液态铅铋合金气相氧控关键影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加速器驱动次临界系统(Accelerator Driven Sub-critical system, ADS)目前被认为是可进行放射性核废料嬗变的潜在最有效的途径之一。液态铅铋合金是ADS散裂靶及次临界堆冷却剂的首选材料。铅铋合金在应用中存在诸多关键问题,其中液态铅铋合金中的氧浓度测量与控制直接影响液态金属热工水力学性能及其与材料的相容性而成为ADS研究的关键技术之一。液态铅铋中溶解氧的含量需要控制在一定范围,以在结构材料表面形成有效的抗腐蚀金属氧化层的同时,又避免氧过量而形成氧化铅等杂质。因此,开展氧控技术的研究为铅铋合金在ADS中的成功应用具有重要的科学意义和应用价值。
     在充分调研国内外氧控技术研究现状的基础上,利用自主研发的静态和流动铅铋氧测控装置,对国际上研究最为广泛的气相氧控技术开展了深入研究,包括气相氧控本身涉及到注气参数对氧控过程中氧浓度变化的影响,及与铅铋堆典型实验工况相关的铅铋温度、铅铋流速等因素的影响规律。对氧控影响因素定量而较为系统的研究为掌握气相氧控技术以及在未来反应堆中的应用提供了可信的数据支持。
     在对注气参数对氧浓度变化规律探索中,主要从注气成分、注气流量和注气方式三方面影响因素展开实验研究:1)在注气成分影响研究中,对H2/O2法和H2/H2O比例两种氧控方法分别进行不同气体成分的实验研究。其中H2/O2方法控氧结果显示,低O2含量气体成分补氧利于控氧稳定性;H2/H2O比例控氧结果显示,改变气体比例可实现不同氧浓度控制,且较H2/O2方法控氧更稳定。2)在注气流量影响研究中,实验结果显示,增大气体流量加速氧浓度变化速率,其中对补氧过程影响最为明显;同时结果中显示出铅铋合金中Fe3O4、NiCr2O4、PbO等氧化物反应令氧浓度呈阶段变化趋势,气体流量对各阶段氧浓度变化速率的影响也反映出对Fe、Cr、Ni、Pb等元素化学反应的影响规律。3)在注气方式影响实验结果中,鼓入与覆盖气体注入方式比较,氧浓度变化显著,主要原因为鼓入气体增加了气液接触面积。注气参数对氧浓度变化影响的实验结果显示了气体因素对氧浓度的影响规律以及物理化学反应机制,为气相氧控技术的应用提供了实验数据支持与参考。
     在对铅铋堆典型工况相关的铅铋温度、铅铋流速等因素影响研究中,研究了不同温度、不同流速、典型流速下温度改变以及气体流量改变等实验工况下氧浓度的变化规律。静态工况下温度变化结果显示,在450-600℃范围内,温度升高对加速耗氧过程变化速率明显而对补氧过程表现为减速作用,可能原因为温度升高加速氧扩散,同时对耗氧过程中氧化物分解反应有促进作用,但对补氧过程中金属元素的氧化放热反应有一定的抑制效应。铅铋流速影响大小的实验结果分析显示,0.1-0.3m/s流速范围内,流速增大将会加速整体反应过程氧浓度变化速率,其中对加速氧扩散以及NiO、NiCr2O4氧化物反应作用明显,但不利于Fe元素在补氧过程中氧化物的形成。与静态结果相比,流动状态下表现出NiO的影响,可能是流动冲刷作用加速Ni元素溶解的结果;低流速下在低氧区Fe3O4生成边界附近表现出明显的氧浓度波动现象,这可能是流动加速Fe、Ni等金属元素溶解,形成的氧化物在低流速状态下易形成局部残存所致,流速越大影响越不明显,因此流速增大加速反应的均匀性。特定流速0.3m/s温度变化的实验结果显示,450-550℃范围内,温度升高整体上加速了补氧过程速率,与静态过程中温度减缓效应不同,可能原因为流速加速较温度减缓效应显著;温度升高加速耗氧过程整体反应速率,尤其在低氧区域内加速反应均匀性尤为显著。特定流速0.3m/s气体流量变化的实验结果显示,气体流量增大同样加速氧浓度变化速率与反应的均匀性。上述结果显示,温度升高加速耗氧过程反应,但减缓补氧过程速率;流速增大对补氧耗氧过程均有明显促进作用,而流速冲刷加速Fe、Ni等元素的溶解现象较明显,易在低氧区域出现氧浓度波动现象,流速越小、温度越低则波动幅度越大,因此在实际流动工况下为保证氧控的均匀性,可引入杂质的纯化操作。
     不同因素对氧浓度变化影响研究,揭示了不同参数对氧控过程中氧浓度变化规律,对氧控技术的应用具有一定的指导意义,同时为大型铅铋实验装置乃至未来堆中的氧控系统参数设计以及实际工况的运行提供了实验支持和数据参考。
Accelerator-driven subcritical system (ADS) is a new generation of nuclear reactor systems, used for the proliferation of nuclear fuel and transmutation of nuclear waste. Lead-bismuth eutectic (LBE) is accepted as coolant and target candidate material of ADS for its nice thermodynamic and chemical properties. The concentration of dissolved oxygen in liquid lead-bismuth eutectic directly affect the liquid metal thermal hydraulics performance and material compatibility. Therefore, control of oxygen concentration in the liquid lead-bismuth eutectic is one of the key technologies to ensure the future ADS reactor operation. Concentration of dissolved oxygen in liquid lead-bismuth eutectic needs to be controlled in a certain range in order to form an effective anti-corrosive metal oxide layer on structure material surface and avoid excess oxygen to form lead oxide or other impurities. Research on oxygen control technology in the lead-bismuth eutectic is of important scientific significance and application value for LBE used in the ADS succesfully.
