电力系统超前调度理论与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电网规模的扩大,市场竞争机制的引入,用户对供电可靠性要求的提高以及环境保护与能源问题的日益突出,电力系统的超前调度理论与算法面临着新的挑战。这其中,旋转备用的配置问题因与系统运行的可靠性、经济性紧密关联而成为研究的焦点。对于超前调度来说,较多的旋转备用意味着较高的供电可靠性,但这必然会使系统的供电经济性受到影响,反之亦然。此外,对于相同的备用容量,分布在不同的机组上其效果也是不同的。以往研究中,旋转备用所采用的确定性配置方法,虽然容易理解且实现简单,却无法量化备用配置与系统运行可靠性间的对应关系,难以找到备用产生的根源,从而造成备用配置不当、责任归属不明的后果,无法适应电力工业市场化改革的需要。而随机性、波动性更强的间歇式可再生电源在电力系统的应用激化了系统运行可靠性与经济性间的矛盾。因此,在当前形势下,以超前调度为线索,以旋转备用配置为焦点,对电力系统运行可靠性与经济性间的协调问题进行探讨,进行适应电力系统运行趋势变化、符合市场机制操作的超前调度模型和方法的研究是迫切而又具有重要的理论与实践意义的。
     在上述背景下,本文围绕超前调度及其旋转备用配置问题,在回顾研究历程、总结存在问题的基础上,以经济原则为导向,以优化数学为工具,对其进行深入、细致地研究,其主要工作和创新性成果体现如下。
     (1)针对确定性备用配置方法的不足,提出了基于等响应风险约束的超前调度方法。该方法以概率性手段进行超前调度的旋转备用配置,可以将系统的响应风险维持在给定水平;以电力不足期望(Expected Demand NotSupplied,EDNS)指标表征系统的响应风险,通过引入{0,1}变量对EDNS表达的适当变化使其限值可以作为约束并入超前调度模型,形成{0,1}混合整数优化问题,实现了调度与响应风险评估的统一;通过引入针对整数变量的附加约束,将{0,1}混合整数优化问题转变为连续变量的非线性优化问题,并利用内点法进行求解,加快了模型的求解速度。
     (2)针对基于等响应风险约束超前调度方法中系统响应风险水平的选择问题,提出了计及用户停电损失的超前调度方法。该方法通过用户停电损失评价率(Interrupted Energy Assessment Rate,IEAR)指标和系统的电量不足期望(Expected Energy Not Supplied,EENS)指标将调度所对应的用户停电损失期望(Expected Customer Interruption Cost,ECOST)体现于目标函数中,在寻求扩展目标函数最小的同时刚好确定系统需维持的响应风险水平及备用配置方案;延续了基于等响应风险约束超前调度中对响应风险指标的解析化处理方法,构建模型形成{0,1}混合整数优化问题;将超前调度物理模型上的解耦方法与算法上的分解计算方法相结合,成功地求解了由混合整数优化问题转化而成的二次优化问题,提高了模型的计算效率。
     (3)在计及用户停电损失超前调度方法的单母线模型的基础上提出了计及网络安全约束及用户停电损失的超前调度方法。该方法将网络安全约束纳入到计及用户停电损失的超前调度模型中,同时考虑了时间耦合约束、空间关联约束以及状态耦合约束,使调度在概率、安全与时间耦联上有机结合,更加符合电力系统的运行实际;模型中将事故后机组的输出功率以及切负荷功率作为独立变量进行决策,旋转备用配置由事故前后机组输出功率的最大调整量确定,蕴含信息更加全面;在采用原-对偶内点法进行求解时,通过将耦合变量与非耦合变量的分离,构建了KKT条件牛顿修正方程的快速求解方法,使内点法的迭代效率提高,从而加快了模型的求解速度,增强了模型的可行性。
     (4)在深入分析温室气体配额-交易排放控制策略的基础上提出了温室气体配额-交易框架下的超前调度方法。该方法在超前调度中计及了发电过程所伴随的温室气体排放问题,能够适应当前电力系统节能减排工作的需要;充分利用燃料市场与排放配额交易市场的价格信息,导出了温室气体排放影响因子,对机组的发电成本曲线进行修正;方法实现简单,无需增加任何附加约束,仅需在调度目标中引入环境影响因子即可完成,故对以往超前调度算法具有很好的继承性。
     总之,本文工作在继承前人成果的基础上,在优化模型和算法上、风险与经济的折中上、可靠性与决策的关联上,对电力系统超前调度的研究取得一定的进展。尽管如此,面对当今复杂电力系统,如何研究电力系统运行中各元件的概率规律、经济规律,以及能源开发应用的策略,使本文的研究能在实际中得以实现,都需要进一步深入地开展工作。
With the expansion of grid scale,the introduction of market competition mechanism, the customer's higher requirement of power supply reliability and the increasing concerns about environment and energy issues,the power system advanced dispatch theories and algorithms are facing new challenges.Among these challenges,the spinning reserve allocation becomes the research focus because of its direct connection to power system operating reliability and economy.For advanced dispatch,more spinning reserve means higher operating reliability,but the operating economic objective will be inhibited at the same time,and vice versa.Further,the operating reliability level will be different when the same spinning reserve capability is allocated to different generators.In previous studies,the deterministic methods for spinning reserve allocation are easy to understand and implement.However,it is hard to quantify the relationship between the spinning reserve and system operating reliability as well as to find out the cause of spinning reserve.All these will result in improper spinning reserve allocation and spinning reserve responsibility allocation.Therefore,the traditional deterministic spinning allocation methods cannot satisfy the requirements of the power system deregulation.Especially,the increase of intermittent renewable power sources in power system intensifies the conflict between system operating reliability and economy. Therefore,in the current situation,taking spinning reserve allocation into account and focusing on the coordination of power system operating reliability and economy,to propose new advanced dispatch model and algorithm,which can follow power system changing trend and be suitable for electrical market operation,has significant theoretical and practical meanings.
