喷射沉积5A06铝合金楔压变形的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷射沉积坯通常含有一定量的孔隙,作为结构件直接使用时性能比较差,其最终能否得到成功的应用,取决于制坯后的致密化加工过程中所获得的性能。因此,为了获得所要求力学性能,必须对喷射沉积坯进行后续塑性加工使其致密化。但采用挤压、旋压、锻造、轧制等技术,由于受加工方式及压力设备等的限制通常难以实现大型坯件的致密化加工。而采用楔形压制装置,可在小吨位压力机上通过局部变形、多道次小变形累积实现大变形,大大降低了喷射沉积材料后续致密化加工成本,解决了制备大件的难题。本文主要研究内容有:
     1.对喷射沉积5A06铝合金多孔材料高温压缩变形行为及显微组织演变进行了研究。建立了喷射沉积5A06铝合金热压缩变形流变应力的本构方程,将流变应力模型计算值与实测值进行比较,结果较为精确,为有限元数值模拟分析提供了数学模型。
     2.对热压缩后显微组织进行了金相分析和硬度测试,初步探明了孔洞及材料硬度同温度和应变速率的关系。
     3.本文还建立了单轴压缩时相对密度与高向变形量之间的理论关系,并用有限元模拟了单轴热压缩过程,结果显示理论公式与模拟结果和实验结果三者吻合较好,互相佐证。
     4.借助于有限元软件,文中针对大尺寸喷射沉积坯料研究了楔形压制实验中不同的压制温度和压制速度以及压制方式等相关工艺参数对变形与致密化的影响,结果表明:双面楔压可有效提高致密化效果,合理的楔压温度是450℃~500℃,合理的楔压速度是0.5~1.0mm/s。
The spray deposited performs usually contain a certain quantity of porosity, thus have the poor property when using directly. Whether this material would be using well or not lies on the property after the densification. Therefore to get a required mechanical characteristics, the porous performs must be further dandified and deformed plastically. The traditional technology such as extrusion, screw pressing, forging, rolling can not get full dense material, however new technology named cyclic pressing was used to density the spray deposited 5A06 aluminum alloy, in which the large deformation can be obtained through the sum-up of local deformation. This method can also solve the problems in traditional process and greatly reduce the producing cost of the post-densification. The main researches in this study are as follows:
     1. A study on the behavior of hot compression of spray-deposited 5A06 aluminum alloy were performed. A constitutive equation was established by analyzing the relationships of the flow stress and the strain and the deformation temperatures and strain rates。The flow stress during hot compression can be described by the hyperbolic sine relation of Zener-Hollomon parameter Z. The proposed equation gives a good agreement with the measured values, which consequently can be as the numeric-simulated flow stress model of spray-deposited 5A06 aluminum alloy during hot deformation。
     2. In this study, the changes of the microstructure and the hardness have revealed the relationships of temperatures and the strain rates.
     3. A theoretic relationship to relative density and high reduction was established in the single axial compress, the results of FEM show that the theory values and the FEM results give a good agreement with the measured values.
     4. By the finite element software, the effects of the different process parameters on the deformation and densification in the cyclic pressing were researched. The results show that the two face cyclic pressing is needed and the reasonable temperature is 450℃~500℃, the reasonable velocity is0.5~ 1.0mm/s.
