矿山塌陷区房屋抗采动理论及加固技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国主要能源之一。我国大小煤田遍布各地,煤田上方分布有许多城镇、工厂企业、还有星罗棋布的自然村庄。随着国民经济的发展,煤炭需求量急剧增加,煤炭开采量也随之加大,煤炭的开采范围越来越广,造成大量的建筑物和构筑物处于矿山塌陷区之上,伴随着各矿区的地面建筑和公共设施的扩大,造成各矿区的地面建筑物及构筑物下压煤量不断增加。据有关资料报道,国有煤矿“三下”(建筑物下、水体下、铁路下)压煤总量约为137.9亿吨,其中建筑物下压煤高达87.6亿吨(占63.5%左右),而建筑物的压煤中有60%属于村庄下压煤,大约影响到60万户居民的安居乐业问题。
     如何设计出结构更加合理的抗采动建筑物(构筑物),如何对既有建筑物(构筑物)进行检测、评估并采取有效的加固,是建筑物下采煤及其地面建筑物保护至今没有彻底解决的理论问题及技术问题之一。对此,本论文主要作了以下几方面的工作:
     1.分析了矿山开采对建筑物(构筑物)的影响,研究了矿山塌陷区地表变形规律,和建筑物(构筑物)及其基础变形与对应地表变形的关系:
     2.进行了相似材料模拟试验研究。用相似材料模拟覆岩,研究地下开采引起的覆岩地表移动和变形规律;
     3.综合应用建筑结构力学、矿山开采沉陷学、土力学、材料力学等相关知识,研究了矿山塌陷区上部结构-地基-基础共同作用问题,建立了矿山塌陷区上部结构-地基-基础共同作用力学模型。应用该模型研究分析了采动过程中基础和上部结构变形、内力及地基反力等变化规律及主要因素的影响规律;
     4.研究了受采动(地表不均匀的下沉和水平移动产生的地表变形)影响的条形基础建筑物基础的附加作用力,提出了计算附加作用力的基本假定。分析了建筑物受采动影响的程度和使用的安全性,研究了矿山塌陷区已有建筑物的保护以及矿山塌陷区新建条形基础建筑物的设计方法;
     5.针对矿山塌陷区的条形基础建筑物(构筑物),本文提出了“可移动及升降点式基础房屋抗采动设计理论”,包括设计思想的提出、附加作用力公式的推导与建立,建筑材料的优选及构造措施,并确定了可移动及升降点式基础的参数。该理论的实施改善了传统的“条形基础抗采动房屋”的结构受力性能,使得建筑物(构筑物)能更有效的吸收和抵抗地表移动和变形。
     6.在矿山塌陷区既有工程结构加固方面,提出了“概念加固思想”,并阐述了其基本概念及内涵,提出了工程结构概念加固的基本原则及思路,提出了对既有结构基于概念的评估,结合工程实例进行了应用研究。
As all well known, the coal is one of the main energy sources. There are a lot of coal-mines all around of our country. Above these coal-mines, there are a lot of towns、factories and many kinds of natural villages. With the development of our economic, more and more coal is needed and mined. As a result, many constructions are on the mining cave-in areas. It is reported that the amount of coal under constructions、water and railways is about 13.79 billion tons. Out of these coal, the quantity of coal under constructions is about 8.76 billion tons(about 63.5 percent). It infects the living conditions of 600 thousands people.How to design resisting mining constructions that is reasonable in structure,and how to detect、estimate and strengthening existed constructions effectively,is a theoretical and technical problem that is not solved in construction protect in mining cave-in areas,up to now.Therefore, the following research works have been done:1. The influence of mining to the construction and the deformations of the surface of the mining cave-in area, as well as the deformations of the buildings and its foundations are analyzed.2. Many similitude materials simulating overburden layer and movement of overburden layer causing by underground mining are studied.3. With the theories of structural mechanic, mining settlement, soil mechanic and material mechanic, the common action between superstructure soil and foundation above mining cave-in area are studied and the mechanic model of this common action are made up. Using this model, the movement rule of foundation, internal force, subgrade reaction are studied.4. The additional acting force of building infected by mining has been studied and the assumption of the calculation to this force has been put forward. Also, the protecting methods to the building and the design methods to the building using the deformation stripe bases have been studied.5. The design theory to the buildings using "moving and rise-fall point foundation" in sink mining areas has been put forward, including design concepts, establishment of the formula for additional function、choice of constructional material, as well as the parameters to the moving and rise-fall point foundation. Through above works, the performances and load capacity of the structures have been improved.
