisms of the composite were studied based on the microstructure analysis. Densification-strengthening, Strain-hardening and particle-reinforcing effects contributed to the deformation behavior of the composite. Dynamic recovery was the dominate softening-mechanism for 8009Al matrix. The softening during the interval between the hot compression passes depended on temperature and thermal exposure duration. Effects of deformation degree and temperature on densification of porous preform were discussed. On the basis of experimental data, FEM was applied to simulate the process and the results show that the theoretical calculation and numerical simulation agree well with the practical situation. These provided necessary data for the secondary processing of the as-deposited preforms.
     (3) A novel densification method for processing large-sized porous tubular preforms termed as wedge pressing, was developed based on the idea of accumulating local small deformation as to integral forming. Combined with FEM, deformation and densification of porous tube during WP were systematically studied, including technical principles, processing parameters, microstructure evolution, densification behavior, and so on. 8009Al and 8009Al/SiCp composites tubes were successfully wedge pressed through a common press with low tonnage. The as-densified tube exhibited sound shape and high density, and their formability was significantly improved.
     The optimum hot-working temperature can be set as 460~480℃for 8009Al, at which the deformation resistance is reduced and the fine RS microstructures together with sound mechanical properties can be kept as well.
     The pass reduction during WP must be controlled carefully to ensure production efficiency, perfect shape and surface quality. The pass reduction was controlled at~10% at the early stage of the tube wedge pressing, and then it could be increased but less than 20% even the workpiece was densified. On the other hand, the compaction feeding should be less than the pressing plane width of the punch.
     A high densification rate was obtained until the total reduction was up to~30%. The reinforcement (SiC) played an important role in the densification during WP. MMCs exhibited slower densification rate than monolithic alloy at the final stage due to the possible residual pores resulted from SiC particle clusters. The main aim of WP is to eliminate /reduce pores. Metal flowing during WP was not as enough as in extrusion or rolling processing which led to inferior properties of MMCs compared with those of the matrix alloy. However, the formability was improved.
     The deformation during WP can be treated as plane strain with the characteristics of the thinned wall, decreased porosity, enlarged diameter and slight axial extension. The density differences in compacted tube wall were resulted from friction and densification at the early stage of WP, and it was gradually reduced during compaction processing.
     Encapsulation with a plastic shell helped to improve the formability of SD preforms, by which an evenly distributed temperature and proper increased hydrostatic pressure throughout the workpiece were obtained resulting in uniform deformation and improved densification.
     (4) For the compaction conducted on the as-deposited A356 tubular preform in dimension ofΦ800mm, WP exhibited a better application in densification of larger size deposited tube. The optimized heat treatment processing variables for SD A356 include solutionizing at 538℃for 3h before water quenching, aging at 160℃for 10h, air-cooling. During thermal exposure, the Si particles rounded and the second phases coarsened a little. The good mechanical properties benefited from the effective elimination of defects, fine-grain strengthening, age-hardening, improvement of Si shape and Si particle reinforcing. The tensile strength and elongation of the SD tube after WP and heat treatment were 330MPa and 10.5% respectively.
引文
[1]黄培云.粉末冶金原理.第2版.长沙:中南工业大学出版社, 1992,1-6
    [2] Grant P S. Spray forming. Progress in Materials Science, 1995, 39:497-545
    [3]陈振华著.多层喷射沉积技术及应用.第1版.长沙:湖南大学出版社, 2003,1-358
    [4]张济山,陈国良.雾化喷射沉积成形材料制备技术的新进展.北京科技大学学报, 1997,19(1):15-21
    [5] Cai W D, Lavernia E J. Modeling of porosity during spray forming. Materials Science and Engineering A, 1997, (226-228):8-12.
    [6]Cai W D, Lavernia E J. Modeling of Porosity during Spray Forming: Part I. Effects of Processing Parameters. Metallurgical Transactions B, 1998, (29): 1085-1096
    [7] Zhang J, Gungor M N, Lavernia E J. The effect of porosity on the microstructural damping response of 6061 aluminium alloy. Journal of Materials Science, 1993, (28): 1515-1524
    [8]肖于德,钟掘,黎文献等.快速凝固A1-Fe-V-Si合金喷射沉积坯的显微组织与力学性能.中国有色金属学报, 2006, 16(11):1869-1875
    [9] Singer A R E. The principle of spray rolling of metals. Met. Mater., 1970, 4:246
    [10] Brooks R G, Leatham A G, Coombs J S. A Novel Method for the Production of Forgings. Metallurgia and Metal Forming, 1977, 4: 157
    [11] Lavernia E J, Baram J C, Grant N J. The structure and properties of Mg-Al-Zr and Mg-Zn-Zr alloys produced by liquid dynamic compaction. Material Science and Engineering, 1987, 95(2): 225-236.