     As mentioned above,this thesis around spinning reserve allocation problem, reviewing the history of advanced dispatch,aiming at the shortage of current advanced dispatch method,based on economic theory,using optimization skill, does thorough research on advanced dispatch.The main contribution of this thesis can be extracted as:
     (1) Aiming at the shortage of traditional deterministic advanced dispatch,an advanced dispatch method named advanced dispatch with equal response risk is proposed in this thesis.Probabilistic spinning reserve allocation method is used in this method.The response risk can be kept in the pre-defined level using this method.The expected demand not supplied(EDNS) index is used here to quantify the relation between the spinning reserve allocation and system reliability level.In the context,the EDNS is reformulated to be suitable for being incorporated into traditional advanced dispatch as a constraint through introducing {0,1} variables to its express.In this way,the dispatch process and the response risk estimate process can be incorporated.The resulted model is a mixed integer optimization problem.Additional constraints for {0,1} variables are then bounded to the original problem to converse mixed integer optimization problem to quadratic optimization problem to use traditional available quadratic optimization programs.And this accelerates the calculation of the model.
     Focusing on how to specify the system operating reliability level in advanced dispatch with equal response risk method,an advanced dispatch method considering customer interruption costs is proposed.Expected energy not supplied(EENS) and interrupted energy assessment rate(lEAR) indices are introduced here to assess the expected customer interruption costs(ECIC).In the proposed method,the expected customer interruption costs because of spinning reserve insufficiency are added to the objective function.Through this way,the predetermined operating reliability level is no longer necessary.Instead,the optimal reliability level as well as spinning reserve allocation can be decided during the optimizing progress.Further,physical and algorithmic decomposed methods are cooperated to solve the quadratic optimal problem which results from original {0,1} mixed integer optimization.
     Based on advanced dispatch considering customer interruption costs method, an advanced dispatch method considering network security constraints and customer interruption costs is proposed.The time-coupled constraints, space-coupled constraints and state-coupled constraints are included in the model which is more practical for power system operation.The pre-contingency active power outputs,post-contingency active power outputs and post-contingency load shedding are treated here as independent variables in this method.Because of the large size of the model,a decomposed method for solving primal-dual interior point KKT condition,which makes full use of weak coupled nature in time-coupled and state-coupled constraints,is proposed.This method can speed up the calculation,and enhance the effectiveness of the proposed method.