     6. The theory of "conception strengthening" for the existing structures in the mining cave-in area、basical principle、structural strengthening procedures as well as evaluation methods to structures has been put forward.The research results have been used in an actual example.
引文
[1] 周国铨、崔继宪,建筑物下采煤,北京:煤炭工业出版社,1983;
    [2] 煤炭科学研究院北京开采所,煤矿地表移动与覆岩破坏规律及应用,煤炭工业出版社,1981;
    [3] 师凯、连达军,“三下”采煤经济评价中几个问题的研究,《矿山测量》,2002年12月04期:49-51;
    [4] 李玉民、康永华,我国水体下综放开采技术的应用及展望,《煤炭科学技术》2003年12月第31卷第12期:1-4;
    [5] 陆爱民、王本敏,淮北张庄煤矿采煤塌陷区综合治理模式分析,《矿山测量》,2004年6月02期:60-62:
    [6] 王金庄,开采沉陷若干理论与技术问题研究,《矿山测量》,2003年9月03期:1-5;
    [7] 张春会、于广明、杨伦等,地下开采引起地表沉陷的电算化研究,《辽宁工程技术大学学报》,2003年12月第22卷第6期;
    [8] 唐又驰、曹再学、朱建军,有限元法在开采沉陷中的应用,《辽宁工程技术大学学报》,2003年4月第22卷第2期:196-198;
    [9] 潞安矿务局,中国矿业大学.厚煤层全高开采方法基础研究报告[R].国家自然科学基金重点项目,1999
    [10] 王金庄,袁礼明.厚煤层分层条带开采的地表移动规律[[J].中国矿业大学学报,1992(2).
    [11] 方新秋,村庄下压煤条带开采的离散元模拟,《矿山测量》,2003年12月04期:56-58;
    [12] 杨海新,建筑物下条带开采技术与应用研究,《矿山测量》,2003年12月04期:52-55;
    [13] 李金栓,徐乃忠,我国村庄下采煤技术途径,《中国煤炭》,1998,26(6):9~11;
    [14] 张玉卓,徐乃忠,地表沉陷控制新技术,徐州:中国矿业大学出版社,1998:
    [15] 王向伦、李浩荡、韩桂武,放顶煤开采工艺的三维相似模拟,《采煤技术》,2004年6月第4卷第2期:7-9;
    [16] 周英、顾明、李化敏、南华,综放顶煤变形破碎特征研究,《矿山压力与顶板管理》,2004年第1期:48-50;
    [17] 国家煤炭工业局制定,建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程,北京:煤炭工业出版社,2000;
    [18] 煤炭科学研究总院唐山分院,《(资江煤矿)新建抗变形建筑群下多煤层多工作面的开采研究总结》,1987.9:
    [19] 煤炭科学研究院唐山分院,《澄合矿务局董家河煤矿黄土地区抗变形农村住宅下采煤实验研究报告》,1988.9:
    [20] 钱鸣高等.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995,14(2)97106.
    [21] 何满潮.开采沉降工程岩体本构关系研究[[J].工程地质学报,1997(5).
    [22] 杨伦.矿山开采沉陷对环境损害比地震严重.科技导报,2001,9:53-55.
    [23] 崔希民,缪协兴.浅议矿山开采沉陷学研究内容之延拓.矿山压力与顶板管理,2000,(4)80-85.
    [24] 中华人民共和国国家计划委员会交通能源司.97白皮书《中国能源》[M].北京:中国物价出版社.