    [12] Rickinson B A. A novel process for particle metallurgy products. Powder Metall, 1981, 24(1):1
    [13] Book review. Spray atomization and deposition. Journal of Materials Processing Technology, 2000, (99):278-279
    [14] Grant P S. Solidification in Spray Forming. Metallurgical and Materials Transactions A, 2007, 38:1520-1529
    [15] Gutierrez-miravete E, Lavernia E J, Trapaga G M, et al. A Mathematical Model of the Spray Deposition Process. Metallurgical Transactions A, 1989, 20:71-85
    [16] Shukla P, Mishra N S, Ojha S N. Modeling of Heat Flow and Solidification During Atomization and Spray Deposition Processing. Journal of Thermal Spray Technology, 2003, 12(1):95-100.
    [17] Raju K, Ojha S N, Harsha A P. Spray forming of aluminum alloys and its composites: an overview. J Mater Sci, 2008, (43):2509–2521
    [18]孙剑飞,沈军,曹福洋等.喷射成形镍基高温合金的研究进展. 1999, 13(2):10-12
    [19]沃丁柱主编.复合材料大全.北京:化学工业出版社, 2000, 360-361
    [20] Singer A R E. Metal matrix composites made by spray forming. Material Science and Engineering A, 1991, 135: 13-17
    [21]Wu Y, Zhang J M, Lavernia E J. Modeling of the incorporation of ceramic particulates in metallic droplets during spray atomization and coinjection. Metallurgical and Materials Transactions B, 1994, 25:135-147
    [22]吴人洁主编.复合材料.天津:天津大学出版社, 2000, 385-422
    [23] Yan S P, Mohamed F A, Lavernia E J, et al. Influence of spray atomization and deposition processing on microstructure and mechanical behaviour of an aluminium alloy metal-matrix composite. Journal of Materials Science, 1995, 30:4726-4736
    [24]陈振华,黄培云,蒋向阳等.多层喷射沉积工艺.中国有色金属学报, 1995, 5(4): 66
    [25]陈振华,蒋向阳,杨伏良等.多层喷射沉积规律.中国有色金属学报, 1995, 5(4):76
    [26] Das S K, Davis L A. High Performance Aeropace Alloys via Rapid Solidification Processing. Mater. Sci. Eng., 1988, 98:1-12
    [27] Das S K, Okazaki K, Adam C M. Applications of rapid solidification processing to high temperature alloy design. Metallurgical Soc of AIME, 1984, 451-471
    [28] Gilman P S, Das S K. Rapidly solidified aluminum alloys for high temperature /high stiffness application. Met. Powder Rep., 1989, 44(9):616-620
    [29] Skinner D J, Bye R L, Raybould, et al. Dispersion strengthened Al-Fe-V-Si alloys. Scripta Metallurgica, 1986, 20(6):867-872.
