塑性变形对喷射沉积7090Al/SiC_p复合材料SiC分布及组织性能影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC颗粒增强铝基复合材料具有比强度和比模量高、耐磨性好等优点,但是其伸长率明显低于基体合金且SiC颗粒在基体合金中的分布均匀性不够理想。对其进行塑性变形,不仅可以提高复合材料的致密度,还可以改善SiC颗粒分布的均匀性,进而提高复合材料的强度,改善其塑性和韧性。以上相关报道较多,但对不同应力应变状态下SiC颗粒的运动及分布规律的研究工作尚无系统报道。本文采用实验室自有的坩埚移动式喷射沉积专利技术和粉末冶金技术制备了7090Al/SiCp(SiCp体积分数为15%)铝基复合材料锭坯,分别采取热挤压(三向应力)、等径角挤压(纯剪切应力)和楔形压制技术(单向压应力)对复合材料进行了塑性变形,研究了喷射沉积锭坯在塑性变形过程中的致密化行为、SiC颗粒的破碎、运动及再分布规律,得到了如下结论:
     (1)喷射沉积制坯过程中,SiC颗粒主要粘附于合金液滴的表面,造成SiC颗粒在合金液滴表面较多,内部较少,使SiC颗粒呈现层状分布特征。在挤压变形的三向应力作用下,这种层状分布特征难以消除,SiC颗粒在挤压棒材中呈条带状流线分布,横截面上则呈“年轮”分布特征。增大挤压比时,挤压棒材中SiC颗粒的分布趋于均匀。
     (2)采用P/M法制备了SiC颗粒均匀分布的7090Al/SiCp复合材料坯件,并进行热挤压实验,研究了SiC颗粒在热挤压变形过程中的分布特点,并与喷射沉积坯挤压结果进行了对比。实验结果表明:原始锭坯中的SiC颗粒分布越均匀,挤压棒材中SiC颗粒的分布也越均匀。在挤压过程中,SiC颗粒在基体合金中沿挤压方向呈定向分布特征,这是由热挤压变形时的应力特征决定的,但是没有形成SiC颗粒分布不均匀的条带组织;在挤压棒材的横截面上SiC颗粒分布的比较均匀,未出现年轮组织。挤压比为11时,挤压棒材中存在一定量合金粉末颗粒的结合界面,说明此时的挤压比不足以使合金粉末颗粒实现完全的冶金结合。提高挤压比至17以上时,合金颗粒结合界面逐渐消除,实现了冶金结合。
     (3)挤压态7090Al/SiCp复合材料的基体合金中存在大量短棒状的MgZn2相及圆形的CuAl_2相颗粒,MgZn_2粒子长约200nm,直径约60nm,分布在晶粒内部;CuAl_2相为球形粒子,尺寸不一,大的颗粒直径大约为420nm,小颗粒直径在40~60nm之间,主要分布在晶界上或近晶界区域。
     (4)研究了7090Al/SiCp挤压棒材的固溶及时效制度,确定了最佳固溶温度为475℃,固溶时间为1h。经过固溶处理后,第二相颗粒MgZn2及CuAl2粒子溶入到了基体合金中,复合材料棒材的力学性能为:σb=610MPa,δ=2.0%;再经过120℃/24h时效处理后,复合材料棒材的力学性能为:σb=765MPa,δ=1.5%。
     (5)研究了等径角挤压(ECAP)工艺对喷射沉积7090Al/SiCp复合材料棒材组织和性能的影响,结果表明:ECAP温度对变形行为的影响明显;SiC颗粒在等径角挤压时的剪切力作用下会被破碎,破碎的SiC颗粒之间产生的空洞在300℃下很难被基体合金填充;将挤压温度提高到350℃以上时,破碎的SiC颗粒之间的空隙逐渐被基体填充、粘合,并可在一定范围内随基体合金流动,分布均匀性明显提高。在本研究中最佳的ECAP温度为400℃。
     (6)以加工路径A、Bc、C,在400℃下对7090Al/SiCp复合材料进行了多道次等径角挤压。结果表明,按路径Bc进行挤压时的力学性能优异,经过4个道次的变形后,晶粒为等轴晶,晶粒尺寸为400nm;峰值时效处理后,棒材的抗拉强度及屈服强度分别为770MPa及575MPa,弹性模量为106.6GPa,伸长率为7.4%;SiC颗粒尺寸被显著细化,由初始状态时的10μm左右破碎至2μm左右。
     (7)基于对坯件进行多道次小变形累积实现大变形的思想,研究了大尺寸喷射沉积7090Al/SiCp复合材料锭坯(510mm×337mm×200mm)在楔形压制变形过程中SiC颗粒分布规律及孔洞变形行为。结果表明,在楔压过程中,坯料发生局部塑性变形,使喷射沉积坯中的孔隙发生剪切变形、闭合,最终实现坯件的致密化;SiC颗粒在压制力的作用下发生了转动,使SiC颗粒由沉积坯内的紊乱分布变为长轴垂直于压制方向的有序分布,但破碎效果不明显。
Aluminum matrix composites reinforced with SiC particles are characteristic of high specific strength, high specific toughness and excellent abradability, but they exhibit much lower elongations than the matrices and the non-uniform distribution of SiC particles in the matrix. Plastic processing can elevate the compactability of the composites and promote the uniform distribution of SiC particles, contributing to higher strength, better plasticity and toughness. There are many reports on the topic mentioned above, while there is almost no systematic report on the regularities of the motion and distribution of SiC particles under different stess and strain states.