     After sufficient investigations at home and abroad, gase-phase oxygen control technology which has been widely studied and applied around the world has been in-depth experiment research in this research. It carried out based on the self-developed static and flowing lead-bismuth oxygen monitoring and control device. The contents of experiment were typical factors of gase-phase oxygen control influence on the variation of the oxygen concentration. In influence factors, gas injection parameters was related to gase-phase oxygen control itself, lead-bismuth eutectic temperature and flow rate was related to typical experiment conditions for lead-bismuth reactor. Quantitative factors for oxygen control and more systematic study was benefit to develop oxygen control technology as well as to provide credible data for reactor applications in the future.
     Exploration of gas injection parameters influence on the oxygen concentration variation, mainly containing the injection gas composition, gas injection flow and gas injection mode three influence factors in total.1) In the injection gas composition research, H2/O2and H2/H2O ratio ways of oxygen control were studied respectively with change of gas composition. H2/O2way showed low O2content gas composition was benefit for stability control of oxygen. H2/H2O proportional control oxygen showed that the proportion of gas can achieve different oxygen concentration control, and demonstrated more stability than H2/O2way.2) In the gas injection flow impact studies, the experimental results showed that the oxygen concentration change rate was accelerated with increasing gas flow, in which the process of dissolving oxygen was most obviously. The results showed oxygen concentration stepwise changed for effect of chemical reaction of Fe3O4, NiCr2O4, PbO and other oxides in lead-bismuth eutectic. At the same time, Fe, Cr, Ni and Pb elements chemical reaction were also effect by the gas flow.3) Gas injection mode affect results showed, the bubble gas mode was more significant way to enhance the rate of change of oxygen concentration than cover gas injection, mainly due to the mode of bubble increasing the gas-liquid contact area. Experimental results of gas injection parameters effected on the change of oxygen concentration showed the law of the gas factor effect on oxygen concentration and the physical and chemical reaction mechanism, provide experimental data to support and reference for the oxygen gas control technology.