    [30] Das S K. Rapid solidification and powder metallurgy at Allied-Signal Inc. Journal of Powder Metallurgy, 1988, 124(2):175-178
    [31] Wang J Q, Tseng M K, Chen X F, et al. An investigation on the microstructural atability of rapdly solidified Al-Fe-V-Si alloy ribbon. Materials Science and Engineering A, 1994, 179/180:412-415
    [32] Peng L M, Zhu S J, Ma Z Y, et al. High temperature creep deformation of an Al–Fe–V–Si Alloy. Materials Science and Engineering A, 1999, 259:25–33
    [33] Chen Z H, He Y Q, Yan H G, et al. Ambient temperature mechanical properties of Al-8.5Fe-1.3V-1.7Si/SiCp composite. Materials Science and Engineering A, 2007, 460-461: 180-185
    [34]黎文献,杨军军,肖于德. Al-Fe-V-Si合金高温变形热模拟.中南工业大学学报, 2000, 31(1):56-59
    [35] Wang Feng, Zhu Baohong, Xiong Baiqing, et al. An investigation on the microstructure and mechanical properties of spray-deposited Al–8.5Fe–1.1V–1.9Si alloy. Journal of Materials Processing Technology, 2007, 183:386–389
    [36] Chen Z H, Zhan M Y, Xia W J. Deformation and fracture behaviour of porous FVS0812 aluminium alloy prepared by spray deposition. Materials Science and Technology, 2004, 20:1621-1626
    [37] Xiao Yu-de, Li Wen-xian, Tan Dun-qiang, et al. Effect of processing parameters on microstructures and mechanical properties of rapidly solidified AlFeVSi hot-extruded product. Trans. Nonferrous Met. Soc. China, 2003, 13(3):558-563
    [38] Xiao Yu-de, Wang Wei, Li Wen-xian. High temperature deformation behavior and mechanism of spray deposited A1-Fe-V-Si alloy. Trans. Nonferrous Met.Soc.China, 2007, 17:1175-1180
    [39] Srivastava A K, Ojha S N, Ranganathan S. Microstructural Features and Heat Flow Analysis of Atomized and Spray-Formed Al-Fe-V-Si Alloy. Metallurgical and Materials Transactions A, 1998, 29:2205-2219
    [40] Tang Y P, Tan D Q, Li W X, et al. Preparation of Al–Fe–V–Si alloy by spray co-deposition with added its over-sprayed powders. Journal of Alloys and Compounds, 2007, 439:103–108
    [41] Yan Q Q, Fu D F, Deng X F, et al. Tensile deformation behavior of spray-deposited FVS0812 heat-resistant aluminum alloy sheet at elevated temperatures. Materials Characterization, 2007, 58:575–579
    [42]熊柏青,朱宝宏,张永安等.喷射成形Al-Fe-V-Si系耐热铝合金的制备工艺和性能.中国有色金属学报, 2002, 12(2):250-254
    [43] Hariprasad S, Sastry S M L, Jerina K L, et al. Microstructures and mechanical properties of Al-8.5Fe-1.2V-1.7Si alloys produced by atomized melt deposition process. Metallurgical Transaction A, 1993, 24(4): 865-873
    [44] Ferrarini C F, Bolfarini C, Kiminami C S, et al. Microstructure and mechanical properties of spray deposited hypoeutectic Al–Si alloy. Materials Science and Engineering A, 2004, 375–377:577–580
    [45] Srivastava V C, Mandal R K, Ojha S N. Microstructure and mechanical properties of Al–Si alloys produced by spray forming process. Materials Science and Engineering A, 2001, 304–306:555–558
    [46]熊柏青,张永安,石力开.喷射成形技术制备高性能铝合金材料.材料导报, 2000, 14(12):50-55
    [47]滕杰.高速列车用铝基复合材料制动盘及其闸片的制备、摩擦磨损性能及机理研究:[湖南大学博士学位论文].长沙:湖南大学, 2005, 36-41
    [48] Feng Wang, Baiqing Xiong,Yongan Zhang, et al. Microstructure, thermo-physical and mechanical properties of spray-deposited Si–30Al alloy for electronic packaging application. Materials Characterization, 2008, 59:1455–1457
    [49] Srivastava V C, Mandal R K, Ojha S N, et al. Microstructural modifications induced during spray deposition of Al–Si–Fe alloys and their mechanical properties. Materials Science and Engineering A, 2007, 471:38–49
    [50]孙敏,杨杰,张豪.喷射成形A356铝合金的组织及力学性能的研究.铸造技术, 2005, 26(7):597-599
    [51] Ojha K V, Tomar A, Singh D, et al. Shape, microstructure and wear of spray formed hypoeutectic Al-Si alloys. Materials Science and Engineering A, 2008, 487:591-596
    [52] Grant P S, Cantor B, Katgerman L. Modeling of Droplet Dynamic and Thermal Histories during Spray FormingⅡ: Effect of Process Parameters. Acta Metallurgica et Materialia, 1993, 41(11):3109
