结构可靠性分析区间模型的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构在工作时,其性能受到来自多方面不确定性因素的影响,如结构材料参数、几何参数或载荷等的不确定性。为确保结构在规定的使用条件和环境下,在给定的使用寿命期间有效地承受载荷和耐受环境而正常工作,对其进行可靠性分析就显得尤为重要。为建立合理的可靠性分析模型,保证可靠性分析结果的有效性,应该充分了解和认识结构分析过程中存在的不确定性,以便采用适当的不确定性处理方法。区间分析理论在处理不确定性方面具有不需要考虑变量分布形式、计算简单、易于进行等特点,而且区间运算可以自动跟踪计算过程中出现的截断误差和舍入误差。因此,基于区间分析的结构区间可靠性分析方法成为学术界研究的热点问题。结构区间可靠性分析方法作为一种非概率可靠性分析方法,是概率可靠性分析方法的有益补充,它可以弥补概率可靠性分析方法的不足。但是,结构区间可靠性分析还远没有形成完整的、规范化的理论体系。因此,本文就结构区间可靠性分析中的相关问题展开研究,将结构可靠性分析区间模型理论进一步系统化和规范化。
     在结构区间可靠性分析过程中,一般会涉及到两个区间量之间的比较,如广义区间强度和广义区间应力的比较等等,因此本文对区间数的比较方法作了详尽评述,作为结构区间可靠性分析的前提。
     提出区间变量的定义。提出基于区间功能函数法和区间应力-区间强度干涉模型的结构区间可靠性分析方法。修正了区间可靠性指标,通过定义标准变换,详细分析了区间可靠性指标的几何意义;提出结构区间可靠性分析的可能度法,提出结构安全可能度定义,详细分析了结构安全可能度的性质;分析了当强度和应力在其取值区间内服从均匀分布时,结构安全可能度与概率可靠度间的关系。得到:在没有足够数据信息进行概率可靠性分析时,安全可能度可以对结构的安全程度做出合理的估计。
     在系统单元可靠度的界已知及单元可靠性独立假设下,研究了典型系统的区间可靠性。分析了典型系统的区间可靠性与单元区间可靠性的关系,研究得到典型系统的区间可靠性在准一致性意义下保持了其点可靠性的特性。
The performance of structures in service will be affected by uncertainties from many aspects, such as structural material parameters, geometrical parameters, loads, and etc. To ensure proper performance of a structure for supporting loads and bearing environment and normally working, it is essential to give a reliability analysis of this structure under service environment, assigned condition and design lifetime. In order to set up a reasonable reliability model and guarantee validity of reliability analysis, well-understanding of these uncertainties should be emphasized. Because theory of interval analysis representing uncertainty with simple interval arithmetic computation has no need for consideration of probability distribution, it’s more practical and can be easily done; and interval arithmetic could track truncated error and rounded error automatically during calculation. So reliability analysis based on theory of interval analysis, named structural interval reliability analysis prevails in recent years, which as one of the non-probabilistic reliability analysis methods is one useful supplement to probabilistic reliability analysis, and could make up some drawbacks of probabilistic methods, such as a great number of data are required to determine the probability density function for stochastic methods and membership function for fuzzy methods, and practically high cost will pay out for acquiring these probability information, and little error in initial probability information will result in big error in reliability analysis, and the like. Thus far, there is still a long way to go for integral and regular system info of structural interval reliability analysis. So, this paper pays more attentions to some problems of structural interval reliability analysis.
     In structural interval reliability analysis, comparison between two interval variables will often be involved, such as the comparison between generalized interval strength and generalized interval stress, etc. Thus a detailed survey on comparing interval numbers is presented; which provides us the premise for structural interval analysis.
     After the survey on methods for comparison between interval numbers and definition given on interval variable, structural interval reliability analysis methods based on interval performance function and interval stress-interval strength interference model are analyzed. The interval reliability index was modified, and its geometrical meaning is deeply investigated following the definition of a standard transformation. Possibility degree based method for structural interval reliability is presented, and structural safety possibility degree (SPD), to characterize the safety of structure, is given. The characters of SPD are analyzed. When strength and stress are uniformly distributed in their interval fields, the relationship between structural SPD based on interval analysis and probability reliability degree based on probability analysis is investigated. It is concluded that SPD could provide us a reasonable estimation for the safety state of structures, even if there is no enough data for probability reliability analysis.