    [25] 中国矿业大学、煤炭科学研究总院北京开采所,《采动区民房受力理论分析和结构措施优化设计与实验》,峰峰矿区抗采动实验房技术研究报告,1991.11;
    [26] 煤炭科学研究院唐山分院、平顶山矿务局,《抗变形房屋村庄下采煤研究报告(“七五”国家科技攻关项目)》,1989.11;
    [27] 煤炭科学研究总院唐山分院等,《阳泉村庄下采煤实验(抗变形农村住宅)研究报告(内部资料)》,1986.9;
    [28] 煤炭科学研究总院北京开采所等,《邢台矿务局东庞矿农村抗变形结构试验房下采煤研究报告(内部资料)》,1987.10;
    [29] 中国矿业大学,《矿山砖混建筑物抗采动设计要点建议书及编制说明》,1990.8;
    [30] 煤炭科学研究总院北京开采所等,《(鹤壁矿务局)厚冲积层复杂地基条件村庄下多煤层开采实验研究报告(内部资料)》,1994.9;
    [31] 郭文兵、邓喀中、邹友峰,条带开采地表移动参数研究,《煤炭学报》,2005年4月第30卷第2期:182-186:
    [32] 钱鸣高、许家林、缪协兴,煤矿绿色开采技术,《中国矿业大学学报》,2003年第32卷第4期:343-348;
    [33] 焦传武、仲惟林等,条带法开采实施建筑物保护的实践与认识,北京,煤炭工业出版社,2002;
    [34] 郭文兵、邓喀中、邹友峰,我国条带开采的研究现状与主要问题,《煤炭科学技术》,2004年第32卷第8期:7-11;
    [35] Wu Lixin, Wang Jinzhuang, Zhao Xuesheng. Strata and surface control in strip-partial mining under buildings [J]. Journal of China University of Mining Technology, 1994, 4(2):74-85;
    [36] 郭爱国、张华兴,我国充填采矿现状及发展,《矿山测量》,2005年3月第1期:60-62:
    [37] 杨宝贵、崔希民、孙恒虎等,煤矿采空区胶结充填控制采动损害的可行性探讨,《煤矿开采》,2000(3):
    [38] [美]S.S.彭.煤矿地层控制,高博彦等译,北京:煤炭工业出版社,1994;
    [39] 钱鸣高、缪协兴、许家林、茅献彪著,岩层控制的关键层理论,徐州:中国矿业大学出版社,2003.6;
    [40] 刘坚,粉煤灰在矿山充填中的实验研究,《矿产保护与利用》,2003(5);
    [41] 戴天新,抗变形房屋在煤矿塌陷区的营造,《煤》2002年第4期;
    [42] 仲继寿、杨舜臣,矿区农房抗采动措施优化的实验研究,《煤炭学报》,1994年4月第19卷第2期;
    [43] 龚文惠、李斌、蒋国安,矿山地表框架结构建筑物的抗变形设计,《山东科技大学学报》,2000年12月第19卷第4期;
    [44] 乔志春、夏军武、郭广礼、杨舜臣,老采空区上方大型工业建筑抗变形措施研究,《中国矿业大学学报》,1999年11月第28卷第6期:
    [45] J. Li, N. Xu. Technical Ways of Mining Coal Under Villages in CHINA Xtn International Congress of the International Society for Mine Sur-veying 1997. 11 The Institution of Engineering and Mining Surveyors Australia (INC);
    [46] SYD S. PENG. SURFACE SUBSIDENCE ENGINEERING Published by Society for Mining, Metallurgy, and Exploration, Inc. Littleton, Colorado;
    [47] M. Karmis. Subsidence Prediction Techniques for Longwall and Room and Pillar Panels in APPALACHIA. Proceedings of Second International Conference on Stability in Underground Minng, Lexington, Kentucky, August 6~8,1984;
    [48] NCB, North East Leicesfershire Prospect. Mining Subsidence Report. Bestwood, Nottingham;
    [49] Rober L. Schmidt, George A. Sananick, Remote Mining Using Water for Ground support. In: Proceedings 5th conference on Ground Control in Mining. WVU: 1986.89-106
    [50] 邹友峰,条带开采地表沉陷预计方法——三维层状介质理论研究[博士学位论文],北京:中国矿业大学北京研究生部,1994;
    [51] 胡友健、戴华阳、邹友峰,焦西矿四—采区建筑物下条带开采,1999年全国矿山测量学术年会;
    [52] 徐乃忠、张玉卓,采动离层充填减沉理论与实践,煤炭工业出版社,2001;
    [53] Christopher Mark and Z. T. Bieniawski. Field Measurements of Chain pillar Reponse to Longwall Abutment Loads.In: Proc. 5th Conf. on Ground Control in Mining. Morgantown: 1986
    [54] Shosei Serata, Bruce H. Gardner and Krishnan Shrinivasan. Integrated Instrumentation Method of Stress State, Material Property and Deformation Measurement for Stress Control Method of Mining. In: Proc. 5th Conf. on Ground Control in Mining. MORGANTOWN: 1986.123~133;
    [55] Z. Agioutantis and M. Karmis. A Study of Roof Caving in the Eastern U. S. Conalfields. In: Mining. Morgantown: 1986
    [56] 李风明,从地表与建筑物变形关系谈抗变形结构的选择,《煤矿开采》,1995年第1期;
    [57] 袁迎曙、秦杰、杨舜臣,村镇砖混住宅抗采动变形的结构保护体系研究,《中国矿业大学学报》,1999年11月第28卷第6期:
    [58] 雷哲莹、罗承伟,地表变形引起建筑物附加力的计算及抗变形结构设计,《煤矿开采》,2000年第1期;
    [59] 高荣久,厚层黄土地区农村抗变形建筑地基及基础类型,《矿山测量》,1998年第2期;
    [60] 杨伦、于广明、王旭春,建筑物高度对抗采动能力影响,《矿山测量》,1994年第3期;
    [61] 蒙子武,建筑物下采矿的抗变形设计方法,《四川测绘》,2002年第25卷第1期:
    [62] 腾永海、黄乐亭,抗变形建筑物的采动变形特点,《东北煤炭技术》,1997年6月第3期;
    [63] 张俊英,抗变形结构构件作用分析,《矿山测量》,1996年第4期;
    [64] 张俊英、张青,抗变形结构受力体系的理论分析,《煤矿设计》1997年第8期;
    [65] 王东梅.基于地质观点的煤矿区采动损害预计系统[D],西安科技大学,2004.