    [53] Srivastava V C, Schneider A, Uhlenwinkel V, et al. Spray processing of 2014-Al +SiCP composites and their property evaluation. Materials Science and Engineering A, 2005, 412:19–26
    [54] Mathur P, Annavarapu S, Apelian D, et al. Spray casting: an integral model for process understanding and control. Materials Science and Engineering A, 1991, 142 (2):261-276
    [55] Liang X, Lavernia E J. Evolution of interaction domain microstructure during spray deposition. Metallurgical and Materials Transactions A, 1994, 25:2341-2355
    [56] Feng Z, Duszczyk J, Leatham A G. Analysis of on-deposition solidification during the osprey spray deposition process. J Mater. Sci., 1992, 27:4511
    [57] Anand S, Srivatsan T S, Wu Y, et al. Processing, Microstructure and Fracture Behavior of a Spray Atomized and Deposited Aluminum-Silicon Alloy. Journal of Materials Science, 1997, 32:2835-2840
    [58] Underhill R P, Grant P S, Cantor B. Microstructure of spray-formed Al alloy 2618. Materials and Design, 1993, 14(1):45-47
    [59] Grant P S, Kim W T, Cantor B. Spray forming of aluminium-copper alloys. Materials Science and Engineering A, 1991, 134:1111-1114
    [60] Chu M G, Denzer D K, Chakrabarti A K, et al. Evaluation of aluminum and nickel alloy materials produced by spray deposition. Materials Science and Engineering A, 1998, 98: 227-232
    [61]袁武华,吉喆,陈振华.循环压制对喷射沉积7075/SiC致密化的影响.湖南大学学报(自然科学版), 2006, 33(2):82-85
    [62] Chen Z H, Fan C H, Chen Z G, et al. Densification of large-size spray-deposited Al-Mg alloy square preforms via a novel wedge pressing technology. Materials Science and Engineering A, 2009, 506:152-156
    [63] Chaudhury S K, Sivaramakrishnan C S, Panigrahi S C. A new spray forming technique for the preparation of aluminium rutile(TiO2)ex situ particle composite. Journal of Materials Processing Technology, 2004, 145:385–390
    [64] Zhou J, Duszczyk J, M.Korevaar B. As-spray-deposited structure of an Al-20Si-5Fe Osprey preform and its development during subsequent processing. Journal of Materials Science, 1991, 26:5275-5291
    [65]崔成松,范洪波,来忠红等.喷射沉积快速凝固Al-Li合金的组织特征.航空材料学报, 1995, 15(3):13-18
    [66] Liu H, Lavernia E J, Rangel R H. Modeling of molten droplet impingement on a non-flat surface. Acta Metallurgica et Materialia, 1995, 43:2053
    [67]卫原平,阮雪榆.粉末烧结材料塑性变形过程中的有限元分析.中国有色金属学报, 1994, 4(4): 56-61
    [68]侯红亮.可压缩材料滑移线场理论及有限元模拟:[北京科技大学博士学位论文].北京:北京科技大学, 2001, 9-10
    [69] Kuhn H A, Downey C L. Deformation characteristics and plasticity theory of sintered powder materials. Int. J. Powder Metallurgy, 1971, 7(1): 15-25
    [70] Doraivelu S M, Gegel H L, Gunasekera J S et al. A new yield function for compressible P/M materials. Int. J. Met. Sci., 1984, 26: 527-535
    [71]Green R J.A plasticity theory for porous solids.Int.J. Mech. Sci.,1972,14: 215-224
    [72]大矢根,岛进,鸿野雄.粉末烧结体の塑性基础式.日本机械学会论文集, 1973, 317:86
    [73] Gurson AL. Continuum theory of ductile rupture by void nucleation and growth.1. yield criteria and flow rules for porous ductile media. J.Eng. Mat. Tech. Tr.ASME., 1977, 99:2-15
    [74]陆有忠,杨有贞,郑璐石.浅析传统塑性位势理论与广义塑性位势理论.岩土力学, 2003, 24supp.:207-211
    [75]华林,赵仲治.烧结材料塑性理论及应用.机械工程学报, 1992, 28(4):94-101
    [76]华林,毛华杰,赵仲治.粉末冶金锻造变形力和密度计算.粉末冶金工业, 2000, 10(1):32-35
    [77]王尔德,张连洪,霍文灿.粉末多孔体的塑性泊松比与致密化方程.粉末冶金技术, 1987, 5(1):1-5
    [78]张连洪,王祖堂.粉末冶金多孔可压缩材料塑性理论研究的进展.金属成形工艺, 1989, 4: 55-60
    [79]任学平,王尔德,霍文灿.粉末体的屈服准则.粉末冶金技术.1992,10(1): 8-12
    [80]任学平,康永林著.粉末塑性加工原理及其应用.北京:冶金工业出版社, 1998, 47-100
    [81]吴成义,张丽英.粉体成形力学原理.北京:冶金工业出版社, 2003, 85-237
    [82]华林,秦训鹏.粉末冶金材料典型塑性加工工艺力学分析.武汉理工大学学报, 2004, 26(2): 4-6
    [83]马福康.等静压技术.第1版.北京:冶金工业出版社,1992, 174
    [84]詹美燕,匡勇,周明等.多孔金属及合金成形过程中的致密化与变形理论研究.稀有金属与硬质合金, 2002, 30(4):42-47
    [85]陈志钢,陈振华,陈鼎.喷射沉积及其制品的后续致密化研究.材料导报, 2008, 22(5):92-95
    [86] McHugh K M, Delplanque J P, Johnson S B et al. Spray rolling aluminum alloy strip. Materials Science and Engineering A, 2004, 383:96-106.