     In the presence of upper bound and lower bound of elements’reliability degree and independence of reliability among elements, interval reliability of some typical systems and its relation to elements’interval reliability are investigated. It is concluded that the properties of system point reliability (i.e. traditional probability reliability) are hold with quasi-consistency by system interval reliability.
引文
[1]董聪.现代结构系统可靠性理论及其应用[M].北京:科学出版社, 2001.
    [2] I Elishakoff. Essay on uncertainties in elastic and viscoelastic structures: from A M Freudenthal's criticisims to modern convex modeling [J]. Computers & Structures, 1995, 56(6): 871-95.
    [3]吕震宙,冯蕴雯.结构可靠性问题研究的若干进展[J].力学进展, 2000, 30(1): 21-28.
    [4] WL Oberkampf, JC Helton. Mathematical representation of uncertainty [J]. AIAA Report, NO: A0125436.
    [5] JC Helton, WL Oberkampf. Alternative representations of epistemic uncertainty [J]. Reliability Engineering & System Safety, 2004, 85(1-3): 1-10.
    [6] GJ Klir, RM Smith. On measuring uncertainty and uncertainty-based information: Recent developments. [J]. Annal Math Art Int, 2001, 32(1-4): 5-33.
    [7] YG Zhao, ZJ Lu. Fourth-moment standardization for structural reliability assessment [J]. J Struct Eng, 2007, 133(7): 916-24.
    [8] YG Zhao, T Ono. A general procedure for first/second–order reliability method (FORM/SORM) [J]. Structural Safety, 1999, 21(2): 95-112.
    [9] O Ditlevsen. Generalized second moment reliability index [J]. J Struct Mech, 1979, 7(4): 435-45.
    [10] YS Feng. A method for computing structural system reliability with high accuracy [J]. Computers & Structures, 1989, 33(1): 1-5.
    [11] YG Zhao, T Ono. Moment methods for structural reliability [J]. Structural Safety, 2001, 23(1): 47-75.
    [12] O Ditlevsen. Narow reliability bounds for structural systems [J]. J Struct Mech, 1979, 7(4): 453-72.
    [13] YG zhao, T Ono. New approximations for SORM: Part 1 [J]. J Eng Mech, 1999, 125(1): 79-85.
    [14] YG zhao, T Ono. New approximations for SORM: Part 2 [J]. J Eng Mech, 1999, 125(1): 86-93.
    [15] R Rackwitz. Reliability analysis-a review and some perspectives [J]. Structural Safety, 2001, 23(4): 365-95.
    [16] YJ Hong, J Xing, JB Wang. A second-order third-moment method for calculating the reliability of fatigue [J]. Int J Press Vessels Pip, 1999, 76(8): 567-70.
    [17] YG zhao, T Ono, M Kato. Second-Order Third-Moment Reliability Method [J]. J Struct Eng, 2002, 128(8): 1087-90.
    [18] Thoft-Christensen Palle, MJ Baker. Structural reliability theory and its applications [M]. New York: Springer-Verlag, 1982.
    [19] YG zhao, T Ono. System Reliability Assessment by Method of Moments [J]. J Struct Eng, 2003, 129(10): 1341-49.
    [20] YG zhao, T Ono. Third-moment standardization for structural reliability analysis [J]. J Struct Eng, 2000, 126(6): 724-32.
    [21]李清富,高建磊,乐金朝等.工程结构可靠性原理[M].郑州:黄河水利出版社, 1999.
    [22]迪特莱夫森,O,帮德森,HO.结构可靠度方法[M].上海:同济大学出版社, 2005.
    [23]赵国藩,金伟良,贡金鑫等.结构可靠度理论[M].北京:中国建筑工业出版社, 2000.
    [24]安伟光,蔡荫林,陈卫东.随机结构系统可靠性分析与优化设计[M].哈尔滨:哈尔滨工程大学出版社, 2005.
    [25] M Bernd. Discussion on“Structural reliability analysis through fuzzy number approach, with application to stability”[J]. Computers & Structures, 2004, 82(2-3): 325-27.
    [26] HC Wu. Fuzzy Bayesian system reliability assessment based on exponential distribution. [J]. Applied Mathematical Modeling, 2006, 30(6): 509-53.
    [27] YB Liu, Z Qiao, GY Wang. Fuzzy random reliability of structures based on fuzzy random variables [J]. Fuzzy sets and systems, 1997, 86(3): 245-355.