     In this dissertation, 7090Al/SiCp (the volume fraction of SiCpbillets were prepared by multi-layer spray co-deposition technique and powder metallurgy respectively and were successively deformed by different plastic processings such as hot extrusion, equal channel angular pressing and wedge pressing repectively. The compaction behavior, the fragmentation, the motion and the re-distribution of SiC particles in the as-deposited composite were systematically studied. The conclusions are drawn as follows:
     (1) SiC particles adhered mainly to the surface of the alloy droplets during deposition, leading to more SiC particles at the surface of the droplet and less in the inner. Thus, the distribution of SiC particles in the composite was characteristic of the layered feature. This layered feature of SiC particles was not removed by the following hot extrusion. The SiC particles were distributed like the streamline in the longitudinal direction, while the ring-like feature of the SiC particles was observed in the transverse direction. A higher extrusion ratio resulted in an more uniform distribution of SiC particles.
     (2) The distribution and the motion of SiC particles in the PM 7090Al/SiC_pcomposite billet during hot extrusion were also investigated detailedly and compared with the as-deposited billet. The more uniform the distribution of SiC particles in the PM billet, the more uniform of SiC particles in the as-extruded rod. There was still an order and directional distribution of SiC particles in the longitudinal direction, but there was no ring-like feature of SiC particles in the transverse direction in the as-extruded PM billet. The former was related to the stress state associated with hot extrusion. In addition, a more uniform distribution of SiC particles was observed in the as-extruded PM billet and no SiC segregation streamline occurred. With a small extrusion ratio (11), many obvious interfaces between powder and powder remained existent since the deformation stress was not large enough to achieve the metallurgical bond. Metallurgical interfaces were achieved with the extrusion ratio of 17.
     (3) There were a large amount of short rod-like MgZn2 and spherical CuA12 particles in the matrix of the as-extruded 7090Al/SiCp composite. The MgZn2 particles were mainly distributed within the grains with the length of about 200 nm, and the width of about 60 nm, while the CuA12 particles were mainly distributed at grain boundaries or the near areas with the diameter from 420 nm to 40-60 nm.
     (4) The solid solution and artificial aging processes of the as-extruded 7090Al/SiCp aluminum alloy matrix composite were systematically investigated. The best solid solution process was solutionized at 475℃for 1h. The particles of MgZn2 and CuAl2 were dissolved after the solid solution treatment and the composite in the solid solution state was characteristic of the ultimate strength and elongation of 610 MPa and 2.0% respectively, while that in the solid solution plus aging state exhibited the ultimate strength and elongation of 765 MPa and 1.5%.
     (5) Temperature had an obvious effect on the plastic behavior of the spray-deposited composite during equal chnnel angular pressing. The hard SiC particles were broken by the shear stress and many cavities between the broken SiC fragments occurred with the the pressing temperature of 300℃, which could not be filled with the matrix. With the pressing temperature of 350℃and 400℃, the cavities derived from the SiC breakup were filled with the matrix and flew with the matrix in a certain range. The optimal pressing temperature was 400℃.
     (6) Equal channel angular pressing was performed on the spray-deposited 7090Al/SiCp composite at 400℃with the routes of A, Bc and C and the channel properties and equiaxed grains with the average grain size of 400 nm were obtained from the fourth pass. The tensile strength, the yield strength, the modulus and the elongation of the composite after peak ageing treatment were 769MPa, 574MPa, 106GPa and 7.4% respectively.
     (7) On the basis of the conception that a large deformation could be obtained through the accumulation of many times of small deformation, the distribution of SiC particles and the deformation of the pores during the wedge pressing of the large dimension spray co-deposited 7090Al/SiC composite experienced by Bc had higher mechanical pressing resulted in the local deformation, which led to the shear deformation and the closure of pores. Ultimately the pores were eliminated and the densification was realized. The SiC particles rotated under the pressing force and exhibited an order distribution with the long axis perpendicular to the pressing direction.