     In the research on typical operating conditions of lead-bismuth eutectic reactor, the variation of the oxygen concentration changed with different temperatures and lead-bismuth eutectic flow velocity, different temperature and gas flow in a typical flow velocity. In static conditions with the temperature range of450-600℃, the temperature rises accelerated the rate of oxygen change during the oxygen consumption process apparently, while showed deceleration effect in oxygen dissolving process. The reason may be temperature rise accelerated oxygen dissolving and the oxide decomposition reaction in the oxygen consumption process, but deaccelerated oxide formation. In the LBE flow affect results with0.1-0.3m/s flow velocity range, increase of flow velocity accelerated the change rate of oxygen concentration during the overall reaction, and the oxygen diffusion speed, NiO, NiCr2O4oxide chemical reaction respectively, but deaccelerated Fe oxide formation in the process of oxygen dissolving process. Compared to the static results, the performance of the NiO effect in the flow condition may be Ni element dissolution for fluid scouring action. At low flow velocity, the oxygen concentration showed significant fluctuation in low oxygen range with Fe/Fe3O4equilibrium, which maybe Fe, Ni and other elements content increased by flow condition and formed the oxide local residual. The fluctuation was not obvious with velocity increase, which accelerated the reaction uniformity. In specific flow velocity of0.3m/s,450-550℃range of temperature results showed, temperature rise accelerated the overall rate of oxygen dissolving process, which was different from the static condition of deacceleration effect. The reason maybe flow velocity effected the reaction more than temperature. Temperature rise accelerated the oxygen consumption process, especially for the reaction uniformity in the low oxygen concentration. In specific flow velocity of0.3m/s, gas flow increase accelerated overall reaction process and reaction uniformity. The above results showed that the temperature rise accelerated oxygen consumption process and deaccelerated oxygen dissolving process in static condition. With increase of lead-bismuth eutectic flow velocity, oxygen change rate was accelerate in oxygen dissolving process and oxygen consumption process. In the flow condition, the flow velocity accelerated Fe, Ni and other elements of dissolution erosion phenomenon. The oxide of these elements could cause oxygen fluctuation obviously at low flow velocity and low oxygen range. Therefore, in the actual conditions, it would be necessary to remove impurity to ensure oxygen control uniformity.
     Different factors impact on the oxygen concentration change, revealed the oxygen concentration variation regulation with different parameters in the oxygen control process. It has a certain significance for application of oxygen control technology. At the same time it provided experimental support and data reference for oxygen control system design parameters and the actual operation in large-scale experimental apparatus even lead-bismuth reactor in the future.
引文
[1]朱继洲.2000.压水堆核电厂运行[M]:第1版.北京:原子能出版社.
    [2]Roadmap for Development of Accelerator Driven Subcritical Reactor Systems (ADS). An interim report of the Co-ordination Committee on ADS' report BARC/2001/R/004.
    [3]Nifenecker H, David S.2001. Basics of Accelerator Driven Subcritical Reactor [J]. Nuclear Intruments & Methods in Physics Research A,463:428-467.
    [4]Gulevich A, Kalugin A, Ponomarev L, et al.2008. Comparative study of ADS for minor actinides transmutation [J]. Progress in Nuclear Energy,50:359-362.
    [5]赵志祥主编.2002.加速器驱动洁净核能系统物理及技术基础研究[M].中国核工业音像出版社.
    [6]Gudowski W, Arzhanov V, Broeders C.2001. Review of the European Project-Impact of accelerator-based technologies on nuclear fission safety [J]. Progress in Nuclear Energy,38: 135-151.
    [7]许咏丽,龙斌.2003.ADS结构材料在液态Pb-Bi合金中的腐蚀[J].原子能科学技术,37(4):325-333.
    [8]IAEA.2002. Comparative assessment of thermophysical and thermohyraulic characteristics of lead, lead-bismuth and sodium coolants for fast reactors, IAEA-TECDOC-1289.
    [9]IAEA.2006. Theoretical and experimental studies of heavy liquid metal thermal hydraulics. In:Proceedings of a technical meeting held in Karlsruhe, Germany,28-31 October 2003, 2006, IAEA-TECDOC-1520.
    [10]OECD.2007. Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility. Thermal Hydraulics and Technologies [M]:85-86.
    [11]Li Ning.2008. Lead-alloy coolant technology and materials technology readiness level evaluation [J]. Progress in Nuclear Energy,50(2-6):140-151.
    [12]Weeks J R.1971. Lead, bismuth, tin and their alloys as nuclear coolants [J]. Nuclear Engineering and Design,15:363-372.
    [13]Abderrahim HA, et al.2001. MYRRHA:a multipurpose accelerator driven system for research and development [J]. Nuclear Instrumentation and Methods in Physics Research A, 463 (3):487-494.
    [14]Browne JC, Venneri F, Li N, et al.1997. Accelerator-driven transmutation of waste. LANL White Paper, LA-UR-97-958.
    [15]Mukaiyama T.1999. OMEGA programme in Japan and ADS development at JAERI. IAEA-TECDOC,1365:153-165.
    [16]Song, TY, et al.2004. "HYPER Project", Proceedings of OECD/NEA 4th International Workshop on Utilisation and Reliability of High Power Proton Accelerators, Daejeon, Korea.
    [17]Generation IV International Forum.2002. A Technology Roadmap for Generation IV Nuclear Energy Systems. GIF-002-00.