引文
[1] 王建强.喷射成形技术的研究发展及展望.世界科技研究与发展,2000,22(1): 62-65
    [2] 陈振华著.多层喷射沉积技术及应用.第 1 版.长沙:湖南大学出版社,2003:1-9;263
    [3] Xu Q, Hayes R W, Hunt W H, et al. Mechanical Properties and Fracture Behavior of Layered 6061/SiCp Composites Produced by Spray Atomization and Co-deposition. Acta Mater, 1999, 47(1): 43-53
    [4] Leatham A G, Brooks R G, Goombs J S, et al. The past, present and fu-ture developments of the osprey perform process. 1st Inter Conf on Spray Forming (ICSF). Wales, UK: Held by Osprey Metals Ltd, 1990
    [5] Leatham A G, Brooks R G. The osprey process for the production of spray deposition disc billet and perform. Moderm Development in power Metallurgy, 1984(5): 157
    [6] Lzvernia E J, Grant J N. Spray deposition of metals: Review. Mater. Sci. Eng, 1988, 98: 381
    [7] Grant P S, Cantor B, Katgerman L, et al. Acta Metall Mater, 1993, 41(11): 3097
    [8] 田世藩.国外快速凝固喷射成形技术.航空科学技术,1996,1:28-31
    [9] 袁武华.喷射沉积轻量化材料的研制-高性能 7075/SiCp 复合材料、8009 合金板材的制备及应用研究:[湖南大学博士后研究工作报告].长沙:湖南大学,2005,1
    [10] 傅定发,陈振华.多层喷射沉积工艺的研究现状.材料开发与应用,2001,16 (2):26-29
    [11] Lavernia E J, Grant N J. Spray Deposition of Metals.Mater. Sci. Eng.,1988, 98: 381
    [12] Lavernia E J, Mckewan G W, Grant N J. Structure and Properties of Rapidly Solidified Aluminum Alloys 2024 and 2024 plus 1% Lithium Using Liquid Dynamic Compaction. Prog. Powder Metall,1986, 42: 457
    [13] 王锋,杨斌,崔华等.喷射沉积 Al-20Si-5Fe-3Cu-1Mg 合金的微观组织与力学性能.北京科技大学学报,2000,22(4):324
    [14] 袁晓光,徐达鸣,李庆春.喷射沉积 Al-Si-Fe-Cu-Mg 合金的微观组织与力学行为.金属学报,1997,33(3):248
    [15] Mori K, Osakada K. Analysis of the forming process of sintered powder metals by a rigid-plastic finite-element method. International Journal of Mechanical Sciences, 1987, 29(4): 229-238
    [16] Kim H S, Won C W, Chun B S. Plastic deformation of porous metal with an initial in hornogenerous density distribution. Journal of Materials Processing Technology, 1998, 74(1-3): 213-217
    [17] 任学平,康永林.粉末塑性加工原理及其应用.北京:冶金工业出版社,1998:48,56-60
    [18] Kuhn H A, Downey C L. Deformation characteristic and plasticity theory of sintered powder materials. Int. J. Powder Metall, 1971, 7: 15-25
    [19] Green R J. A plasticity theory for porous solids. Int. J. Mech. Sci., 1972, 14: 215- 224
    [20] Shima S, Oyane M. Plasticity theory for porous metallurgy. Int. J. Mech. Sci., 1976, 18(6): 285-291
    [21] 大矢根,高进,鸿野雄.粉末烧结体の塑性基础式日本机械学会论文集,39 (1973):317,86
    [22] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: part I-yield criterion and flow rules for porous ductile media. Transactions of the ASME, 1977, 99: 2 - 15
    [23] 大矢根,田端.多孔材料の变形におけるベり线场法と上界法.塑性と加工, 15(1974):156,43
    [24] Doraivelu S M, Gegel H L, Gunasekera J S, et al. A new yield function for compressible P/M materials. Int. J. Mech. Sci., 1984, 26: 527-535
    [25] Gibson L J, Ashby M F, Schajer G S, et al. The mechanics of two dimensional cellular materials. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1982, 382(1782): 25-42
    [26] Lee D N, Kim H S. Plastic yield behavior of porous metals. Powder Metall., 1992, 35(4): 275-279
    [27] Kim K T. Elastic-plastic response of porous metals under triaxial loading. Int. J. Soilds struct., 1988, 24: 937-945