     Based on analysis of cap-and-trade greenhouse gases emission control policies,a compromising advanced dispatch method under cap-and-trade framework is proposed.The proposed method takes greenhouse gases emission into account,and this is suitable for power system energy conservation and emission reduction requirements.An emission affection factor is deduced using fuel price,emission allowance price and emission character of generators.The emission affection factor can be used to modify the generator's generation-cost curves.For the proposed method,no additional constraints are needed,and the only change of advanced dispatch model is to modify the objective function with emission allowance factors,so the method is easy to implement.
     To sum up,absorbing the advantages of current researches,this thesis develops advanced dispatch in model and algorithm,tradeoff between response risk and operating economy and relationship between operating reliability and decision.However,facing the quick development of current complex power system,there are still many works to do,such as the calculation of power system components fault rates in real-time,power system operation economic rules,as well as energy utilization strategies.
引文
[1]Wood A J,Wollenberg B F.Power Generation,Operation and Control.John Wiley,New York,1984.
    [2]李文沅.电力系统安全经济运行-模型与方法.重庆:重庆大学出版社,1989,3.
    [3]朱道立.大系统优化理论和应用.上海:上海交通大学出版社,1987.
    [4]韩力.电力系统超短期负荷与运行态势预估的理论与方法研究.山东大学博士论文,2008,10.
    [5]潘毅,柳焯,于尔铿.电力系统动态优化调度的两极协调方程算法.中国电机工程学报,1996,16(6):417-420.
    [6]X.S.Han,H.B.Gooi,Daniel S.Kirschen.Dynamic economic dispatch:feasible and optimal solutions.IEEE Trans.on Power Systems,2001,16(1):22-28.
    [7]刘方,颜伟,徐国禹.动态最优潮流的预测/校正解耦内点法.电力系统自动化,2007,31(14):38-42.
    [8]朱涛,于继来.NON-AGC机组协同AGC机组的高峰调度模型.电力系统自动化,2007,31(3):9-14.
    [9]柳进,潘毅,刘长义,等.攀峰过程中协调优化调度的研究.中国电机工程学报,2007,26(2):36-40.
    [10]周家启,任震,徐国禹,等.电力系统可靠性评估.重庆:科学技术出版社重庆分社,1986,6.
    [11]Stadlin W O.Economic allocation of regulating margin,IEEE Trans on Application Systems,1971,90(4):1776-1781.
    [12]Wood W G.Spinning reserve constrained static and dynamic economic dispatch.IEEE Trans on Application Systems,1982,101(2):381-388.
    [13]Happ H H.Optimal power dispatch-a comprehensive survey.IEEE Trans.on PAS, 1977, 96(3): 841-854.
    [14] Stahl E C M. Economic loading of generating stations. Electrical Engineering, September, 1931 Vol. 50.
    [15] Steinberg M J, Smith T H. The theory of incremental rates. Part I, Electrical Engineering, March, 1934, Part II, Electrical Engineering, April. 1934.
    [16] Estrada H. Economical Load Allocation. Electrical World, October 11,1930.
    [17] George E E. Intrasystem transmission losses. AIEE Trans., 1943, Vol. 62:153-158.
    [18] Kirchmayer L K, Stagg G W. Analysis of total and incremental losses in transmission systems. AIEE Trans, 1951, 70(11): 647-653.
    [19] Kron G. Tensorial analysis of integrated transmission systems - part I. AIEE Trans.1951, 70(1): 1239-1246.
    [20] Wadhwa C L, Nanda J. New approach to modified coordination equations for economic load dispatch. Proc. of IEEE, 1976,123(9): 923-925.
    [21 ] Galiana F D, Vojdani A F, A comparison of the classical and modified coordination equations in economic dispatch, IEEE PES winter power meeting, New York,1979, Paper A79079-5.
    [22] Carpentier J. Contribution a'letude du Dispatching Economique. Bulletin de la Societe Francaise des Electriciens, 1962, 3(1): 431-447.
    [23] Wells D W. Method for economic secure loading of a power system. Proc. of IEEE,1968,115(8): 606-614.