    [87] McHugh K M, Lin Y, Zhou Y et al. Microstructure evolution during spray rolling and heat treatment of 2124Al. Materials Science and EngineeringA, 2008, 477:26–34
    [88]胡敦芫,杨滨,崔华等.喷射成形+轧制Al-Pb/Al/Steel复合板材界面.北京科技大学学报, 2001, 23(4):340-342
    [89]袁武华,张晨晨,王峰. 7090/SiCp轧制板材的显微组织和力学性能.湖南大学学报(自然科学版), 2008, 35(5):45-48
    [90] Zhan M Y, Chen Z H, Yan H G et al. Deformation behaviors of porous 4032 Al alloy preform prepared by spray deposition during hot rolling. Journal of Materials Processing Technology, 2007, 182:174–180
    [91]詹美燕.喷射沉积材料压缩和轧制变形规律研究: [湖南大学博士学位论文].长沙:湖南大学, 2005, 65-86
    [92] Zhang H, Chen D, Chen Z H. Densification of Spray Deposited Aluminum Composite Sheets via Ceramic Rolling Technique. Materials and Manufacturing Processes, 2008, 23:479–483
    [93] See K S, Dean T A. The effects of the disposition of SiC particles on the forgeability and mechanical properties of co-sprayed aluminium-based MMCs. Journal of Materials Processing Technology, 1997, 69:58-67
    [94]黎文献,周涛,肖于德等.锻造对AlFeVSi合金组织和性能的影响.中南工业大学学报, 1998, 29(1):51.
    [95]李云平,李溪滨,刘如铁.多次锻造的SiC颗粒增强耐热铝合金的研制与性能.粉末冶金技术, 2000, 18(4):247
    [96]张荣华,刘雅政,张永安等.锻造对喷射成形A1-8.5Fe-1.3V-1.7Si合金组织和性能的影响.稀有金属, 2006, 30(2):255-258
    [97]王成和,刘克璋等.旋压技术.第一版.北京:机械工业出版社, 1986, 4-13
    [98] Xiao Y D, Li W X, Li S R, et al. Microstructures and mechanical properties of spun pipe blanks of RS AlFeX alloy. Trans. Nonferrous Met. Soc. China, 1998, 8(1):102-106
    [99]袁武华,陈振华.高性能耐热铝合金管材的制备及性能.中南工业大学学报, 2000, 31(5):437
    [100]詹孝军,黎文献,谭敦强等.喷射沉积Al-Fe-V-Si系耐热铝合金.铝加工, 2004, 3:15-18
    [101] Xu Q, Hayes R W, Hunt JR W H, et al. Mechanical properties and fracture behavior of layered 6061/sicp composites produced by spray atomization and co-deposition. Acta Materialia, 1999, 47(1):43-53
    [102]陈文哲,彭开萍,钱匡武.离心喷射沉积钛铝金属间化合物的研究.福建工程学院学报, 2003, 1(1):9-14
    [103]梁志凯,田世藩,赵先国等.热等静压对喷射成形高温合金组织和性能的影响.材料工程, 1996, 7:24-25
    [104] Cai W D. Porosity evolution during discrete droplet processes: [Dissertation] University of California irvine.1996, 92-95
    [105] Deibel C, Thornburg D R, Emley F. Continuous compaction by cyclic pressing. Powder Metallurgy, 1960, 5: 32-44
    [106] Sun Y P, Yan H G, Chen Z H et al. Effect of a novel sequential motion compaction process on the densification of multi-layer spray deposited 7090/SiCp composite. J Mater Sci., 2008, 43:6200–6205
    [107]王凯,陈振华,张昊等.梯温楔压对喷射沉积SiCp/7090致密化的影响.中国有色金属学报, 2008, 18(6):997-1004
    [108]陈振华,陈刚,严红革等.大型喷射沉积方形坯件致密化加工的方法及其装置.中国专利. ZL200610031567.0.