引文
[1]吴人洁.复合材料.天津大学出版社,2000,9-11,306-327,399-409
    [2]吴人洁.金属基复合材料的现状与展望.金属学报.1997,33(1):78-84
    [3]胡连喜.复合材料液态浸渗后直接挤压新技术的研究.哈尔滨工业大学博士学位论文.1994,1-14
    [4] V.K.Lindroos, M. J. Talvife.Recent advances in metal matrix composite. J. Mater. Process. Tech. 1995, (53):273-284
    [5]高静微,屈树岭.金属基复合材料的应用现状与市场前景.稀有金属.1997, 21(4):277-296
    [6]甄华生.复合材料在航天器中的应用近况.宇航材料工艺,1997,(4):14-16
    [7] J. Hooker, P .J. Doorban. Metal matrix composites for aerroarigines.Mater. Sci. and Tech. 2000,(16):725-734
    [8]黄泽文.金属基复合材料的大规模生产和商品化发展.材料导报.1996,18-25
    [9]赵稼祥.先进复合材料的现状与发展趋势,兵器材料科学工程.1994,17(4):3439
    [10]郝元恺.非连续增强轻金属复合材料研究现状及展望.材料导报.1994,(5):67-71
    [11]李成功.金属基复合材料的研究与发展,宇航材料与工艺1995,(4):1-5
    [12]吴树森.日本金属基复合材料的研究与应用.日本金属基复合材料的研究与应用.1999,22(2 ):56-60
    [13] B. Terry, G. Jones. Metal Matrix Compesites-Current Development and Fracture Trends in Industrial Research and Application. Elsevier Science Publishers LtD,1990,234-256
    [14] T. Donomoto, K. Funatani, N. Miura, et al.Ceramic fiber reinforced piston for high performance diesel engines.SAE Paper 830252.1990,12-17
    [15]齐乐华,李贺军,任学平.液态模锻工艺在制备金属基复合材料中的应用.航空工程与维修.1995,(2):6-8
    [16]刘政,刘小梅.国外铝基复合材料的开发与应用.轻合金加工技术. 1994,22(l):7-13
    [17] A. Heinz, A. Haszler. Recent development in Aluminum a1loys for aerospace applications. Mater. Sci. Eng., 2000, 280:102
    [18] W. Steven. Developments in premium high-strength powder metallurgy alloys by Kaiser aluminum. Rapidly solidified powder metallurgy aluminum alloys. 1984,1916 Race Street, Philadelphia, PA 1910,369-380
    [19] W. M. Griffith, J. S. Sandtner. Effect of defects in aluminum P/M. High strengthenpowder metallurgy aluminum alloys. Proceedings of a symposium sponsored by the Powder Metallurgy Committee of the Metallurgical Society of AIME held at the 111th
    [26] AIME annual meeting ,Dallas, Texas, Feb,1982,17-18
    [20] G. J. Hildeman, L.C.Labarre,A.Hafeez,et al. Microstructural, mechangical, property and corrosion evaluations of 7×××P/M alloy CW67. High strengthen powder metallurgy aluminum alloys. Proceedings of a TMS-AIME Symposium on“Aluminum Powder Metallurgy”,Totonto, Cannda, October,1985,13-17
    [21]郝广瑞,王洪斌,黄进峰等.喷射成形超高强度Al-Zn-Mg-Cu合金的固溶处理.北京科技大学学报,2004,26(5):502-506
    [22]王洪斌,刘慧敏,黄进峰等.热处理对喷射成形超高强Al-Zn-Mg-Cu系铝合金的影响,中国有色金属学报,2004,14(3):398-404
    [23] W. Kahl, J. Leupp. High performance aluminium produced by spray deposition. Metal Powder Report, 1990, 45(4): 274-278
    [24] K. B. Lee. Strength of Al-Zn-Mg-Cu matrix composite reinforced with SiCp. Metallurgical and Materials Transactions A, 2002, 33(2): 455-465
    [25]张福全.大尺寸7075/SiCp复合材料的喷射共沉积制备技术及后续加工问题研究.[湖南大学博士学位论文].长沙:湖南大学,2005. F. J. Humphreys. The thermomechanical processing of Al-SiC particulate composites. Materials Science and Engineering A, 1991, 135A(3): 267-273.