    [66] 王东飞.综采放顶煤开采技术对土地塌陷的影响研究[D],中国农业大学,2004.
    [67] Szucs E. Similitude and Modelling. Amsterdam: Elsevier, 1980
    [68] 袁文忠,相似理论与静力学模型试验,西南交通大学出版社,1998:45~56
    [69] Isaacson E de St Q, Isaacson M de St Q. Dimensional Methods in Engineering and Physics. London: Edward Arnold Ltd, 1975
    [70] 谢多夫.,沈青译,力学中的相似方法与量纲理论,北京:科学出版社,1982
    [71] 徐挺,相似方法及其应用,机械工业出版社,1995
    [72] 宋或、段敬民,建筑结构试验与检测,人民交通出版社,2005
    [73] Yuan Wenzhong, zhang Zhen, Zhou Depei, Wu Xu, Study on Model Test for Diversion Tunnels of ER TAN Hydropower Station, Tunnel and Underground Works Today and Future. Beijing: In—temational Academic Publishers, 1990
    [74] 吴侃,开采沉陷预计一体化方法,中国矿业大学出版社,1998
    [75] 邹友峰、胡友健编著,采动损害与防护,中国矿业大学出版社,1996
    [76] 段敬民、钱永久、张方,复杂砌体结构设计中的若干问题研究,《建筑技术》(全国中文核心期刊),2005年11期
    [77] Syd S. Peng Edited. Proceedings of 2nd Workshop on Surface Subsi-dence due to Undergpound Mining。Morgantown: WV, june 9-11, 1986
    [78] 孙艳玲、苏仲杰.地表沉陷幅度与覆岩离层的关系确定,《辽宁工程技术大学学报》.2003年6月第22卷第3期:317-319
    [79] 朱百里、曹名葆、魏道垛,框架结构与地基基础共同作用的数值分析——线性与非线性地基.同济大学学报,1981(4):15-31
    [80] 董建国、赵锡宏,高层建筑地基基础:共同作用理论与实践.上海:同济大学出版社,1997.9
    [81] 宰金珉、宰金璋,高层建筑基础分析与设计:土与结构物共同作用的理论与应用,北京:中国建筑工业出版社,1993.2
    [82] 谭志祥,采动区建筑物地基、基础和结构协同作用理论与应用研究(博士论文),中国矿业大学,2004
    [83] 刘金辉,保护采动区现有建筑物的新技术研究,矿山测量,1999.11(4): 11~14
    [84] 乔志春,移动地表土对砌体结构基础作用的试验研究(学位论文),中国矿业大学,1997.5
    [85] 仲继寿,采动区砌体结构房屋变形控制设计理论研究(博士论文),中国矿业大学,1993
    [86] 仲继寿等,矿山采动区砖砌体房屋三维有限元模型的建立与分析,中国矿业大学学报,1993年第2期:40~45
    [87] 石晓波,采动区钢筋混凝土结构(框架与排架)抗变形的研究,中国矿业大学,1993.12.
    [88] 龚文惠,李斌,蒋国安,矿山地表框架结构建筑物的抗变形设计,山东科技大学学报(自然科学版),2000,12,Vol.19,No.4,94-96.
    [89] 龚文惠,李斌,采空区地表框架结构建筑物的附加内力分析,山东科技大学学报(自然科学版),2001,3,Vol.20,No.1,48-52.