    [109]陈振华,严红革,陈刚等.大型喷射沉积环件的致密化加工方法及其装置.中国专利. CN200510031975.1
    [110] Mori K, Osakada K. Analysis of the Forming Process of Sintered Powder Metals by a Rigid-plastic Finite-element Method. International Journal of Mechanical Sciences, 1987, 29(4): 229-238
    [111]汪俊,罗思东,李从心.金属粉末零件压制过程有限元模拟的研究.中国机械工程, 1997, 8(4)
    [112]张昊,陈振华,陈鼎.喷射沉积5A06铝合金楔压变形的数值模拟.中国有色金属学报, 2008, 18(12):2132-2139
    [113]张兴全,彭颖红,阮雪榆等.多孔体材料在镦粗变形过程中表面裂纹的有限元预测.上海交通大学学报, 1998, 32(5):14-17
    [114]张辉.铝合金多道次热轧显微组织演变的模拟研究:[中南大学博士学位论文].长沙:中南大学, 2000, 75-80
    [115]康智涛,陈振华,袁武华等.多层喷射沉积制备大型厚壁耐热铝合金管坯.兵器材料科学与工程, 2000, 23(5):41-44
    [116] Grant P.S, Cantor B, Katgerman L. Modeling of Droplet Dynamic and Thermal Histories during Spray Forming I: Individual Droplet Behaviour. Acta Metall Mater., 1993, 41: 3097
    [117]袁武华.多层喷射沉积制备大尺寸耐热铝合金管坯的研究:[中南大学博士学位论文].长沙:中南大学, 2001, 87-107
    [118] Bewlay B P, Cantor B. Gas velocity measurement from a close-coupled spray deposition atomizer. Materials Science and Engineering A, 1989, 118: 207
    [119] Lubanska H. Correlation of spray ring data for gas atomization of liquid metals. J. Metals, 1970, 22(2): 45
    [120] Matyja H, Giessen B C, Grant N J. The Effect of Cooling Rate on the Dendrite Arm Spacing of Splat Cooled Aluminum Alloys. J. Inst. Met., 1968, 196:30-32
    [121] Trapaga G, Szekely J. Mathematical modeling of the isothermal impingment of liquid droplets in spraying process. Metall Trans B, 1991, 22 (12):901
    [122]陈振华,陈鼎,康智涛等.多层喷射沉积的传热凝固规律研究.湖南大学学报(自然科学版), 2003, 30(1):36-42
    [123] Mi J, Grant P S. Modelling the shape and thermal dynamics of Ni superalloy rings during spray forming Part 1:Shape modelling–droplet deposition, splashing and redeposition. Acta Materialia, 2008, 56:1588–1596
    [124]马万太,宋红媛,张豪等.往复式喷射成形管坯沉积特性及运动参数优化.中国有色金属学报, 2007, 17(6):878-884
    [125] Kalkanli A, Oren E E. Effect of spraying rate on microstructure of spray deposited Al–Fe–V–Si alloy. Powder Metallurgy, 2003, 46:4
    [126] Frank Su Y H, Chen Y C, Tsao C Y A. Workability of spray-formed 7075 A1 alloy reinforced with SiCp at elevated temperatures. Materials Science and Engineering A, 2004, 364: 296-304
    [127]肖于德.喷射沉积Al-Fe-V-Si合金锭坯及其成型制品的组织性能特征:[中南大学博士学位论文].长沙:中南大学, 2003, 44-54
    [128] Hariprasad S, Sastry S M L, Jerina K L. Deformation behavior of a rapidly solidified fine grained Al-8.5Fe-1.2V-1.7Si alloy. Acta mater, 1996, 44(1):383-389
    [129] Gupta M, Mohamed F A, Lavernia E J. The effect of ceramic reinforcements during spray atomization and codeposition of metal matrix composites. Metallurgical and Materials Transactions A, 1992, 23: 831
    [130] Rabin B H, Smolik G R, Korth G E. Characterization of entrapped gases in rapidly solidified powders. Materials Science and Engineering A, 1990, 124(1):1-7