    [27]潘复生,张丁非等.铝合金及应用.第1版.北京:化学工业出版社,2006,417
    [28]樊建中,桑吉梅,石力开.颗粒增强铝基复合材料的研制、应用与发展.材料导报, 2001,15(10):55-57
    [29]樊建中,姚忠凯,杜善义等.P/M制备的SiCp/Al复合材料界面结构.中国有色金属学报,1998,8(1):20-23
    [30] C. H. Lee, S. Y. Shim, K. T. Kim, et al. Mechanical properties of P/M SiCp/Al composites with various extrusion ratio. Advances in Powder Metallurgy, 1992,8: 71-75
    [31] P. Ramakrishnan. Novel processing of P/M aluminum composites. Advances in Powder Metallurgy, 1992, 9: 237-252
    [32] T. S. Srivatsan, T. S. Sudarshan, E. J. Lavernite. Proceeding of discontinuously reinforced metal matrix composites by solidfication. Progress in Materials Science, 1995, 39: 317-409
    [33]郑晶,贾志华,马光.碳化硅颗粒增强铝基复合材料的研究进展.钛工业进展,2006,23(6):13-16
    [34]樊建中,肖伯律,左涛.适合航空航天用SiCp/Al复合材料的性能.宇航材料工艺,2005,(6):17-22
    [35] D. J. Lioyd. Particle reinforced aluminum and magnesium matrix composites. International Materials Reviews,1994,39(1):317-409
    [36]张守魁,王丹虹.搅拌铸造制备颗粒增强复合材料.兵器材料科学与工程,1997, 20(6):35-39
    [37] I. Krystyna, P. Yarnle. Syntheses of in-situ. Al-Si matrix composites by stir-casting technique. Advances in materials science, 2001,1(1):53-62
    [38] T. S. Srivatasan, I. A. Ibraim, F. A. Mohamed. Processing Techniques for Particulate reinforced metal matrix composites. Journal of Materials Science, 1991, 26: 5956-5978
    [39]于晓东,王扬卫,王富耻等.挤压铸造制备高体积含量SiCp/2024Al复合材料.材料工程,2008,(11):59-62
    [40]赵龙志,曹小明,田冲.挤压铸造SiC/ZL109铝合金双连续相复合材料的凝固组织.金属学报,2006,42(3):325-330
    [41]王武孝,袁森.铸造法制备颗粒增强金属基复合材料的研究进展.
    [48] R. G. Brooks, C.铸造技术, 2001, (2): 42-45
    [42] J. A. Ibrahim, F.A. Mohaned, E.J. Lavernia. Particulate reinforced metal matrix composites. Journal of Materials Science, 1991,(26):1137-1156
    [43]沈宝龙,吴菊清.粉末冶金发展现状及趋势.上海有色金属,1994, 15(2):109-116
    [44] S. Long, O. Beffort, C. Cayron, et al. Microstructure and mechanical properties of a high volume fraction SiC particle reinforced Al-Cu-Mg-Ag squeeze casting. Materials Science and Engineering A:1999,A269(1-2):175-185
    [45] M. Kobashi, T. Choh. Synthesis of boride and nitride ceramics in molten Aluminum by reactive infiltration. Journal of Materials Science, 1997,(32): 6283-6289
    [46] A. W. Urquhart, T. Choh. Synthesis of boride and nitride in molten Aluminum by reactive infiltration. Journal of Materials Science, 1997,(32):6283-6289
    [47] A. R. E. Singer. The principles of spray rolling of metals, Metals and Materials, 1970,4(2):246-250 Moore, A. G. Leatham, et al. Osprey process. Powder Metallurgy, 1977,20(2):100-102
    [49] E. J. Lavernia, J. C. Baram, N. J. Grant. The structure and properties of Mg-Al-Zr and Mg-Zn-Zr alloys produced by liquid dynamic compaction. Material Science and Engineering, 1987,95: 225-236
    [50]陈振华,黄培云,蒋向阳等.多层喷射沉积工艺.中国有色金属学报,1995,5 (4):66-69
    [51]陈振华,蒋向阳,杨伏良等.多层喷射沉积规律.中国有色金属学报,1995,5(4):76
    [52]周尧和,胡壮麒,介万奇.凝固技术.北京:机械工业出版社, 1998, 292-293
    [53] A. R. E.Singer, S. Ozbek. Metal matrix composites produced by spray co- deposition. Powder Metallurgy, 1985, 28(2): 72-78
    [54] A. R. E. Singer. Metal matrix composites made by spray forming. Material Science and Engineering, 1991, A135: 13-17
    [55]张济山,陈国良.粉末雾化喷射成形制备颗粒增强金属基复合材料.材料科学与工程, 1995, 13(1): 21-29
    [56] R. W. Evans, A. G. Leatham, R. G. Brooks. Osprey preform process, Powder Metallurgy, 1985, 28(1):13-20
    [57] T. W.克来因, P. J.威瑟斯.金属基复合材料导论.北京:冶金工业出版社, 1996, 303-305
    [58]彭晓东.金属基复合材料喷射沉积技术.材料导报, 1993, 7(3): 72-75
    [59] J. C. Romero, L. Wang, R. J. Arsenault. Interfacial structure of a SiC/Al composite. Materials Science and Engineering A, 1996, A212(1): 1-5
    [60] T. S. Srivatsan, E. J. Lavernia. Use of spray techniques to synthesize particulate- reinforced metal-matrix composites. Journal of Materials Science, 1992, 27(22): 5965-5981
    [61] M. Gupta, F. Mohamed, E. J. Lavernia. Solidification behavior of Al-Li-SiCP MMCs processed using variable co-deposition of multi-phase materials. Materials and Manufacturing Processes, 1990, 5(2): 165-196
    [62] M. Gupta, F. Mohamed, E. J. Lavernia. The effect of ceramic reinforcements during spray atomization and co-deposition of metal matrix composites heat-transfer. Metallurgical Transactions A ,1992 ,23(1): 831-843
    [63] M. Gupta, I. A. Ibrahim, F. A. Mohamed et al .Wetting and interfacial reactions in Al-Li/SiCp metal matrix composites processed by spray atomization and deposition. Journal of Materials Science, 1991, 26(24): 6673-6684
    [64] A. R. E.Singer. Spray forming composites. Powder Metallurgy, 1985, 28: 72-78
    [65] A. R. E. Singer. Metal matrix composites made by spray forming. Materials Science and Engineering A,1991,135: 13-17