    [24] Bartholomew-biggs M C. Recursive quadratic programming methods based on the augmented Lagrange. Mathematical Programming Study, 1987, 31(1): 21-24.
    [25] Sun D I, Ashley B, Brewer B, etc. Optimal power flow by Newton approach. IEEE Trans. on PAS, 1984,103(10): 2864-2880.
    [26] Burchett R C, Happ H H, Vierath D R. Quadratically convergent optimal power flow. IEEE Trans. on PAS, 1984,103(11): 3267-3271.
    [27] Wei H, Sasaki H, Kubokawa J, etc. An interior point nonlinear programming for optimal power flow problems with a novel data structure.IEEE Trans.on Power Systems,1998,13(3):870-877.
    [28]李尹,张伯明,孙宏斌.基于非线性内点法的安全约束最优潮流(一)理论分析.电力系统自动化,2007,31(9):7-13.
    [29]李彩华,郭志忠,樊爱军.电力系统优化调度概述(Ⅰ)-经济调度与最优潮流.电力系统及其自动化学报.2002,14(2):60-63.
    [30]Lee Wenyuan.An on-line economic power dispatch method with security.Electrical Power and Energy System,1985,9(2):173-181.
    [31]Wang S J,Shahidehpour S M,Kirschen D S et al.Short-term generation scheduling with transmission and environmental constraints using an augmented Lagrange relaxation.IEEE Trans.on Power Systems.1995,PWRS-10(3):1294-1300.
    [32]夏清,张伯明,康重庆,等.电力系统短期安全经济调度新算法.电网技术,1997,21(11):61-65,69.
    [33]Ringlee R I,Williams D D.Economic system operation considering valving throttling losses:Ⅱ-distribution of system loads by method of dynamic programming.AIEE Trans.1962,81(1):615-622.
    [34]Athay T M.Generation scheduling and control.Proc.of IEEE,1987,75(12):1592-1606.
    [35]Bechert T E,Kwatny H G.On the optimal dynamic dispatch of real power.IEEE Trans.on PAS,1972,91(3):889-898.
    [36]Kwatny H G,Bechert T E.On the structure of optimal area controls in electric power networks.IEEE Trans.on Automatic Control,1973,18(2):167-172.
    [37]Bechert T E,Chen N.Area automatic generation control by multi-pass dynamic programming.IEEE Trans.on PAS.1977 95(5):1460-1469.
    [38]Ross D W,Kim S.Dynamic economic dispatch of generation.IEEE Trans on PAS,1980,99(6):2060-2068.
    [39]韩学山,柳焯,陈小虎.动态优化调度研究的回顾与展望(一).电力系统自 动化,1994,18(9):64-68.
    [40]Mukai S,Sppare J,Zaborszky J.A reevaluation of the normal operating state control of power system using computer control and system theory,part Ⅱ:dispatch targeting.IEEE Trans.on PAS,1981,100(1):309-317.
    [41]Van den Bosh P P J.Optimal dynamic dispatch owing to spinning reserve and power-rate limits.IEEE Trans.on PAS,1985,104(12):3395-3401.
    [42]Somuah G B,Khunaizi N.Application of linear programming redispatch technique to dynamic generation allocation.IEEE Trans.on Power Systems,1990,5(1):20-26.
    [43]Xie K,Song Y H.Optimal power flow with time-related constraints by a nonlinear interior point method.Power Engineering Society Winter Meeting,2000,2(23-27):1751-1759.
    [44]杨朋朋,韩学山.一种考虑时间关联约束的安全经济调度解法.电力系统自动化.2008,32(17):30-34.
    [45]Zaborszky J,Singh J.A reevaluation of the normal operating state control of power system using computer control and system theory,part Ⅰ:load estimation.PICA,1979:205-213.
    [46]Mukai S,Singh J,Spare J,etc.A reevaluation of the normal operating state control of power system using computer control and system theory,part Ⅲ:tracking the dispatch targets with unit control.IEEE Trans.on PAS,1985,102(6):1903-1912.
    [47]Innorta M,Marannino P.Advance dispatch procedures for the centralized control of real power.IEEE Trans on Power Systems,1986,PWRS-1(2):233-239.
