悬挂链移动曝气工作机理与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬挂链移动曝气技术是近年来开发的一种新型曝气技术,因其具有效率高、投资少、可维护性强等优点,而迅速被世界各国众多污水处理厂所采用。目前,纵观国内外研究现状,对悬挂链摆动机理和摆动曝气后水力条件对传氧影响的研究仍然较少,深入研究悬挂链摆动机理、曝气流体力学行为,可以为优化曝气操作、设计高效曝气器结构以及拓展悬挂链曝气的应用范围提供依据。
     曝气的作用即是产生气泡,维持一定气液接触面积。气泡形成是复杂曝气过程中决定曝气效率的一个重要阶段。因此,本论文通过研究悬挂链柔性孔气泡生成特点和所建立的柔性孔气泡体积预测模型,对悬挂链气泡生成体积进行了分析,得出悬挂链采用柔性孔口与气泡尺寸、效率之间的关系。结果表明:柔性孔能产生更小气泡;增加曝气器开孔数将减小小孔流速,减小气泡尺寸。
     移动曝气是悬挂链区别于其他曝气形式的最大特点,对悬挂链摆动性质的理论分析有利于全面掌握悬挂链工作机理。本论文建立了悬挂链二维动力学模型。模型把悬挂链系统非线性性质与随机摆动建立起联系,分析出悬挂链随机摆动主要能量集中于低频区的特点。悬挂链的随机摆动有利于氧传质进行,使曝气效率提高。
     在曝气效率影响因素中,水力条件是影响氧传质进行和溶解氧扩散的重要因素。但是曝气流场状态复杂,气液两相间作用强烈,加之大量气泡的存在使得通过实验直接观察流场状态非常困难。近年来,随着计算流体力学、计算传质学的发展,数值模拟已逐渐成为流场研究的重要手段。本论文根据欧拉两相流方程与氧传质方程编制出OpenFOAM计算程序,对悬挂链曝气流场进行了计算流体力学模拟,移动曝气模拟揭示了悬挂链传氧效率高的原因。移动曝气气泡上升速度慢、液流均匀,涡漩流动易于出现在曝气池下部,增加水体总气含率的保有量,加快了溶解氧扩散,提高了氧总转移系数和充氧速度。所得结论为悬挂链改进设计提供了方向,即悬挂链曝气技术优化工作应从如何增加流场流动均匀性和如何增加曝气池中下部涡漩流动入手。
Suspended chain moving aeration, as a new aeration technology both at home and abroad in the field of wastewater treatment, has lots of practical applications duo to its high efficiency, less investment, and flexible maintainability. However, the current domestic and international researches study little on suspended chain oscillation mechanism and effect of hydraulic condition on oxygen transfer. A fundamental investigation on oscillation mechanism and fluid dynamics of suspension chain moving aeration would be very beneficial to the optimization of aeration operation and to the design of high efficiency aerator structure and extension of their applications.
     The purpose of aeration is to maintain a certain gas‐liquid contact area by producing a large amount of bubbles. In the complex aeration process, bubble formation is one of the important stages in determining aeration efficiency. So the objective of the paper is to study the bubble formation generated from a flexible orifice and establish a flexible orifice bubble size prediction model. In this way, the size of the bubble generated from suspended chain aerator can be predicted and it can conclude how the orifice parameters, bubble size, and aeration efficiency are related to each other. The results show that flexible orifice can make smaller bubbles, and increasing the number of orifices will reduce gas velocity and bubble size.
     Moving aeration is the most distinguished characteristic that differentiates suspended chain aeration from others. Analysis of its movement is beneficial to grasping the working mechanism of suspended chain. A two‐dimension dynamic model of suspended chain has been established. With this model, the relationship between its nonlinear properties and random oscillation can be made and it can conclude that the energy in the oscillation mainly focuses on low frequency band. Moreover, the analysis suggests that the random oscillation is in favor of oxygen transfer and aeration efficiency improvement.