    [90] Amir M Halabian, M. Hesham El Naggar, Effect of non-linear soil-structure interaction on seismic response of tall slender structures, Soil Dynamics and Earthquake Engineering 22 (2002) 639-658.
    [91] Suleyman Kocak, Yalcin Mengi, A simple soil-structure interaction model, Applied Mathematical Modelling 24 (2000) 607-635.
    [92] H. R. Yerli, S. Kacin, S. Kocak, A parallel finite-infinite element model for two-dimensional soil-structure interaction problems, Soil Dynarnies and Earthquake Engineering 23 (2003) 248-253.
    [93] 唐胡乐,黄穗宁,地基-基础-上部结构耦合系统的动力相互作用浅析,工程抗震 2002年3月,第1期,8-14.
    [94] Kucukarslan, P. K. B anerjee, N, B ildik, Inelastic analysis of pile soil structure interaction, Engineering Structures 25 (2003) 1231-1239.
    [95] K. J. Majid etal, A theortical and experimental investigation into soil-structure interaction, Geotechnique, No. 2.1976.
    [96] L. You, S. S. Peng, D, Dutta, Some Mitigative Measures for Protection of Surface Structures Affected by Ground Subsidence, 3rd subsidence workshop due to underground mining, 1984.
    [97] Robert W. Bruhn, P. E. Staff Consultant, The Tolerance of Structures to Ground Movements-Some Considerations 3rd subsidence workshop due to underground mining, 1984.
    [98] J. N. van der Merwe, Experiences with Undermining by Coal in South Africa, 3rd subsidence workshop due to underground mining, 1984.
    [99] Rausch, extract from Mining Subsidence Engineering, Chapter Ⅱ: Impact of ground deformation on structures, Springer-Verlag, 1955.
    [100] Henry FDC, editor The design and construction of engineering foundations. Chapman and Hall Ltd, 1986.
    [101] Boscardin MD, Cording EJ. Building response to excavationinduced settlement. Journal of Geotechnical Engineering 1987; 115 (1): 1-21.
    [102] Speck RC, Bruhn R W. Non-uniform subsidence ground movement and resulting surface-structure damage. Environmental and Engineering Geoscience 1995:1 (1):61-74.
    [103] Kratzsch H. Mining Subsidence Engineering. Springer-Verlag, 1983.
    [104] Olivier Deck, Marwan Al Heib, Francoise Homand, Taking the soil-structure interaction into account in assessing theloading of a structure in a mining subsidence area, Engineering Structures 25 (2003) 435-448.
    [105] Wagner H, Schumann HER. Surface effects of total coal-seam extraction by underground mining methods. J S Afr Inst Min Metall 1991; 91 (7): 221-231.
    [106] 赵明华.土力学与基础工程.武汉工业大学出版社,2000.7
    [107] 邹友峰、邓喀中、马伟民.矿山开采沉陷工程,中国矿业大学出版社,2003.9
    [108] 衮州矿业集团公司兴隆庄煤矿,中国矿业大学开采损害及防护研究所.超长综放开采时建筑物移动变形及破坏规律研究报告.2003.9
    [109] 淮南矿业集团公司,中国矿业大学.采动区铁路桥大幅度不均匀沉陷综合治理技术研究报告,2003
    [110] B1YANEV,陈晓明.纽约市桥梁生命周期性能的评估.特种结构.2001,(3):72~77
    [111] Priestley M J N. Performance-based design [J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2000, 33(3): 325-3
    [112] 程耿东,李刚.基于功能的结构抗震设计中一些问题的探讨[J].建筑结构学报,2000,21(1):5-11.
    [113] Smith K G. Innovation in earthquake resistant concrete structure design philosophies: A century of progress since Hennebique's patent [J].
    [114] Faifar P, Krawinkler H. Seismic design methodologies for the next generation of codes [A]. Seismic Design Practice into the Next Century [C]. Balkema: Booth, 1998.459~466.
    [115] Qiang Xue. Need of Performance-based earthquake engineering in Taiwan: A lesson from the Chichi earthquake [J]. Earthquake Engineering and Structural Dynamics, 2000, 39:1609~1627.
    [116] 小谷俊介.日本基于性能结构抗震设计方法的发展[J].建筑结构,2000,30(6):3~9.
    [117] 张新培.基于性能的抗震结构设计理论的若干进展[J].四川建筑科学研究,2001,27(1):34~35.