    [48]Innorta M,Marannino P,Granelli G P,etc.Security constrained dynamic dispatch of real power for thermal groups.IEEE Trans.on Power Systems,1988,3(2):774-781.
    [49]Marannino P,Granelli G P,Montagna M,etc.Different time-scale approaches to the real power dispatch of thermal units.IEEE Trans.on Power Systems,1990,5(1):169-176.
    [50]韩学山.动态优化调度的积留量法.哈尔滨工业大学博士论文,1994,7.
    [51]R.Billinton,R.N.Allan.Reliability evaluation of power systems.Plenum Press,1996.
    [52]李予州,吴文传,张伯明,等.考虑网络断面约束的在线有功调度积留量法.2008,32(23):31-35.
    [53]于尔铿,韩放,谢开.电力市场.北京:中国电力出版社,1998.
    [54]萨莉.亨特.电力竞争.北京:中国经济出版社,2004.
    [55]于尔铿.经济调度与电力市场.国家电网,2006,8:11-12.
    [56]孟祥星.市场环境下电力系统有功调度与无功优化的经济规律研究.山东大学博士论文,2007,10.
    [57]韩学山,赵建国.刚性优化与柔性决策结合的电力系统运行调度理论探讨.中国电力,2004,37(1):15-18.
    [58]孟祥星,韩学山.不确定性因素引起备用的探讨.电网技术,2005,29(1):30-34.
    [59]甘德强,胡朝阳,沈沉.美国新英格兰备用电力市场设计和优化新模型.2003,27(2):19-23.
    [60]孟祥星,韩学山.一种新的计及备用约束的调度模型.电网技术,2005,29(14):20-25.
    [61]韩学山,柳焯,陈小虎.动态优化调度研究的回顾与展望(二).电力系统自动化,1994,18(10):62-66.
    [62]Billinton R,Fotuhi-Firuzabad M.A basic framework for generating system operating health analysis.IEEE Trans.on Power System,1994,9(3):1610-1617.
    [63]Fotuhi-Firuzabad M,Billinton R,Aboreshaid S.Spinning reserve allocation using response health analysis.Proc.Inst.Elect.Eng.,1996,online no.19960312.
    [64]Abiri-Jahromi A,Fotuhi-Firuzabad M,Abbasi E.Optimal scheduling of spinning reserve based on well-being model.IEEE Trans.on Power Systems,2007 22(4):2048-2057.
    [65]Rau N S,Hegazy Y A.Economic analysis of reliability differentiated service. IEEE Trans.on Power Systems,1991,6(2):858-871.
    [66]薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8.14”大停电的警示.电力系统自动化,2003,27(18):1-5.
    [67]冯永青,张伯明,吴文传,等.基于可信性理论的电力系统运行风险评估(一)运行风险的提出与发展.电力系统自动化,2006,30(1):17-23.
    [68]冯永青,吴文传,孙宏斌,等.基于可信性理论的电力系统运行风险评估(二)理论基础.电力系统自动化,2006,30(2):11-15,21.
    [69]冯永青,吴文传,张伯明,等.基于可信性理论的电力系统运行风险评估(三)应用与工程实践.电力系统自动化,2006,30(3):11-16.
    [70]Wang Jianxue,Wang Xifan,Wu Yang.Operating reserve model in the power market.IEEE Transactions on Power Systems,2005,20(1):223-229.
    [71]丁明,安玲,齐先军.电力市场环境下考虑系统可靠性的备用调度.继电器,2007,35(15):14-17,27.
    [72]查浩,韩学山,杨朋朋.电网运行状态下的概率优化调度.中国电机工程学报,2008,28(28):54-60.
    [73]Xia L M,Gooi H B,Bai J.A probabilistic reserve with zero-sum settlement scheme.IEEE Trans.on Power Systems,20(2):993-1000.
    [74]IPCC.Climate change 2001.The scientific basis:summary for policy makes.Cambridge,UK:Cambridge University Press,2001.
    [75]《气候变化国家评估报告》编写委员会.气候变化国家评估报告.北京:科学出版社,2007.