    [18]Filin AI, et al.2000. Design Features of BREST Reactors and Experimental Work to Advance the Concept of BREST Reactors. IAEA-TECDOC 1348, pp:36-47.
    [19]Stepanov VS, et al.1998. SVBR-75:A Reactor Module for Renewal of WWER-440 Decommissioning Reactors-Safety and Economic Aspects. IAEA TECDOC 1056:165-176.
    [20]Orlov YI.1997. Stages of development of lead-bismuth as a coolant for nuclear reactors in Russia, In:International Workshop on Physics of Accelerator-Driven Systems for Nuclear Transmutation and Energy Production. Italy:Trento.
    [21]Gromov BF, Belomitcev YS, Yefimov El, et al.1997. Use of lead-bismuth coolant in nuclear reactors and accelerator-driven systems [J]. Nuclear Engineering and Design,173:207-217.
    [22]Bauer GS, Salvatores M, Heusener G.2001. MEGAPIE:a 1 MW pilot experiment for a liquid metal spallation target [J]. Journal of Nuclear Materials,296:17-33.
    [23]Broc M, Sannier J, Santarini G.1983. Experimental studies on the use of liquid lead in a molten salt nuclear reactor [J]. Nuclear Technology,63:197-208.
    [24]Zhang J, Li N.2008. Review of the studies on fundamental issues in LBE corrosion [J]. Journal of Nuclear Materials,373(1-3):351-377.
    [25]Asher RC, Davies D, Beetham SA.1977. Some observations on the compatibility of structural materials with molten lead [J]. Corrosion Science,17:545-557.
    [26]Auger T, Lorang G.2005. Liquid metal embrittlement susceptibility of T91 steel by lead-bismuth [J]. Scripta Materialia,52:1323-1328.
    [27]Malkow T, Steiner H, Muscher H, et al.2004. Mass transfer of iron impurities in LBE loops under non-isothermal flow conditions [J]. Journal of Nuclear Materials,335:199-203.
    [28]Knebel JU, Muller G, Knoys J.2002. Lead-bismuth activities at the Karlsruhe lead laboratory KALLA. Proceedings of International Conference on Nuclear Engineering,2:627-640.
    [29]Courouau JL, Trabuc P, Laplanche G, et al.2002. Impurities and oxygen control in lead alloys [J]. Journal of Nuclear Materials,301:53-59.
    [30]Schulenberg T, Cheng X, Stieglitz R.2005. Thermal-Hydraulics of Lead Bismuth for Accelerator Driven System [C]. Presented at the 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11). France:Avignon, Popes'Palace Conference Center:159.
    [31]Borgohain A, Jaiswal BK, Maheshwari NK, et al.2011. Natural circulation studies in a lead bismuth eutectic loop [J]. Progress in Nuclear Energy,53:308-319.
    [32]Kirchner T, Bortoli Y, Cadiou A, et al.2003. LiSoR, a liquid metal loop for material investigation under irradiation [J]. Journal of Nuclear Materials,318 (Suppl.):70-83.
    [33]Wu XI.2004. Instrumentation of YSZ oxygen sensor calibration in lead-bismuth eutectic [D], in Department of Electrical and Computer Engineering. Las Vegas:University of Nevada.
    [34]Lim J, Marien A, Rosseel K, et al.2012. Accuracy of potentiometric oxygen sensors with Bi/Bi2O3 reference electrode for use in liquid LBE [J]. Journal of Nuclear Materials,429: 270-275.
    [35]Yuji Kurata, Yuji Abe, Masatoshi Futakawa, et al.2010. Characterization and re-activation of oxygen sensors for use in liquid lead-bismuth [J]. Journal of Nuclear Materials,398: 165-171.
    [36]Blochin VA, et al.1999. Experience of development and operation of oxide electrolytic sensors in lead-bismuth coolants [C]. In:Proceedings of Heavy Liquid Metal Coolants in Nuclear Technology (HLMC-98), Russia:Obnisk:588-592.
    [37]Steiner H, Schroer C, Vofi Z, et al.2008. Modeling of oxidation of structural materials in LBE systems [J]. Journal of Nuclear Materials,374:211-219.
    [38]Li N, Darling TW.2002. Oxygen Control Methodology and Sensor Calibration Strategy. LANL.