     As for the factors influencing aeration efficiency, hydraulic conditions, which influence the oxygen mass transfer and diffusion of dissolved oxygen, is one of the most important factors. But it is extremely difficult to experimentally study the details of flow patterns in aeration tank because there are the interaction and strong coupling between liquid and gas phases and the presence of a large amount of bubbles. In recent years, with the development of computational fluid dynamics and mass transfer, the numerical simulation has gradually become an important means for studying the flow field. Based on Eulerian‐Eulerian two fluid models and oxygen mass transfer model, numerical simulation of moving aeration flow field has been conducted through a compiled OpenFOAM program. The simulation results reveal the reasons for the higher oxygen transfer efficiency of suspended chain aeration. The results also show that moving aeration causes the slower rising bubbles, the more uniform flow, and the earlier and more frequent vortex flow in the lower part of aeration tank, which are the reasons for the increase in the total gas holdup, acceleration of diffusion of dissolve oxygen and improvement of volumetric oxygen transfer coefficient and oxygen transfer rate. In the future, it is a possible direction that suspended chain aerator design starts from optimizing uniform liquid flow and increasing vortex flow in the lower part of aeration tank.
引文
[1]张自杰.环境工程手册(水污染防治卷).北京:高等教育出版社,1996:544~573.
    [2]高廷耀,顾国维.水污染控制工程(下册).北京:高等教育出版社,2004
    [3]严煦世.水和废水技术研究.北京:中国建筑工业出版社,1992
    [4] William Wesley Eckenfelder, L.Musterman, John,Musterman,Jack.Activated Sludge Treatment of Industrial Wastewater.Boca Raton:CRCPress,1995
    [5]杨云龙,闫鸿远. A2/O脱氮除磷工艺.山西建筑,2004,30(022):85~86.
    [6]蒋辉.环境工程技术.北京:化学工业出版社,2003
    [7]王涛,楼上游,李希文.悬挂链脉动波式曝气系统及相关工艺的研究.环境工程,2002.12,20(6):22~24.
    [8]王涛,楼上游.悬挂链移动曝气技术的研究.工业水处理,2001,21(12):42~44.
    [9] S.A. Mahmoudian.Wastewater Management in Urban and Rural Areas:a Review of the Islamic Republic of Iran's Experiences.IHP.2006:75~91.
    [10]陈克玲,罗继武.白乐克工艺优化设计探讨.中国给水排水,2006,22(22):55~57
    [11]孔宇,沈巍.百乐克工艺在宝应县污水处理厂中的应用.中国给水排水,2009,25(20):44~46.
    [12]卢东昱,潘志平,张文,徐国勋.A2/O百乐克工艺的设计特点及实际运行效果.中国给水排水,2009,25(24):49~52.
    [13]王志勇,许振成,虢清伟,熊正为,张永亮,彭福全.HRT对悬挂链曝气式生物接触氧化工艺的影响.环境科学与技术,2009,32(5):52~56.
    [14]张晓杰,苏宏.强化百乐克污水处理工艺除磷的工程实践研究.环境工程,2010,28(5):51~53.
    [15]梁博宁,庞科旺,陈玉亮,王庆.百乐克污水处理工艺电气自动化系统改造.给水排水,2011,37(8):117~119.
    [16] S. Ramakrishnan, Kumar, R.,Kuloor, Nr.Studies in bubble formation‐‐Ibubble formation under constant flow conditions. chemical Engineeringscience,1969,24(4):731~747.
    [17]戴干策,陈敏恒.化工流体力学[M].北京:化工出版社,1990
    [18] R.P. Chhabra.Bubbles, drops, and particles in non‐Newtonianfluids.CRC press Boca Raton, FL,1993
    [19] Rt Baxter,Wraith, Ae.Transitions in the bubble formation mode of asubmerged porous disc[J].chemical Engineering science,1970,25(7):1244~1247.
    [20] Ae Wraith.Two stage bubble growth at a submerged plateorifice.chemical Engineering science,1971,26(10):1659~1671.
    [21]楼上游,李希文,王涛.节能移动曝气技术研究报告.1998,
    [22] F.M. Fowkes, Zisman, W.A., Colloid, American Chemical Society.Division Of,Chemistry, Surface.Contact Angle.American Chemical Society,1964
    [23] Rg Rice,Howell, Sw.Bubble Formation at a Puncture in a SubmergedRubber Membrane. Chem Eng Comm,1983,24215.
    [24] Rg Rice,Howell, Sw.Elastic and flow mechanics for membrane spargers.AIChE journal,1986,32(8):1377~1382.
    [25] P. Painmanakul, Loubiere, K., Hebrard, G.,Buffière, P.Study of differentmembrane spargers used in waste water treatment: characterisation andperformance.Chemical Engineering and Processing: ProcessIntensification,2004,43(11):1347~1359.
    [26] M. Bouaifi, Hebrard, G., Bastoul, D.,Roustan, M.A comparative studyof gas hold‐up, bubble size, interfacial area and mass transfer coefficients instirred gas–liquid reactors and bubble columns. Chemical Engineering andProcessing: Process Intensification,2001,40(2):97~111.