    [76]UNFCCC,Kyoto Protocol to the United Nations framework convention on climate change.Online:http://unfccc.int/resource/docs/convkp/kpeng.pdf.
    [77]Ingebretsen M,Sweet W.Emission permission.IEEE Spectrum,203,40(1):59-62.
    [78]方韬,李才华,张粒子.发电企业环境成本研究.中国电力,2005,38(11):16-20.
    [79]Montgomery D W.Market in licenses and efficient pollution control program. Journal of Economic Theory,1972,5(3):395-418.
    [80]师萌,简.玲,越君.中国碳排放的可行之路.中国石油企业,2008(9):104-105.
    [81]Friedlander G D.Power,pollution,and the imperiled environment.IEEE Spectrum,1970,November:40-48.
    [82]Tsuji A.Optimal fuel mix and load dispatching under environmental constraints.IEEE Trans.on PAS,1981,100(5):2357-2364.
    [83]Gent M R,Lamont J W.Minimum-emission dispatch.IEEE Trans.on PAS,1971,90(6):2650-2660.
    [84]El-Hawary M E,El-Hawary F,Mbamalu G A N.NOX emission performance models in electric power systems.Proceedings of the 1992 Canadian Conference on Electrical and Computer Engineering,1992,Volume Ⅱ,Paper MA 8.11.1.
    [85]Montgomery T L,Com M.Adherence of sulfur dioxide concentrations in the vicinity of a steam plant to plume dispersion models,Journal of the Air Pollution Control Association,1972,17(8):512-517.
    [86]Sullivan R L,Hackett D F,Air quality control using a minimum pollution-dispatching algorithm,Environmental Science &Technology,1972,7(11):1019-1022.
    [87]Bernow S,Biewaid B,Marron D.Full-cost dispatch:incorporating environmental externalities in electric system operation.The Electricity Journal,1991,4(2):20-33.
    [88]Talaq J H,Ferial,Ei-Hawary M E.A summary of environmental economic dispatch algorithms.IEEE Trans.on Power Systems,1994,9(3):1508-1516.
    [89]Gadogan J B,Eisenberg L.Sulfur oxide emission management for electric power systems.IEEE Trans.on PAS,1977,96(2):393-401.
    [90]Finnigan O E,Fouad A A.Economic dispatch with pollution constraints.IEEE Winter Power Meeting,1974,Paper C 74 155-8.
    [91]马瑞,颜宏文,贺仁睦,等.多目标优化分段竞标电力市场研究.电力系统自 动化,2004,28(10):54-58.
    [92]尚金成.基于时间尺度的节能发电优化调度协调模型及方法.电网技术,2008,32(15):56-61.
    [93]Xiao F,McCalley J.Power system risk assessment and control in a multiobjective framework,IEEE Trans.on Power Systems,2009,24(1):78-85.
    [94]NERC.(BAL-002-0)Disturbance Control Performance.
    [95]赵渊,周家启,周念成,等.大电力系统可靠性评估的解析计算模型.中国电机工程学报,2006,26(5):19-25.
    [96]F.Bouffard and F.D.Galiana.An Electricity Market with a Probabilistic Spinning Reserve Criterion.IEEE Trans.on Power Systems,2004,19(1):300-307.
    [97]孟志青,胡齐英,杨晓琪.一种求解整数规划与混合整数规划非线性罚函数方法.控制与决策,2002,17(3):310-314.
    [98]Bertsmas D,Perakis G,Tayeer S.A new algebraic geometry algorithm for integer programming.Management Science,2000,46(7):999-1008.
    [99]Billinton R,Oteng-Adjei J,Ghajar R.Comparison of two alternate methods to establish an interrupted energy assessment rate.IEEE Trans.on Power Systems,1987,2(3):751-757.
    [100]韩学山,柳焯.考虑机组爬坡速度和网络安全约束的经济调度解耦算法.电力系统自动化.2002,26(13):32-37.
    [101]郭永基.加强电力系统可靠性的研究和应用-北美东部大停电的思考.电力系统自动化,2003,27(19):1-5.
    [102]沈瑜,夏清,康重庆.发电联合转移分布因子及快速静态安全校核算法.电力系统自动化,2003,27(18):13-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700