    [28] B Fabio, B Franco, GM Pier. Fuzzy reliability analysis of concrete structures[J]. Computers & Structures, 2004, 82(13-14): 1033-52.
    [29] HC Wu. Fuzzy reliability estimation using Bayesian approach [J]. Computers & Industrial Engineering, 2004, 46(3): 467-93.
    [30] JD Wang, TS Liu. Fuzzy reliability using a discrete stress-strength interference model [J]. IEEE Trans on R.iability, 1996, 45(1): 145-49
    [31] CB Brown. A fuzzy safety measure [J]. Journal of the Engineering Mechanics Division, 1979, (105): 855-72.
    [32] CB Brown, TP James, F Yao. Fuzzy sets and structure engineering [J]. Journal of Structural Engineering, 1983, (109): 1211-25.
    [33] LA Zadeh. Fuzzy sets as a basis for a theory of possibility [J]. Fuzzy sets and systems, 1978, 1(1): 3-28.
    [34] KY Cai, CY Wen, ML zhang. Fuzzy states as a basis for a theory of fuzzy reliability [J]. Microelectronics and Reliability, 1993, 33(15): 2253-63.
    [35] DH Hong, YD Hae. Fuzzy system reliability analysis by the use of (the weakest t-norm) on fuzzy number arithmetic operations [J]. Fuzzy sets and systems, 1997, 90(3): 307-16.
    [36] KY Cai, CY Wen, ML Zhang. Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context [J]. Fuzzy sets and systems, 1991, 42(2): 145-72.
    [37] VU Lev, VG Sergey. A general formal approach for fuzzy reliability analysis in the possibility context [J]. Fuzzy sets and systems, 1996, 83(2): 203-13.
    [38] HC Wu. Fuzzy reliability analysis based on closed fuzzy numbers [J]. Information Sciences, 1997, 130(1-4): 135-59.
    [39] QM Jiang, CH Chen. A numerical algorithm of fuzzy reliability [J]. Reliability Engineering & System Safety, 2003, 80(3): 299-307.
    [40] C Cremona, Y Gao. The possibilistic reliability theory: theoretical aspects and applications. [J]. Structural Safety, 1997, 19(2): 173-201.
    [41] B Li, ML zhu, K Xu. A practical engineering method for fuzzy reliability analysis of mechanical structures [J]. Reliability Engineering & System Safety, 2000, 67(3): 311-15.
    [42] Savoia Marco. Structural reliability analysis through fuzzy number approach,with application to stability [J]. Computers & Structures, 2002, 80(12): 1087-102.
    [43] KY Cai. System failure engineering and fuzzy methodology: An introductory overview [J]. Fuzzy sets and systems, 1996, 83(2): 113-33.
    [44] D James, WS Ihad, W Donald. A theory of independent fuzzy probability for system reliability [J]. IEEE Trans on Fuzzy Systems, 1999, 7(2): 286-94.
    [45]郭书祥,秦莲.不确定结构的模糊可靠性优化设计方法[J].空军工程大学学报, 2003, 4(6): 53-55.
    [46]黄洪钟.对常规可靠性理论的批判性评述-兼论模糊可靠性理论的产生、发展及应用前景[J].机械设计, 1994, (3): 1-5,47.
    [47]董玉革,朱文予,陈新昭.机械模糊可靠性计算方法的研究[J].系统工程学报, 2000, 51(3): 7-12.
    [48]董玉革.机械模糊可靠性设计[M].北京:机械工业出版社, 2000.
    [49]郭书祥,吕震宙,冯立富.基于可能性理论的结构模糊可靠性方法[J].计算力学学报, 2002, 19(1): 89-93.
    [50]李廷杰.模糊可靠性概念和方法探讨[J].系统工程理论与实践, 1989, (3): 26-31,11.
    [51]蔡开元,文传源,张明廉.模糊可靠性理论中的基本概念[J].航空报, 1993, 14(7): 388-98.
    [52]董玉革.模糊强度应力为常量时模糊可靠性设计方法的研究[J].机械科学与技术, 1999, 18(3): 380-82.
    [53]韩恩厚,崔广椿.疲劳强度的模糊可靠性设计方法[J].航空学报, 1994, 15(1): 89-93.
    [54]陈生宝.试论模糊可靠性[J].系统工程理论与实践, 1991, (6): 642-49.
    [55]肖芳淳.复合材料结构灰色可靠性分析与设计[J].强度与环境, 2000, (1): 60-65.