    [66] Q. Zhang, R. H. Rangel, E. J. Lavernia. Nucleation phenomena during co-injection of ceramic particulates into atomized metal droplets. Acta Mater.,1996, 44(9): 3693-3703
    [67] K. T. Park, E. J. Lavernia, F. A. Mohamed. High temperature creep of SiC particulate reinforced aluminum. Acta Metallurgica et Materialia, 1990,38(11):2149-2159
    [68]任学平,康永林.粉末塑性加工原理及其应用.第1版.北京:冶金工业出版社,1998,40-42
    [69]马福康.等静压技术.第1版.北京:冶金工业出版社,1991,25-27
    [70] H.A. Kuhn, B.L.Ferguson, O.D.Simith. Pseudo-HIP using conventional presses. Metal Powder Report, 1983, 38(6): 321-32
    [71] B. L. Ferguson. Emerging alternatives to hot isostatic pressing. Int. J. Powder Metallurgy & Powder Technology; 1985, 21(3):201-218
    [72]刘咏,周科朝,黄伯云等.粉末冶金近型成形技术-陶瓷模工艺.材料导报,1996, 4: 19-23
    [73]郭栋,周志德.金属粉末轧制.第1版北京:冶金工业出版社,1984,77-79.
    [74]黄培云.粉末冶金原理.北京:冶金工业出版社,2000,342-346
    [75]贾玉玺.挤压加工对SiCp/Al复合材料组织和性能的影响.塑性工程学报,2000,7( 4): 5-7
    [76] V. M. Segal. Materials processing by simple shear. Materials Science and Engineering A, 1995, A197:157-164
    [77] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci, 2000, 45: 103-189
    [78] R. Z. Valiev, T. G. Langdon. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci, 2006, 51: 881-981
    [79] Z. Horita, T. Fujinami, M. Nemoto, et al. Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties. Metall Mater Trans A, 2000, 31A: 691-701
    [80] M. Furukawa, Z. Horita, M. Nemoto,et al. Microhardness measurements and the Hall-petch relationship in an Al-Mg alloy with submicrometer grain size.Acta Mater, 1996, 44(11): 4619-4629
    [81] L. J. Zheng, H. X. Li, M. F. Hashmi, et al. Evolution of microstructure and strengthening of 7050 Al alloy by ECAP combined with heat-treatment. Journal of materials Processing Technology, 2006, 171: 100-107
    [82] X. Cheng, D. William, F. Minoru, et al. Developing superplasticity in a spray-cast aluminum 7034 alloy through equal-channel angular pressing. Materials Letters, 2003, 57: 3588-3592
    [83] P. Málek, M. Cieslar, R.K. Islamgaliev. The influence of ECAP temperature on the stability of Al–Zn–Mg–Cu alloy. Journal of Alloys and Compounds, 2004,378: 237–241
    [84] P.J. Apps, M. Berta, P.B. Prangnell. The effect of dispersoids on the grain refinement mechanisms during deformation of aluminium alloys to ultra-high strains. Acta Materialia, 2005, 53: 499–511
    [85] P.J. Apps, J.R. Bowen, P.B. Prangnell. The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing. Acta Materialia, 2003, 51: 2811–2822
    [86] I. Gutierrez-Urrutia, M.A. Mu noz-Morris, D.G. Morris. The effect of coarse second-phase particles and fine precipitates on microstructure refinement and mechanical properties of severely deformed Al alloy. Materials Science and Engineering, 2005, A394: 399–410
    [87] D.P. Field, R.C. Eames, T.M. Lillo. The role of shear stress in the formation of annealing twin boundaries in copper. Scripta Materialia, 2006,54: 983–986
    [88] W.H. Huang, C.Y. Yu, P.W. Kao, C.P. Chang. The effect of strain path and temperature on the microstructure developed in copper processed by ECAE. Materials Science and Engineering, 2004, A366: 221–228
    [89] F. H. D. Torre, E.V. Pereloma, C. H. J. Davies. Strain hardening behaviour and deformation kinetics of Cu deformed by equal channel angular extrusion from 1 to 16 passes. Acta Materialia, 2006, 54: 1135–1146
    [90] V. M. Skripnyuk, E. Rabkin, Y. Estrin, et al. The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg–4.95 wt%Zn–0.71 wt% Zr (ZK60) alloy. Acta Materialia, 2004,52: 405–414
    [91] H.K. Lin, J.C. Huang, T.G. Langdon. Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP. Materials Science and Engineering,2005, A402: 250–257
    [92] Y. Yoshida, K. Arai, I. Shota, et al. Realization of high strength and high ductility for AZ61 magnesium alloy by severe warm working. Science and Technology of Advanced Materials, 2005,6: 185–194
    [93] C.W. Su, B.W. Chua, L. Lu, et al. Properties of severe plastically deformed Mg alloys. Materials Science and Engineering, 2005, A402: 163–169
    [94] J. Li, D. L. Lin, D. L. Mao, et al. Microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion. Materials Science and Engineering, 2006, A423: 247–252
    [95] J. Li, D. L. Lin, D. L. Mao, et al. Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion. Materials Letters, 2005, 59: 2267– 2270
    [96] S. V. Dobatkin, R. Z. Valiev, N. A. Krasil’nikov, et al. Structure and properties of steels after hot equal-channel angular pressing. Metal Science and Heat Treatment, 2000,42: 366-369.