    [39]Ricapito I, Fazio C, Benamati G.2002. Preliminary studies on PbO reduction in liquid Pb-Bi eutectic by flowing hydrogen [J]. Journal of Nuclear Materials,301:60-63.
    [40]Ballinger R, Lim J.2004. An overview of corrosion issues for the design and operation of high-temperature lead-and lead-bismuth-cooled reactor systems [J]. Nuclear Technology, 147 (3):418-435.
    [41]Schroer C, Vol3 Z, Wedemeyer O, et al.2006. Oxidation of steel T91 in flowing lead-bismuth eutectic (LBE) at 550 ℃ [J]. Journal of Nuclear Materials,356:189-197.
    [42]Deloffre PH, Balbaud-Celerier F, Terlain A.2004. Corrosion behavior of aluminized martensitic and austenitic steels liquid Pb-Bi [J]. Journal of Nuclear Materials,576:180-184.
    [43]Wcisenburger A, Heinzel A, Mueller G, et al.2008. T91 cladding tubes with and without modified FeCrAlY coatings exposed in LBE at different flow, stress and temperature conditions [J]. Journal of Nuclear Materials,376,274-281.
    [44]Dou P, Ryuta Kasada.2011. Preliminary study on nano-and micro-composite sol-gel based alumina coatings on structural components of lead-bismuth eutectic cooled fast breeder reactors [J]. Journal of Nuclear Materials,409:177-182.
    [45]Rivai A, Takahashi M.2008. Compatibility of surface-coated steels, refractory metals and ceramics to high temperature lead-bismuth eutectic [J]. Progress in Nuclear Energy,50(2-6): 560-566.
    [46]Schroer C, Konys J, Furukawa T, et al.2010. Oxidation behaviour of P122 and a 9Cr-2WODSsteel at 550℃ in oxygen-containing flowing lead-bismuth eutectic [J]. Journal of Nuclear Materials,398:109-115.
    [47]Ganesan R, Gnanasekaran T, Srinivasa RS.2006. Diffusivity, activity and solubility of oxygen in liquid lead and lead-bismuth eutectic alloy by electrochemical methods [J]. Journal of Nuclear Materials,349:133-149.
    [48]Courouau JL, Robin JC.2004. Chemistry control analysis of lead alloys systems to be used as nuclear coolant or spallation target [J]. Journal of Nuclear Materials,335:264-269.
    [49]Li N.2002. Active Control of Oxygen in Molten Lead-Bismuth Eutectic Systems to Prevent Steel Corrosion and Coolant Contamination [J]. Journal of Nuclear Materials,300:73-81.
    [50]Carsten Schroer, Olaf Wedemeyer, Josef Novotny, et al.2011. Long-term service of austenitic steel 1.4571 as a container material for flowing lead-bismuth eutectic [J]. Journal of Nuclear Materials,418:8-15.
    [51]Martynov PN, Gulevich AV, Orlov YI, et al.2004. Water and hydrogen in heavy liquid metal coolant technology [R], The 1st COE-INES International Symposium, INES-1, Tokyo, Japan.
    [52]杜铭海.2007SVBR-俄罗斯模块式铅铋快堆[C].核能发电学术年会暨四川省核电发展研讨会论文集.
    [53]Lefhal CH, Knebel JU.2001. Kinetics of gas phase oxygen control system (OCS) for stagnant and flowing Pb-Bi Systems [J]. Journal of Nuclear Materials,296(1-3):301-304.
    [54]Muller G, Heinzel A, Schumacher G, et al.2003. Control of oxygen concentration in liquid lead and lead-bismuth [J], Journal of Nuclear Materials,321(2-3):256-262.
    [55]Carsten Schroer, Olaf Wedemeyer, Juergen Konys.2011. Gas/liquid oxygen-transfer to flowing lead alloys [J]. Nuclear Engineering and Design,241:1310-1318.
    [56]Alessantro Gessi, Gianluca Benamati.2008. Corrosion experiments of steels in flowing Pb at 500℃ and in flowing LBE at 450℃[J], Journal of Nuclear Materials,376(3):269-273.
    [57]Courouau JL.2004. Electrochemical oxygen sensors for on-line monitoring in lead-bismuth alloys:status of development [J]. Journal of Nuclear Materials,335 (2):254-259.
    [58]Carsten Schroer, Juergen Konys, Ariadna Verdaguer, et al.2011. Design and testing of electrochemical oxygen sensors for service in liquid lead alloys [J]. Journal of Nuclear Materials,415:338-347.