    [56]段齐骏,张福祥.复杂系统可靠性研究中的灰色问题[J].系统工程理论与实践, 1999, (12): 96-98,119.
    [57]肖芳淳,张修碚.灰色可靠性分析及其应用的研究[J].强度与环境, 2001, (1): 38-42.
    [58]罗佑新,郭惠昕,张龙祥等.灰色可靠性设计模型及其在机械工程应用[J].国防科技大学学报, 2002, 24(1): 94-99.
    [59] I Elishakoff. Discussion on :a non-probabilistic concept of reliability [J]. Structural Safety, 1995, 17(3): 195-99.
    [60] Y Ben-Haim. A non-probabilistic concept of reliability [J]. Structural Safety, 1994, 14(4): 227-45.
    [61] Y Ben-Haim. A non-probabilistic measure of reliability of linear systems based on expansion of convex models [J]. Structural Safety, 1995, 17(2): 91-109.
    [62] FTK Au, YS Cheng, LG Tham, et al. Robust design of structures using convex models [J]. Computers & Structures, 2003, 81(28-29): 2611-19.
    [63]邱志平,陈山奇,王晓军.结构非概率鲁棒可靠性准则[J].计算力学学报, 2004, 21(1): 1-6.
    [64] LA Zadeh. Fuzzy sets [J]. Information and Control, 1965, 8(3): 338-53.
    [65]郭书祥,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型[J].计算力学学报, 2001, 18(1): 56-60.
    [66]王登刚,李杰.结构可靠性分析的区间方法[J].核动力工程,2002(12届全国反应堆结构力学会议论文专辑):244-47.
    [67]黄洪钟.复杂系统模糊-随机可靠性分析的基本理论[J].机械科学与技术, 1992, (2): 1-5.
    [68]孙海龙,姚卫星.概率体系和非概率体系下结构元件的可靠性分析方法回顾[J].机械科学与技术, 2007, 26(2): 140-46.
    [69]郭书祥,吕震宙,刘成立等.概率与非概率混合结构体系失效概率的区间分析[J].西北工业大学学报, 2003, 21(6): 667-70.
    [70]郭书祥,吕震宙.结构可靠性分析的概率和非概率混合模型[J].机械强度, 2002, 24(4): 524-26.
    [71]董玉革,陈新昭,朱文予.模糊随机应力时的机械可靠性设计[J].机械科学与技术, 2000, 19(6): 891-92.
    [72]董玉革.随机变量和模糊变量组合的模糊可靠性设计[J].机械工程学报, 2000, 36(6): 25-29.
    [73]董玉革.随机应力模糊强度时机械零件模糊可靠性设计方法的研究[J].机械设计, 1999, 16(3): 11-13.
    [74]黄洪钟,孙占全,郭东明等.随机应力模糊强度时模糊可靠性的计算理论[J].机械强度, 2001, 23(3): 305-7.
    [75]黄洪钟.同时考虑模糊性和随机性的系统可靠性分析方法[J].机械科学与技术, 1992, 14(3): 11-13,17.
    [76] KY Cai, Wen CY, Zhang ML. Posbist reliability behavior of typical systems with two types of failures [J]. Fuzzy sets and systems, 1991, 43: 17-32.
    [77] KY Cai, CY Wen, ML zhang. Posbist reliability behavior of fault tolerant systems [J]. Microelectronics and Reliability, 1995, 35(1): 49-56.
    [78]黄洪钟.关于模糊可靠性若干基本问题的讨论(一)将清晰功能拓广到模糊功能[J].机械科学与技术, 1993, 9(3): 1-6.
    [79]黄洪钟.关于模糊可靠性若干基本问题的讨论(二)―将清晰工作时间拓广到模糊工作时间[J].机械科学与技术, 1993, 9(4): 1-8.
    [80]董玉革,陈心昭,赵显德等.基于模糊事件概率理论的模糊可靠性分析通用方法[J].计算力学学报, 2005, 22(3): 283-86.
    [81]黄洪钟,田志刚.基于广义模糊随机强度的模糊可靠性计算理论[J].机械工程学报, 2002, 38(8): 50-53.
    [82]邓聚龙.灰色系统基本方法[M].武汉:华中科技大学出版社(第2版), 2005.
    [83] ZP Qiu, PC Müller, A Frommer. The New Non-probabilistic Criterion of Failure for Dynamical Systems Based on Convex Models [J]. Mathematical and Computer Modeling, 2004, 40(1-2): 201-15.