    [131] Poirier D R, Yeum K, Maples A L. A thermodynamic prediction for microporosity formation in aluminum-rich Al-Cu alloys. Metallurgical and Materials Transactions A, 1987, 18:1979-1987
    [132] Sabau A S, Viswanathan S. Microporosity Prediction in Aluminum Alloy Castings. Metallurgical and Materials Transactions B, 2002, 33:243-255
    [133] Chen Z G, Chen D, Chen Z H, et al. Densification of spray deposited 8009Al/SiCp composite tubular billet. Materials and Manufacturing Processes, 2009, 24(5):564-569
    [134]谭敦强,唐建成,黎文献等.冷却速度对Al-8.5Fe-1.3V-1.7Si合金主要相组成的影响.中国有色金属学报, 2005, 15(8):1226-1230
    [135] Park W J, Ahn S, Kim N J. Evolution of microstructure in a rapidly solidified A1-Fe-V-Si alloy. Materials Science and Engineering A, 1994, 189: 291-299
    [136]刘建生,陈慧琴,郭晓霞著.金属塑性加工有限元模拟技术与应用.北京:冶金工业出版社, 2003, 2-10
    [137]贺毅强.喷射沉积SiCp/Al-Fe-V-Si复合材料热加工工艺、组织及性能的研究:[湖南大学博士学位论文].长沙:湖南大学, 2008, 86-89
    [138] Franck R E, Hawk J A. Effect of very high temperatures on the mechanical properties of Al-Fe-V-Si alloy. Scr. Metall., 1989, 23:113-118
    [139]汪大年.金属塑性成形原理.第2版.西安:西安交通大学出版社, 1986,35-37
    [140] Bouchaud E, Kubin L, Octor H. Ductility and dynamic strain aging in rapidly solidified aluminum alloys. Metallurgical and Materials Transactions A, 1991, 22: 1021-1028
    [141] Estrin Y. Dislocation theory based constitutive modeling: Foundations and applications. Journal of Materials Processing Technology, 1998, 80:8-15.
    [142] Shi H, Mclaren J, Sellers C M, et al. Constitutive Equations for High Temperature Flow Stress of Aluminum Alloys. Materials Science and Technology,1997, 13(3): 210-216
    [143] Zhou M, Clode M P. A constitutive model and its identification for the deformation charactered by dynamic recovery. Transactions of the ASME, 1997, 119: 138-142
    [144] Jonas J J, Sellars J C M, McG J W. Strength and Structure under Hot Working Conditions. International of Material Reviews, 1969, 14(130):1-24
    [145] Zhan Mei-yan, Chen Zhen-hua, Zhang Hui, et al. Flow stress behavior of porous FVS0812 Aluminum Alloy during hot-compression. Mechanics Research Communications, 2006, 33(4): 508–514
    [146] Takuda H, Fujimoto H, Hatta N. Modeling on flow stress of Mg-Al-Zn alloys at elevated temperatures. Journal of Materials Processing Technology, 1998, 80-81(8): 513-516
    [147]杨军军,朱远志,黎文献等. Al-Fe-V-Si耐热铝合金高温变形及流变应力研究.铝加工, 2001, 23(4):34-38
    [148]彭良明,朱世杰,陈浩然等. Al-8.5Fe-1.3V-1.7Si合金的压缩蠕变行为.材料工程, 1998, 4:25-27
    [149]林启权,彭大暑,张辉等. 2519铝合金热压缩变形过程的动态与静态软化行为.中南大学学报(自然科学版), 2005, 36(2):183-187
    [150]潘金生,仝建民,田民波.材料科学基础.北京:清华大学出版社, 1998, 542