    [27] Sv Gnyloskurenko, Byakova, Av, Raychenko, Oi,Nakamura, T.Influenceof wetting conditions on bubble formation at orifice in an inviscid liquid.Transformation of bubble shape and size. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,218(1‐3):73~87.
    [28] K. Loubière, Hébrard, G.,Guiraud, P.Dynamics of bubble growth anddetachment from rigid and flexible orifices. The Canadian Journal of ChemicalEngineering,2003,81(3‐4):499~507.
    [29] Jr Grace, Wairegi, T.,Nguyen, Th.Shapes and velocities of single dropsand bubbles moving freely through immiscible liquids. Trans. Inst. Chem.Eng,1976,54(3):167~173.
    [30] D. Bhaga,Weber, Me.Bubbles in viscous liquids: shapes, wakes andvelocities. Journal of Fluid Mechanics,1981,105(1):61~85.
    [31] M. Van Sint Annaland, Deen, Ng,Kuipers, Jam.Numerical simulation ofgas bubbles behaviour using a three‐dimensional volume of fluid method.chemical Engineering science,2005,60(11):2999~3011.
    [32] M. Van Sint Annaland, Dijkhuizen, W., Deen, Ng,Kuipers,Jam.Numerical simulation of behavior of gas bubbles using a3‐D front‐tracking method. AIChE journal,2006,52(1):99~110.
    [33] X. Frank, Funfschilling, D., Midoux, N.,Li, H.Z.Bubbles in a viscousliquid: lattice Boltzmann simulation and experimental validation. Journal ofFluid Mechanics,2006,546(1):113~122.
    [34] D. Goldman,Popel, A.S.A computational study of the effect of capillarynetwork anastomoses and tortuosity on oxygen transport.Journal of theoreticalbiology,2000,206(2):181~194.
    [35]张淑君,吴锤结,王惠民.单个三维气泡运动的直接数值模拟.河海大学学报,2005,33(5):534~537.
    [36]王焕然,李彦鹏,杨栋.粘性液体中单个气泡上升的形状特性.工程热物理学报,2009,30(9):43~47.
    [37]何丹,李彦鹏,刘艳艳.初始形状对浮升气泡动力特性的影响.西安交通大学学报,2011,45(1):43~47.
    [38] A. S. Brignell.Mass transfer from a spherical cap bubble in laminarflow. chemical Engineering science,1974,29(1):135~147
    [39] J. H. C. Coppus,Rietema, K.Theoretical derivation of the mass transfercoefficient at the front of a spherical cap bubble. chemical Engineeringscience,1980,35(6):1497~1499
    [40] E. Loth.Quasi‐steady shape and drag of deformable bubbles and drops.International Journal of Multiphase Flow,2008,34(6):523~546.
    [41]许保玖.当代给水与废水处理原理.北京:高等教育出版社,1990
    [42]程文,李华.水中气泡上升速度的实验研究.西安理工大学学报,2000,16(1):57~60.
    [43] G.B. Wallis.One‐dimensional two‐phase flow, McGraw Hill.NewYork,1969,
    [44] A. Putnam.Integrable form of droplet drag coefficient. ARS J,1961,311467~1468.
    [45] F.M. White.Viscous fluid flow. McGraw‐Hill New York,1991
    [46] H. Brenner,Cox, Rg.The resistance to a particle of arbitrary shape intranslational motion at small Reynolds numbers. Journal of FluidMechanics,1963,17(04):561~595.
    [47] Dw Moore.The boundary layer on a spherical gas bubble. J. FluidMech,1963,16(pt2):161~176.
    [48] R. Mei, Klausner, J.F.,Lawrence, C.J.A note on the history force on aspherical bubble at finite Reynolds number. Physics of fluids,1994,6:418~420.
    [49] R. T. Lahey, Jr.The analysis of phase separation and phase distributionphenomena using two‐fluid models. Nuclear Engineering and Design,1990,122(1‐3):17~40
    [50] Pg Saffman.The lift on a sphere in slow shear flow. Journal of FluidMechanics,1965,22385~400.
    [51] J.B. Mclaughlin.Inertial migration of a small sphere in linear shearflows. J. Fluid Mech,1991,224261~274.
    [52] D. Legendre,Magnaudet, J.The lift force on a spherical bubble in aviscous linear shear flow. Journal of Fluid Mechanics,1998,36881~126.