    [97] F. Wetscher, A. Vorhauer, R. Stock, et al. Structural refinement of low alloyed steels during severe plastic deformation. Materials Science and Engineering, 2004, 387–389,809–816
    [98] N. Krasilnikov, W. Lojkowski, Z. Pakiela, et al. Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation. Materials Science and Engineering, 2005,397,330–337
    [99] A.V. Sergueeva, C. Song, R.Z. Valiev, et al. Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing. Materials Science and Engineering, 2003, A339: 159-165
    [100] I. Sabirov, O. Kolednik, R. Z. Valiev,et al. Equal channel angular pressing of metal matrix composites: Effect on particle distribution and fracture toughness. Acta Materialia, 2005,53:4919-4930
    [101] D.Y. Ma, J. T. Wang, K.W. Xu. Equal channel pressing of a SiCw reinforced aluminum-based composite. Materials Letters, 2002, 56:999-1002
    [102] B. Q. Han, T. G. Langdon. Achieving enhanced tensile ductility in an Al-6061 composite processed by severe plastic deformation. Materials Science and Engineering, 2005, 410-411, 430–434
    [103] Y. Iwahashi, Z. Horita, M. Nemoto. An investigation of microstructural evolution during equal channel angular pressing. Acta Mater,1997,45(11): 4733-4741
    [104]李永霞,张永刚,陈昌麟.等截面通道角形挤压对高纯铝微观组织及力学性能的影响.航空材料学报,2001,21(3):33-38
    [105] A. Yamashita, D. Yamaguchi, Z. Horita, et al. Influence of pressing temperature on microstructure development in Equal-channel angular pressing. Materials Science and Engineering, 2000,A287: 100–106
    [106] K. Nakashima, Z. Horita, M. Nemoto,et al. Influence of channel angular on the development of ultra-fine grains in equal-channel angular pressing. Acta Mater, 1998,46(5):1589-1599
    [107] A. Gholinia, P. B. Prangnell, M. V. Markushev. The effect of strain on the development of deformation structures in severely deformed aluminum alloys processed by ECAE. Acta Mater., 2000, 48: 1115-1130
    [108] Y. Iwahashi, Z. Horita, M. Furukawa, et al. Microstructural characteristics ofultrafine-grained aluminum produced using equal-channel angular pressing. Metall. Mater. Trans.,1998, A29(9): 2245-2252
    [109] S. Ferrasse, V. M. Segal, K. T. Hartwig, et al. Microstructural and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion. Metall. Mater. T rans.,1997, A28(4): 1047-1051
    [110] J. C. Lee, H. K. Seok, J. Y. Suh . Acta Mater, 2002, 50: 4005-4019
    [111] Y. Iwahashi, Z. Horita, M. Nemoto, et al. Factors influencing the equilibrium grains size in equal-channel angular pressing:role of Mg additions to aluminum. Metall. Mater. Trans., 1998, A29(10): 2503-2510
    [112] I. Kim, J. Kim, D. H. Shin, et al. Effects of equal channel angular pressing temperature on deformation structures of pure Ti. Materials Science and Engineering, 2003, A342: 302-310
    [113] A. Yamashita, D. Yamaguchi, Z. Horita, et al. Influence of pressing temperature on microstructure development in Equal-channel angular pressing. Materials Science and Engineering, 2000,A287: 100–106
    [114] L.J. Chen, C.Y. Ma, G.M. Stoica, et al. Mechanical behavior of a 6061 Al alloy and an Al2O3/6061 Al composite after equal-channel angular processing. Materials Science and Engineering A 410–411 (2005): 472–475