    [151] Rao K P, Prasad Y K D V, Hawbolt E B. Study of fractional softening in multi-stage hot deformation. J Mater Process Tech, 1998, 77:166–174
    [152]林高用,张辉,孟力平等.道次间隔时间对7075铝合金热压缩变形组织和性能的影响.热加工工艺, 2001, 2:7-9
    [153]杨德庄.位错与金属强化机制.第1版.哈尔滨:哈尔滨工业大学出版社, 1991, 128-131
    [154]于春田,崔建忠,王磊.金属基复合材料.北京:冶金工业出版社,1995,14-15
    [155] Hariprasad S, Sastry S M L, Jerina K L. Deformation behavior of a rapidly solidified fine grained Al-8.5Fe-1.2V-1.7Si alloy. Acta mater, 1996, 44(1):383-389
    [156]黄伯云,李成功,石力开等.中国材料工程大典.第4卷,有色金属材料工程(上).北京:化学工业出版社, 2005, 126-132
    [157]黄伯云,李成功,石力开等.中国材料工程大典.第5卷,有色金属材料工程(下).北京:化学工业出版社, 2005, 779-780
    [158] Yuan W H, Chen Z H, Huang P Y. Preparation of heat resistant aluminum alloy pipe blanks by multi-layer spray deposition. Trans. Nonferrous Met. Soc. China, 2000, 10(4): 460-464
    [159]李伟,杨俊,罗琴英.耐热粉末铝合金成形工艺研究.宇航材料工艺, 2002, 3:40-43
    [160]陈振华,陈志钢,陈鼎等.大尺寸喷射沉积耐热铝合金管坯楔压致密化与力学性能.中国有色金属学报, 2008, 18(8):1383-1388
    [161]彭大署.金属塑性加工原理.长沙:中南大学出版社, 2004, 154-155
    [162]詹美燕,陈振华,夏伟军.喷射沉积-轧制工艺制备的FVS0812薄板的高温组织和力学性能.中国有色金属学报, 2004, 14(8):1348-1352
    [163] Wang Richu, Li Wenxian, Li Shongrui et al. Effect of extrusion temperature on properties of Al-Fe-X alloy. Trans. Nonferrous Met. Soc. China, 1994, 4(4):97-100
    [164] Lu Bin, Yi Danqing, Li Wenxian et al. Thermal stability of multi-spray deposition heat resistant Al-Fe-V-Si alloy. Trans. Nonferrous Met. Soc. China, 2002, 12(2):273-276
    [165]张文龙. SiC/Al复合材料大应变变形和再结晶:[哈尔滨工业大学博士论文].哈尔滨:哈尔滨工业大学, 1999, 101-102
    [166]陈振华,贺毅强,陈志钢等. SiCP/Al-8.5Fe-1.3V-1.7Si复合材料的显微组织及室温力学性能.中国有色金属学报, 2007, 17(6):858-864
    [167]陈刚,尹显觉,贺毅强等. SiCP颗粒增强Al-8.5Fe-1.3V-1.7Si的轧制工艺.特种铸造及有色合金, 2006, 26(12):765-767
    [168] Yan S P, Mohamed F A, Lavernia E J, et al. Influence of spray atomization and deposition processing on microstructure and mechanical behaviour of an aluminium alloy metal-matrix composite. Journal of materials science, 1995, 30:4726-4736
    [169] Mitra S, Mcnelley T R. Temperature Dependence of Strain Hardening in a Dispersion-Strengthened Al-Fe-V-Si Alloy. Metallurgical Transactions A, 1993, 24(11): 2589-2593
    [170]唐仁正.物理冶金基础.第一版.北京:冶金工业出版社, 1997, 151-203
    [171]华林,黄兴高,朱春东.环件轧制理论和技术.北京:机械工业出版社,2001, 6-73
    [172]平野忠男,藤田运生.急冷凝固粉末用Al-Si-X系粉末冶金合金的特性.軽金属, 1987, 37(10): 670
    [173] Mocellin A, Brechet Y, Fougeres R. Fracture of an OspreyTM AlSiFe alloy: A microstructure based model for fracture of microheterogeneous materials. Acta metal mater, 1995, 43(3):1135-1140
    [174] Gowri S. Extent of Depression in Eutectic Temperature at Two Levels of Silicon in Al-Si-Mg Alloys Processed at Different Cooling Rates. Metallurgical Transactions A, 1993, 24:2810-2812

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700