    [53] Pd Minev, Lange, U.,Nandakumar, K.A comparative study oftwo‐phase flow models relevant to bubble column dynamics. Journal of FluidMechanics,1999,39473~96.
    [54] T.L. Cook,Harlow, F.H.Virtual mass in multiphase flow. InternationalJournal of Multiphase Flow,1984,10(6):691~696.
    [55] E. Delnoij, Kuipers, Jam,Van Swaaij, Wpm.A three‐dimensional CFDmodel for gas‐liquid bubble columns. chemical Engineering science,1999,54(13‐14):2217~2226.
    [56] M. Sommerfeld, Bourloutski, E.,Br der, D.Euler/Lagrange calculationsof bubbly flows with consideration of bubble coalescence. The Canadian Journalof Chemical Engineering,2003,81(3‐4):508~518.
    [57]于勇.FLUENT入门与进阶教程.北京:北京理工大学出版社,2008
    [58]温正,石良臣,任毅如.FLUENT流动计算应用教程.北京:清华大学出版社,2009
    [59] C.W. Hirt,Nichols, B.D.Volume of fluid (VOF) method for the dynamicsof free boundaries. Journal of computational physics,1981,39(1):201~225.
    [60] A. Tomiyama, Sou, A., Minagawa, H.,Sakaguchi, T.Numerical analysisof a single bubble by VOF method. JSME international journal. Ser. B, Fluids andthermal engineering,1993,36(1):51~56.
    [61] Wiki.http://openfoamwiki.net/BubbleFoam[J].2011
    [62] Be Launder,Spalding, Db.The numerical computation of turbulentflows.Computer methods in applied mechanics and engineering,1974,3(2):269~289.
    [63] B. E. Boumansour,Vasel, J. L.A new tracer gas method to measureoxygen transfer and enhancement factor on RBC.Water Research,1998,32(4):1049~1058
    [64] R.O. Mines,Sherrard, J.H.Biological enhancement of oxygen transfer inthe activated sludge process. Journal Water Pollution ControlFederation,1987,19~24.
    [65] O.E. Albertson,Digregorio, D.Biologically mediated inconsistencies inaeration equipment performance. Journal Water Pollution ControlFederation,1975,976~988.
    [66] A. Sundararajan,Ju, L.K.Biological oxygen transfer enhancement inwastewater treatment systems. Water environment research,1995,67(5):848~854.
    [67] E. Garcia Calvo.A fluid dynamic model for airlift loopreactors.chemical Engineering science,1989,44(2):321~323.
    [68] E. Garcia‐Calvo.Fluid dynamics of airlift reactors: Two‐phasefriction factors.AIChE journal,1992,38(10):1662~1666.
    [69] Y. Kawase, Halard, B.,Moo‐Young, M.Theoretical prediction ofvolumetric mass transfer coefficients in bubble columns for Newtonian andnon‐Newtonian fluids.chemical Engineering science,1987,42(7):1609~1617.
    [70] Y. Kawase, Umeno, S.,Kumagai, T.The prediction of gas hold‐up inbubble column reactors: Newtonian and non‐Newtonian fluids.The ChemicalEngineering Journal,1992,50(1):1~7.
    [71] A. Sánchez Mirón, Garcia Camacho, F., Contreras Gomez, A., Grima,E.M.,Chisti, Y.Bubble‐column and airlift photobioreactors for algalculture.AIChE journal,2000,46(9):1872~1887.
    [72] M. Tobajas, Garcia‐Calvo, E., Siegel, Mh,Apitz, Se.Hydrodynamics andmass transfer prediction in a three‐phase airlift reactor for marine sedimentbiotreatment.chemical Engineering science,1999,54(21):5347~5354.
    [73] F. Garcia‐Ochoa,Gomez, E.Theoretical prediction of gas–liquid masstransfer coefficient, specific area and hold‐up in sparged stirred tanks.chemicalEngineering science,2004,59(12):2489~2501.
    [74] F. Garcia‐Ochoa,Gomez, E.Prediction of gas‐liquid mass transfercoefficient in sparged stirred tank bioreactors.Biotechnology andBioengineering,2005,92(6):761~772.
    [75] Y. Kawase,Moo‐Young, M.Volumetric mass transfer coefficients inaerated stirred tank reactors with Newtonian and non‐Newtonianmedia.Chemical engineering research&design,1988,66(3):284~288.
    [76] W.G. Whitman.Preliminary experimental confirmation of the two‐filmtheory of gas absorption[J].chemical Engineering science,1923,29146~149.