    [59]Ramkumar Sivaraman.2003. Calibration of YSZ sensor for the measurement of oxygen concentration in liquid LBE [D]:[Ph.D.]. Las Vegas:Department of Electrical and Computer Engineering. University of Nevada.
    [60]Fernandez JA, Abella J, Barcelo J, et al.2002. Development of an oxygen sensor for molten 44.5% lead-55.5% bismuth alloy [J]. Journal of Nuclear Materials,301:47-52.
    [61]Schroer C, Konys J.2009. Quantification of the long-term performance of steels T91 and 316L in oxygen-containing flowing lead-bismuth eutectic at 550 ℃. Proceedings of the 17th International Conference on Nuclear Engineering. Belgium, Brussels,1-9.
    [62]Konys J, Muscher H, Voβ Z, et al.2004. Oxygen measurements in stagnant lead-bismuth eutectic using electrochemical sensors [J]. Journal of Nuclear Materials,335:249-253.
    [63]Foletti C, Gessi A, Benamati G.2008. ENEA experience in oxygen measurements [J]. Journal of Nuclear Materials,376(3):386-391.
    [64]Niu Fenglei, Robert Candalino, Li Ning.2007. Effect of oxygen on fouling behavior in lead-bismuth coolant systems [J]. Journal of Nuclear Materials,366:216-222.
    [65]黄锦华,阳彦鑫.2006.工业用铅冷加速器驱动次临界系统(ADS)初步概念设计[J].核科学与工程,26(4):343-352.
    [66]中国科学院学部.2009.关于加速器驱动次临界系统(ADS)研发促进我国核能可持续发展的建议[J].中国科学院院刊,24(6):642-644.
    [67]曹须,何祚庥,庆承瑞,2012.加速器驱动的次临界系统生产233U的可行性研究[J],中国科学,42(5):437-444.
    [68]樊胜,赵志祥,丁大钊.2001.加速器驱动洁净核能系统中的燃耗行为分析[J].原子能科学技术,35(1):73-78.
    [69]吴宜灿,黄群英,柏云清,等.2010.液态铅铋回路设计研制与材料腐蚀实验初步研究[J].核科学与工程,30(3):238-243.
    [70]詹文龙,徐瑚珊.2012.未来先进核裂变能——ADS嬗变系统[J].中国科学院院刊,27(3):375-381.
    [71]Schroer C, Konys J.2007. Physical Chemistry of Corrosion and Oxygen Control in Liquid Lead and Lead-Bismuth Eutectic [R]. Forschungszentrum Karlsruhe, Germany, FZKA 7364: 36-38.
    [72]Martynov PN, Askhadullin RS, Simakov AA, et al.2008. Designing mass exchangers for control of oxygen content in Pb-Bi(PB) coolants in various research facilities [C]. Proceedings of the 17th International Conference on Nuclear Engineering (ICONE17), USA: Brussels, Belgium:75506.
    [73]Yemelyantseva ZI, Leonov VN, Yefanov AD, et al.2003. Validation of the lead coolant technology for brest reactors [C].11th International Conference on Nuclear Engineering (ICONE11), Japan:Tokyo,36408.
    [74]Brissonneau L, Beauchamp F, Morier O, et al.2011. Oxygen control systems and impurity purification in LBE:Learning from DEMETRA project [J]. Journal of Nuclear Materials,415: 348-360.
    [75]Abu Khalid Rivai, Minoru Takahashi.2010. Investigations of a zirconia solid electrolyte oxygen sensor in liquid lead [J]. Journal of Nuclear materials,398(1-3):160-164.
    [76]Jun Lim Hyo On Nam, Soon Hwang, et al.2010. A study of early corrosion behaviors of FeCrAl alloys in liquid lead-bismuth eutectic environments [J]. Journal of Nuclear Materials, 407(3):205-210.
    [77]Zhang M, Wu Y, Huang Q, et al.2006. Design of auxiliary system for the dual functional lithium-lead test blanket module in ITER [J]. Fusion Engineering and Design,81:671-675.
    [78]Chen Hongli, Bai Yunqing, Hu Liqin, et al.2009. Preliminary Safety Analysis for the Chinese ITER Dual-Functional Lithium-Lead Test Blanket Module [J]. Nuclear Fusion,49:075040.
    [79]吴宜灿,黄群英,朱志强,等.2009.中国系列液态锂铅实验回路设计与研发进展[J].核科学与工程,29(2):161-169.