    [28] Zhadanouich G M. Theory of Compacting of Metal Powders, Tronslated from Teorizc Pressovaniya Metzllichskikli Poroshkov, 1969, by the Foreign Technology Division, Wright-Patterson Air Force Base, Ohio, U.S.A
    [29] Tewari H N, Sharan R.铁粉预制坯锻造的研究. 1986 年国际粉末冶金会议论文选(中译本).北京:北京粉末冶金研究所,1987:117
    [30] 高桥,大近.塑性と加工,21(1980):189,967
    [31] Duszczyk J. J. Master shaping Technol., 1991,9 (2): 103-115
    [32] 王尔德,张连洪,霍文灿.粉末多孔体的塑性泊松比与致密化方程.粉末冶金技术,1987,5(1):1-5
    [33] 张连洪,王祖堂.粉末冶金多孔可压缩材料塑性理论研究的进展.金属成形工艺,1989,4:55-60
    [34] 华林,赵仲治.烧结材料塑性变形与致密.中国有色金属学报,1992,2(3):81- 84
    [35] 任学平,王尔德,霍文灿.粉末体的屈服准则.粉末冶金技术,1992,10(1):8-12
    [36] 郑茂盛,金志浩.粉末冶金材料的变形特征.稀有金属材料与工程,1994, 23(6):28-29
    [37] 卫平原,阮雪榆.粉末烧结材料塑性变形过程中的有限元分析.中国有色金属学报,1994,4(4):56-61
    [38] 张兴全,彭颖红,阮雪榆等.多孔体材料在镦粗变形过程中表面裂纹的有限元预测.上海交通大学学报,1998,32(5):14-17
    [39] 华林,赵仲治.粉末烧结材料屈服条件.武汉汽车工业大学学报,1999,21(2):26-30
    [40] 华林,秦训鹏,毛华杰等.可压缩粉末烧结材料塑性变形与屈服条件.塑性工程学报,2003,10(6):62-62
    [41] 侯红亮,焦满囤,米新兰.多孔材料挤压过程数值模拟.华北航天工业学院学报,2000,10(2):5-8
    [42] 侯红亮,任学平.可压缩材料挤压过程的有限元模拟.金属成形工艺,2001,19(3):4-8
    [43] 屠挺生,林大为.金属粉末烧结材料泊松比模型的探讨.金属成形工艺,2001,19(2):4-7
    [44] 詹美燕,陈振华.喷射沉积多孔材料的轧制变形理论.材料研究学报,2004,18(6):662
    [45] 黄培云.粉末冶金原理.第 2 版.北京:冶金工业出版社,2000,339-358
    [46] Ferguson B L. Emerging alternatives to hot isostatic pressing. Int. J. Powder. Metallurgy & Powder Technology, 1985, 21(3): 201-218
    [47] Bhargava S, Dube R K. Changes in the longitudinal flow and apparent plastic Possion’s ratio of a porous metal strip during hot densification rolling. Metallurgical Transactions A, 1988, 19 A : 1205-1211
    [48] Deshmukh A R, Sundararajan T, Dube R K, et al. Analysis of cold densificationrolling of a sintered porous metal strip. Journal of Materials Processing Technology, 1998, 84: 56-72
    [49] 詹美燕.喷射沉积材料压缩和轧制变形规律研究:[湖南大学博士学位论文].长沙:湖南大学博士学位论文,2005.6
    [50] Shima S, Yamada M. Compaction of metal powder by rolling. Powder. Metall., 1984(27): 39-44
    [51] 肖于德,黎文献,谭敦强等.挤压工艺参数对喷射沉积 AlFeVSi 合金棒材组织性能的影响.粉末冶金技术,2004,22(5):270-274
    [52] 张深根,姚德超,杨屹等.快速凝固 Al-11.5Fe-3.8V-2.3Si-Re 耐热铝合金的挤压过程.中南工业大学学报,1996,27(1):61-64
    [53] German R M. Sintering Theory and Practice.John Wiley&Sons, New York, Inc.,1996
    [54] 林哲民,陈永喆.4×××系铝合金的锻造性能.中国有色金属学报,2002,12(2):265-267
    [55] 周建,张廷杰,张小明等.锻造方式对 7075 铝合金锻件动态再结晶的影响.稀有金属材料与工程,2004,33(8):827-830
    [56] 牟春,潘威.7075 模锻件心部裂纹原因分析.铝加工,2001,24:13-15
    [57] 黎文献,周涛,肖于德等.锻造对 AlFeVSi 合金组织和性能的影响.中南工业大学学报(自然科学版),1998,29(1):51-54
    [58] 陈文哲,钱匡武,顾海澄.热等静压对喷射成形 TiAl 基合金孔隙率的影响.理化检验-物理分册,1997,33(4):18-20
    [59] Deibel C, Thornburg D R, Emley F. Continuous compaction by cyclic pressing. Powder Metallurgy, 1960, 5: 32-44
    [60] 陈刚,刘鹏飞,范才河等.大型喷射沉积环件的楔压致密化加工. 矿冶工程,2006,26(2):100-102
    [61] 张兴全,彭颖红,阮雪榆等.多孔体材料在镦粗变形过程中表面裂纹的有限元预测.上海交通大学学报,1998,32(5):14-17
    [62] Mori K, Osakada K. Analysis of the Forming Process of Sintered Powder Metals by a Rigid-plastic Finite-element Method. International Journal of Mechanical Sciences, 1987, 29(4): 229-238
    [63] Oh S I, Gegel H, et al. ALPIDP-MODELING of P/M forming by the finite element method. Proceedings of 14th NAMRC Conference, Minneapolis, Minnesota , 1986, 294-302