    [77]贾绍义,柴诚敬.化工传质与分离过程.北京:化学工业出版社,2001
    [78] D. Mackay, Shiu, W.Y.,Sutherland, R.P.Determination of air‐waterHenry's law constants for hydrophobic pollutants.Environmental Science&Technology,1979,13(3):333~337.
    [79]汪治平.双叶轮液下自引气曝气机优化运行实验研究:[硕士学位论文].南京:江苏大学,2005
    [80] R. Higbie.The rate of absorption of a pure gas into still liquid duringshort periods of exposure.THE UNIVERSITY OF MICHIGAN,1935
    [81] Pv Danckwerts.Significance of liquid‐film coefficients in gasabsorption.Industrial&Engineering Chemistry,1951,43(6):1460~1467.
    [82] F. Garcia‐Ochoa,Gomez, E.Bioreactor scale‐up and oxygen transferrate in microbial processes: An overview.Biotechnology advances,2009,27(2):153~176.
    [83] J.C. Lamont,Scott, D.S.An eddy cell model of mass transfer into thesurface of a turbulent liquid.AIChE journal,1970,16513~519.
    [84] B.D. Prasher,Wills, G.B.Mass transfer in an agitated vessel.Industrial&Engineering Chemistry Process Design and Development,1973,12(3):351~354.
    [85] Y. Kawase,Moo‐Young, M.Mathematical Models for design ofbioreactors: applications of Kolmogoroff's theory of Isotropic Turbulence[J].TheChemical Engineering Journal,1990,43(B19‐41):
    [86] X.D. Chen.Lower bound estimates of the mass transfer coefficientfrom an evaporating liquid droplet—the effect of high interfacial vaporvelocity.Drying technology,2005,23(1‐2):59~69.
    [87] H. Ohashi, Sugawara, T.,Kikuchi, K.E.N.I.Mass transfer betweenparticles and liquid in solid‐liquid two‐phase upflow in the low‐velocity regionthrough vertical tubes.Journal of Chemical Engineering of Japan,1981,14(6):489~491.
    [88] M. Fukuma, Muroyama, K.,Yasunishi, A.Specific gas‐liquid interfacialarea and liquid‐phase mass transfer coefficient in a slurry bubblecolumn.Journal of Chemical Engineering of Japan,1987,20(3):321~324.
    [89] P.M. Wilkinson, Haringa, H.,Van Dierendonck, L.L.Mass transfer andbubble size in a bubble column under pressure.chemical Engineeringscience,1994,49(9):1417~1427.
    [90]张自杰.排水工程(下册).北京:中国建筑工业出版社,1996
    [91]徐少鲲.基于开源软件OpenFOAM的数值波浪水槽建立及应用:[硕士学位论文].天津:天津大学建筑工程学院,2008
    [92]陈小龙.工程计算开源软件OpenFOAM.高性能计算发展与应用,2008,23(2):66~69.
    [93]柴翔.基于OpenFOAM对两相流动的数值研究:[硕士学位论文].上海:上海交通大学机械与动力工程学院,2011
    [94] F. Open.The Open Source CFD Toolbox.User Guide, Version,2008,1(9):
    [95]王成恩.面向科学计算的网格划分与可视化技术.北京:科学出版社,2011
    [96] D.A.V. Marques, Torres, B.R., Porto, A.L.F., Pessoa‐Júnior, A.,Converti,A.Comparison of oxygen mass transfer coefficient in simple and extractivefermentation systems.Biochemical Engineering Journal,2009,47(1):122~126.
    [97]刘秉正,彭建华.非线性动力学.北京:高等教育出版社,2004
    [98]陆启韶.分岔与奇异性.上海:上海科技教育出版社,1995
    [99]张琪昌,王洪礼,竺致文.分岔与混沌理论及应用.天津:天津大学出版社,2005
    [100] T.J. Baker,Cavallo, P.A.Dynamic adaptation for deformingtetrahedral meshes. Norfolk:1999,19~29.
    [101] J.T. Batina.Unsteady Euler airfoil solutions using unstructureddynamic meshes[J].AIAA journal,1990,28(8):1381~1388.
    [102]郭正,刘君,瞿章华.非结构动网格在三维可动边界问题中的应用[J].力学学报,2003,35(2):140~146.
    [103] H. Jasak,Tukovic, Z.Automatic mesh motion for the unstructuredfinite volume method[J].Transactions of FAMENA,2006,30(2):1~20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700