    [115] R.Z.Valiev, R.K.Islamgaliev, I.V.Alexandrov. Bulk nanostrucrured materials from severe plastic deformation. Progress in Materials Science. 2000,45(2): 103-189
    [116] A. L. M. Costa, A. C. C. Reis, L. Kestens, et al. Ultra grain refinement and hardending of IF-steel during accumulative roll-bonding. Materials Science and Engineering, 2005, A406: 279-285
    [117]管仁国,李俊鹏,赵金力等.叠轧深变形制备超细晶Al-21%Mg合金.材料与冶金学报,2005,4(1):65-69
    [119] S. H. Lee, Y. Saito, N. Tsuji, et al.Role of shear strain in ultragrain refinement by accumulative roll-bonding(ARB) process. Scripta Materialia, 2002,46: 281-285
    [120] S.H. Lee, S.Y. Chang, S.T. Oh. Effect of working temperature on microstructure and mechanical properties of ultrafine grained Al and Al-5vol.%SiCp composite processed by accumulative roll-bonding. Materials Science Forum,2007,v 534-536:1381-1384
    [121]秦蜀懿,张国定.改善颗粒增强金属基复合材料塑性和韧性的途径与机制.中国有色金属学报,2000,10(5):621-629
    [122] S. Y. Qin, C. R. Chen, G. D. Zhang et al. The effect of particle shape on ductility of SiC reinforced 6061 Al matrix composites. Materials Science and Engineering. 1999, 272, 363
    [123]常宏,李细锋,王国峰.铝基和钛基复合材料的塑性与超塑性.塑性工程学报, 2004, 11(5):57-63
    [124]肖伯律,毕敬,赵明久,马宗义.SiCp尺寸对铝基复合材料拉伸性能和断裂机制的影响.金属学报,2002,38(9):1006-1008
    [125] X. Zhang, M. J. Tan. Selection of particulate reinforcement in P/M metal matrix composites. Journal of Materials Processing Technology. 1997, 63(1-3): 913-917
    [126] C. H. J. Davies, N. Raghunathan, T. Sheppard. Structure-property relationships of SiC reinforced advanced Al-Zn-Mg-Cu alloy. Mater. Sci. Technol.. 1992,(8): 977-984
    [127] K.Mori.Analysis of the Forming ProcessofSintered Powder Metals by Rigid Plastic Finite.El-ement Method [J].Int.J.Mech.Sci. 1987, 27(4):227
    [128] S. I. Oh. Alpidp-Modeling of P/M forming by the finite element method .Proc.of 14th Namic, 1986:294-302.
    [129]卫原平,阮雪榆.粉末烧结体材料塑性变形过程的有限元分析.中国有色金属学报,1992,4(4)
    [130]张兴全,彭颖红,阮雪榆等.多孔体材料在镦粗变形过程中表面裂纹的有限元预测.上海交通大学学报, 1998, 32 (5):14-17
    [131]侯红亮,焦满囤,米新兰.多孔材料挤压过程数值模拟.华北航天工业学院学报, 2000, 10 (2):5-8
    [132]侯红亮,任学平.可压缩材料挤压过程的有限元模拟.金属成形工艺, 2001,19 (3):4-8
    [133] A.shok, G. K. Jinka.粉末冶金连杆的热锻:三维计算机模型.颜炼,译.武钢技术,1998,36(6):57-59
    [134] F. R. Castro-Fernandez, C. M. Selllars, J. A. Whiteman. Change of Stress and Micro-structure during Hot Deformation of Al-Mg-1Mn. Materials Science and Technology, 1990, 6(5):453-460
    [135] H. Shi, J. Mclaren, C. M. Sellers, et al. Constitutive-Equations for High Tempera-ture Flow Stress of Aluminum Alloys. Mater Sci and Technol, 1997, 13(3): 210-216
    [136] H. J. Queen, S. Yue, N. D. Ryan, et al. Hot Working Characteristics of Steels in Austenitic State.Mater Process Technol,1995,53:293-310
    [137] M. Y. Zhan, Z. H. Chen, H. G. Yan, et al. Evolution of SiC Particle distribution in spray co-deposited SiCp/7075 Al composites during extrusion. Materials Science Forum, 2005,(475-479):2835-2840
    [138]曹乃光.金属塑性加工原理.北京:冶金工业出版社,1983
    [139]谢建新,刘静安编著.金属挤压理论与技术.冶金工业出版社,2001,23
    [140]曹利.碳化硅晶须增强铝复合材料的微观结构基断裂规律.哈尔滨工业大学博士学位论文1989,5-10
    [141]张文龙.SiC/Al复合材料大应变变形和再结晶.哈尔滨工业大学博士论文.1999