    [80]Zhu Zhiqiang, Huang Qunying, Gao Sheng, et al.2011. Design analysis of DRAGON-IV LiPb loop [J]. Fusion Engineering and Design,86:2666-2669.
    [81]Huang QY, Wu Y,Li J, et al.2009. Status and Strategy of Fusion Materials Development in China [J]. Journal of Nuclear Materials,386-388:400-404.
    [82]Huang QY, Li C, Wu Q, et al.2011. Progress in development of CLAM steel and fabrication of small TBM in China [J]. Journal of Nuclear Materials,417:85-88.
    [83]Huang Qunying, Gao Sheng, Zhu Zhiqiang, et al.2009. Progress in compatibility experiments on lithium-lead with candidate structural materials for fusion in China [J]. Fusion Engineering and Design,84:242-246.
    [84]Huang Qunying, Gao Sheng, Zhu Zhiqiang, et al.2010. Corrosion Experiments of the Candidate Materials for Liquid Lithium Lead Blanket of Fusion Reactor [J]. Advances in Science and Technology,73:41-50.
    [85]Huang Qunying, Zhang Maolian, Zhu Zhiqiang, et al.2007. Corrosion experiment in the first liquid metal LiPb loop of China [J]. Fusion Engineering and Design,82:2655-2659.
    [86]Gao Sheng, Huang Qunying, Zhu Zhiqiang, et al.2011. Corrosion behavior of CLAM steel in static and flowing LiPb at 480℃ and 550℃ [J]. Fusion Engineering and Design,86: 2627-2631.
    [87]祝玲琳,柏云清,陈钊,等.2010.液态铅铋实验平台无窗靶水力学原理验证实验段设计 研究[J].核科学与工程,30(4):333-337.
    [88]王改英,柏云清,高胜,等.2012.液态铅铋氧浓度测量技术初步研究[J].核科学与工程,32(2):165-169.
    [89]Samsonov GV.1982. The Oxide Handbook,2nd Ed., IFI/Plenum, New York.
    [90]Fu Bingmei, Jiang Yingtao, Ma Jian, et al.2004. Developing A Sensing System for the Measurement of Oxygen Concentration in Liquid Pb-Bi Eutectic (Year III Renewal).
    [91]Abu Khalid Rivai, Tomoki Kumagai, Minoru Takahashi.2008. Performance of oxygen sensor in lead-bismuth at high temperature [J]. Progress in Nuclear Energy,50:575-581.
    [92]Hyo On Nam, Jun Lim, Dong Yoo an Han, et al.2008. Dissolved oxygen control and monitoring implementation in the liquid lead-bismuth eutectic loop:HELIOS [J]. Journal of Nuclear Materials,376:381-385.
    [93]Lee SH, Ch CH, S Song TY, et al.2008. Calibration of YSZ Oxygen Sensor for Use in a lead-alloy Coolant System [J]. Portugaliae Electrochimica Acta,26/6:559-568.
    [94]单水维.2007.Y2O2稳定ZrO2陶瓷材料导热性能的研究[D].内蒙古:内蒙古科技大学,2007:42-43.
    [95]Carsten Schroer, Juergen Konys, Ariadna Verdaguer, et al.2011. Design and testing of electrochemical oxygen sensors for service in liquid lead alloys [J]. Journal of Nuclear Materials,415:338-347.
    [96]Li Dong dong, Song Chi, He HY, Liu CS,Pan BC, Wu YC.2013. The behavior of oxygen in liquid lead-bismuth eutectic [J]. Journal of Nuclear Materials,437:62-65.
    [97]Huajun Chena, Yitung Chcna, Hsuan-Tsung Hsieh, et al.2007. A lattice Boltzmann modeling of corrosion behavior and oxygen transport in the natural convection lead-alloy flow [J]. Nuclear Engineering and Design,237:1987-1998.
    [98]Ma Jian, Gao Peng, Zhang Jinsuo, et al.2005. Enhancement of oxygen transfer in liquid lead and lead-bismuth eutectic by natural convection [J]. International Journal of Heat and Mass Transfer,2005,48:2601-2612.
    [99]Chen Yiteng, Chen Huajun, Zhang Jinsuo.2007. Numerical investigation on enhancement of oxygen transfer by forced convection in liquid lead-bismuth eutectic system [J]. International Journal of Heat and Mass Transfer,50:2139-2147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700