    [118] Leelataviewat S, Eari M, Goel S C, et al. Toward performance-based design of structures[J]. Earthquake Spectra, 1999, 15(3):435~461.
    [119] 罗奇峰,王玉梅.从近几年震害总结中提出的结构性能设计理论[J].工程抗震,2001,(2):3~7.
    [120] 马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报,2002,30(12):1429~1434.
    [121] FEMA-273, 274. NEHRP Guidelines for the Seismic Rehabilitation of Building. 1997.
    [122] Vision 2000 Committee. Performance-based seismic engineering of building. In: Miranda E, ed. Seismology Committee of the Structure Engineer Association of California. Oakland, Calf: Wiley Inc, 1995.
    [123] Panagiotakos T B, Fardis M N. A Displacement-based seismic design procedure for RC building and comparison with EC8 [J]. Earthquake Engineering and Structural Dynamics, 1999,30:1439~1462.
    [124] Panagiotakos T B, Fardis M N. Deformation-controlled earthquake-resistant design of RC building [J]. Journal of Earthquake Engineering, 1999,3(4):459~518.
    [125] Priestley M J, Kowalsky M J. Direction displacement-based seismic design of concrete building[J]. Bulletin of the Zealand Society for Earthquake Engineering,2000,33 (4):421~444.
    [126] ICC(2003). Performance Code for Buildings and Facilities, International Code Council,2003.
    [127] 周锡元,抗震性能设计与三水准设防[J].土木水利(台湾),2003,30(5)
    [128] 白绍良译,钢筋混凝土建筑结构基于位移的抗震设计[R].国际结构混凝土联合会(FIB)(原欧洲混凝土学会CEB)综合报告,2003
    [129] Building code of Australia (BCA), Australia building codes board, 1996
    [130] 李亚东,既有桥梁评估方法研究[J],铁道学报,1997,10(3):109~115
    [131] SriViday A, Ranganathan R. Reliability based optimal design reinforced concrete framdes[J]. Comp and Struct, 1995, 57(4): 651~661
    [132] Lin K, Frangopol D M. Reliability-based optimum design of rein-forced concrete girders[J]. Structural Safety, 1996, 18 (3): 239~258
    [133] Koskisto O J, Ellingwood B R. Reliability-based optimization of plant precast concrete stuctures[J]. Journal of Structural Engineering, 1997, 123 (3): 298~304
    [134] Dan M F, Kai-Yung Lin, Allen C Estes. Life-cycle cost design of deteriorating strucutres[J]. Journal of Structural Engineering, 1997, 123 (10): 1390~1401
    [135] IB Enevoldsen, John D S. Reliability-based optimization of series systems of parallel system[J]. Journal of Structural Engineering, 1993,119(4): 1069~1084
    [136] Dimitri V Val, Mark G Stewart. Life-cycle cost analysis of reinforced concrete structures in marine environments[J]. Structual Safety, 2003, 25(4): 343~362
    [137] Yasuhiro Mori, Bruce R. Ellingwood. Maintaining reliability of concrete structures: role of inspection/repair[J]. Journal of Structural Engineering, 1994, 120(3): 824~845
    [138] Yasuhiro Mori, Bruce R. Ellingwood. Maintaining reliability of concrete structures: optimum inspection/repair[J]. Journal of Structural Engineering, 1994, 120(3): 846~862
    [139] 杨伟军,左恒忠,赵传智.基于动态可靠性的结构优化设计[J].基建优化,1998,19(2):24~26
    [140] 韩波,许铁生.考虑寿命周期循环费用的预制混凝土构件可靠性优化设计[J].基建优化,2000,21(3):5~9
    [141] 赵尚传,赵国藩,贡金鑫.在役混凝土结构最优剩余使用寿命预测.大连理工大学学报[J],2002,42(1):83~88
    [142] 杨伟军,张建仁,梁兴文.基于动态可靠度的服役桥梁维修加固策略 [J].中国公路学报,2002,15(3):49~52
    [143] 孙晓燕,黄承逵,赵国藩.基于动态可靠度和经济优化相结合的服役 桥梁维修加固风险决策[J].工程力学,2004,21(5):5~10
    [144] Moses F. Structural system rciliability and optimization[J]. Comp and Struct,1977, 7(2): 439~452
    [145] Surahman A, Rojiani K B. Reliability based optimum design of concrete frames[J]. Journal of Structural Engineering, 1983, 109 (3): 741~757
    [146] 罗福干,建筑结构概念体系与估算,北京:清华大学出版社,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700