    [142]雷敏,张辉,李落星.喷射沉积7075/SiCp铝基复合材料挤压变形的数值模拟.中国有色金属学报,2007,17(12):2054-2058
    [143] V. Redmilovic, G. Thamas. Microstructure ofα-Al base matrix and SiC Particulate composite.Materials Science and Engineering.1991,A32(8):171-179
    [144]郭宏,李义春,石力开等.粉末冶金SiCp/7075Al复合材料的断裂特性.粉末冶金技术,1997,15(1):9-13
    [145] R. H. Jones, C. A. Lavender, M. T. Smith. Yield strength-fracture toughness relations in metal matrix composites,Scrpta Metallurgica.,1987,21(11): 1565-1570
    [146]张鸿庆,王永兰.金属学与热处理.机械工业出版社,1989,32-33
    [147]陈尚平,权高峰,宋余九等:非连续增强铝合金基复合材料的力学性能,材料科学与工程,Vol.15, No.4, 72-75, 1997
    [148] G. Zaklina, B. Dusan, M. Mirjana. The influence of SiC particles on the compressive properties of metal matrixcomposites.Mater.Characterization. 2001, 47: 129
    [149] E. Cerri, E. Evangelista, A. Forcellese, et al. Comparative hot workability of 7012 and 7075 Alloys after different pretreatments.Materials science and engineering A,1995,197(3): 181-198
    [150]何肇基.金属的力学性质.北京:冶金工业出版社,1982,195
    [151] G. Liu, G. J. Zhang, R. H. Wang, et al. Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminum alloys. Acta Materialia, 2007, 55(1): 273-284
    [152]刘志义,李云涛,刘廷斌等.Al-Cu-Mg-Ag合金析出相的研究进展.中国有色金属学报,2007,17(12):1905-1915
    [153] T.Gu??l ,M. Mehtap. The drilling of an Al/SiCp metal-matrix composites. Part I:microstructure.composites Science and Technology,2004,64:299-308
    [154]陆政,杨守杰,姜海峰等.一种新型超高强铝合金的均匀化工艺研究.航空材料学报,2001,21(2):14-17
    [155]杨守杰,谢优华,戴圣龙等.Zr对Al-Zn-Mg-Cu系超高强铝合金力学性能的影响.材料研究学报,2002,16(4):406-412
    [156] V. Redmilovic, G. Thamas. Microstructure ofα-Al base matrix and SiC particulate composite. Materials Science and Engineering A, 1991,32(8):171-179
    [157] R. Z. Valiev, T. G.. Langdon. Principles of equal-channel angular pressing as a processing tool for grain renement,Progress in Materials Science, 51(2006)881-981
    [158]赵新,高聿为,南云等.制备块体纳米/超细晶材料的大塑性变形技术.材料导报,2003,17(12)5-8
    [159] R. Z. Valiev, G. A. Islamgaliev, M. M. Myshlyaev, et al.Bulk nanostructured materials from severe plastic deformation. Progress of Materials Science, 2000,45(2):103-189
    [160]贾玉玺,赵振铎,赵国群等.挤压加工对SiCp/Al复合材料显微组织的影响.山东工业大学学报,1998, 28 (5): 431-435
    [161]程羽,郭成,贾王玺等.颗粒增强金属基复合材料挤压性能的研究.西安交通大学学报,1997, 31 (7):105-109
    [162]赵润娴,张建,毕大森.等通道转角挤压硅铝合金针状共晶硅损伤断裂实验.有色金属,2002, 54 (3):12-14
    [163] R. Z. Valiev, G. A. Islamgaliev, M. M. Myshlyaev, et al.Bulk nanostructured materials from severe plastic deformation. Progress of Materials Science, 2000,45 (2):103-189
    [164]康智涛.多层喷射共沉积制备SiC颗粒增强铝基复合材料的工艺、设备及过程原理研究:[中南大学博士学位论文].长沙:中南大学,2001,17-21
    [165]崔振山,任广升,徐秉业等.圆柱体内部空洞的热锻闭合条件.清华大学学报, 2003, 43(2):227-229
    [166]袁朝龙,钟约先,马庆贤.材料内部孔隙性缺陷自修复过程.塑性工程学报, 2002,9(2):12-16
    [167]袁武华.喷射沉积轻量化材料的研制—高性能7075/SiCp复合材料、8009合金板材的制备及应用研究:[湖南大学博士后研究工作报告].长沙:湖南大学,2005,53-56
    [168] Y. H. Frank, Y. C. Chen, C. Y. A. Tsao. Workability of spray-formed 7075 Al alloy reinforced with SiCp at elevated temperatures. Materials Science andEngineering. 2004,A364:296-304
    [169] H. Xu, E. J. Palmiere. Particulate refinement and redistribution during the axisymmetric compression of an Al/SiCp metal matrix composite. Composites Part A. 1999,30A:203-211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700