    [64] 卫原平,阮雪榆.粉末烧结体材料塑性变形过程的有限元分析.中国有色金属学报,1992,4(4)
    [65] Shok A, Jinka G K et al.粉末冶金连杆的热锻:三维计算机模型.颜炼.武钢技术,1998,36(6):57-59
    [66] 卢志文.AZ31B 镁合金板材的冲压性能及工艺技术研究:[重庆大学博士学位论文].重庆:重庆大学博士学位论文 2005.10,20-22
    [67] 徐友荣,王德英等.热变形物理与微合金冶金模型研究.Proc.Of Sino-American and 2nd International Conference of China on Physical Simulation of Materials,哈尔滨,1996
    [68] 牛济泰.材料和热加工领域的物理模拟技术.北京:国防工业出版社,1999
    [69] Kim H Y, Hong S H. High Temperature Deformation Behavior and Microstructural Evolution of Ti-47Al-2Cr-4Nb Intermetallic Alloys. Scripta Materialia, 1998, 38(10): 1517-1523
    [70] 陈振华.多层喷射沉积的装置和原理.湖南大学学报,2001,28 (5):20-25
    [71] 刘建涛,陈焕铭,胡本芙等.某新型粉末高温合金的高温变形与动态再结晶.兵器材料科学与工程.2004,27(4):10-13
    [72] 周朝辉,曹海桥,吉卫等.DEFORM 有限元分析系统软件及其应用.热加工工艺.2003,04:51-52
    [73] Scientific Forming Technologies Corporation. Overview of DEFORM. DEFORM-3D Manual
    [74] 林新波.DEFORM-2D 和 DEFORM-3D CAE 软件在模拟金属塑性变形过程中的应用.模具技术,2000,3:75-80
    [75] Wang P T. Thermo mechanical deformation of powder-based porous aluminum Part Ⅱ.Constitutive model including densification hardening. Powder technology, 1991, 66(1):21-32
    [76] McQueen H J, Celliers O C. Application of hot workability studies to extrusion processing. Part Ⅲ : Physical and mechanical metallurgy of Al-Mg-Si and Al-Zn-Mg alloys. Canadian Metallurgical, Quarterly, 1997, 36 (2):73-86
    [77] McQueen H J, Ryan N D. Constitutive analysis in hot working.Materials Science and Engineering A, 2002, 322(1-2):43-63
    [78] Zhang Hui, Yang Libin, Peng Dashu, et al. Flow stress equation for multipass hot-rolling of aluminum alloys, Journal of Central South University of Technology, 2001, 8(1):13-17
    [79] 詹美燕,夏伟军,张辉等.喷射沉积-挤压 FV0812 耐热铝合金的热压缩变形流变行为研究.湖南科技大学学报(自然科学版),2004,19(2):37-41
    [80] Takuda H, Fujimoto H, Hatta N. Modeling on flow stress of Mg-Al-Zn alloys at elevated temperatures.Journal of Materials Processing Technology, 1998,80-81(8):513-516
    [81] Jonas J J, Sellars C M, Mc W J. Strength and structure under hot working conditions.Tegart. Int.Metall. Reviews, 1969, 14(130): 1-24
    [82] Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel. J. Appl. Phys, 1944, 15(1): 22
    [83] Gronostajski Z. The constitutive equations for FEM analysis.Journal of Materials Processing Technology, 2000, 106(1-3): 40-44
    [84] Zener C, Hollomon J H. Problems in non-elastic deformation of metals.J. Appl. Phys, 1946, 17(2): 69-82
    [85] Zhan Mei-yan, Chen Zhen-hua, Zhang Hui, et al. Flow stress behavior of porous FVS0812 Aluminum Alloy during hot-compression. Mechanics Research Communications, 2006, 33(4): 508–514
    [86] Liu Wen-chang,Zheng Yang-zeng,Wang Ming-zhi, et al. Hot deformation behavior of 18Mn-18Cr-0.5N austenite steel.Iron and Steel, 1994, 29(7): 55-57.
    [87] Zhang B, Zhang H B, Ruan X Y, et al. The hot deformation behavior and dynamic recrystalization model of 35CrMo steel. Acta Metallurgical Sinica, 2003, 16(3): 183-191
    [88] 刘助柏,王连东,刘国辉等.大型锻件铸造工艺理论与技术的进展.大型铸锻件,1988,2:8-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700