    [84]郭书祥.非随机不确定结构的可靠性方法和优化设计研究[D].西北工业大学, 2002.
    [85]郭书祥,冯元生,吕震宙.机械静强度可靠性设计的非概率方法[J].机械科学与技术, 2000, 19(增刊): 106-7.
    [86]郭书祥,吕震宙.结构体系的非概率可靠性分析方法[J].计算力学学报, 2002, 19(3): 332-35.
    [87]郭书祥,吕震宙.结构的非概率可靠性方法和概率可靠性方法的比较[J].应用力学学报, 2003,20(3): 107-11.
    [88]郭书祥,张陵,李颖.结构非概率可靠性指标的求解方法[J].计算力学学报, 2005, 22(2): 227-31.
    [89]江涛.结构系统非概率可靠性算法研究[D].西安电子科技大学, 2006.
    [90]江涛,陈建军,张建国等.非概率可靠性指标的存在性研究及其半解析解法[J].中国机械工程, 2005, 16(21): 1894-98.
    [91]魏宗平.机械非概率可靠性分析与可靠性优化设计研究.西安电子科技大学[D], 2006.
    [92]易平.对区间不确定性问题的可靠性度量的探讨[J].计算力学学报, 2006, 23(2): 152-56.
    [93] P Thoft-Christensen, MJ Baker. Structural reliability theory and its applications [M]. New York: Springer-Verlag, 1982.
    [94]姚卫星,顾怡.结构可靠性设计[M].北京:航空工业出版社, 1997.
    [95] G Maymon, "What about uncertainties in the model?". AIAA Report, NO:2005-2139.
    [96] AM Hasofer, NC Lind. An exact and invariant first order reliability format [J]. J Eng Mech Div, 1974, 100(1): 111-21.
    [97] L Xu, GD Cheng. Discussion on: moment methods for structural reliability [J]. Structural Safety, 2003, 25(2): 193-99.
    [98] FS Wong. Uncertainties in Dynamic Soil-Structure Interaction [J]. J Eng Mech, 1984, 110(2): 308-24.
    [99] CG Bucher. A fast and efficient response surface approach for structural reliability problems [J]. Structural Safety, 1990, 7(1): 57-66.
    [100] HP Gavin, SC Yau. High-order limit state functions in the response surface method for structural reliability analysis [J]. Structural Safety, 2007: doi:10.1016/j.strusafe.2006.10.003.
    [101] P Thoft-Christensen, Y Murotsu. Application of structural systems reliability theory [M]. Berlin: Springer-verlag, 1986.
    [102]刘宁.可靠度随机有限元法及其工程应用[M].北京:中国水利水电出版社, 2001.
    [103] M Bernd, G Wolfgang, B Michael. Safety assessment of structures in view of fuzzy randomness [J]. Computers & Structures, 2003, 81(15): 1567-82.
    [104] CP Pantelides, Ara Ganzerli. Comparison of fuzzy set and convex model theories in structural design [J]. Mechanical systems and Signal Processing,2001, 15(3): 499-511.
    [105] HC Wu. Bayesian system reliability assessment under fuzzy environments [J]. Reliability Engineering & System Safety, 2004, 83(3): 277-86.
    [106] RR Yager. Fuzzy set and possibility theory [M]. New York: Pergamon Press, 1982.
    [107] LA Zadeh. Probability measures of fuzzy events [J]. J Math Analy Appl, 1968, 23(2): 421-27.
    [108]郭书祥,吕震宙,冯立富.结构的失效可能度及模糊概率计算方法[J].应用数学和力学, 2003, 24(3): 300-4.
    [109]吕震宙,冯元生.元件强度可靠性的模糊概率计算模型[J].航空学报, 1996, 19(6): 752-54.
    [110]田艳芳.基于模糊随机变量的结构可靠性分析[J].数学的实践与认识, 2006, 36(12): 149-52.
    [111]董玉革,朱文予,陈心昭.机械模糊可靠性计算方法的研究[J].系统工程学报, 2000, 15(1): 276-83.
    [112] Y Zhang, GY Wang, F Su. The general theory for response analysis of fuzzy stochastic dynamic systems [J]. Fuzzy sets and systems, 1996, 83(3): 369-405.
    [113] B M?ller, W Graf, M Beer, et al. Fuzzy randomness-Towards a new meodeling of uncertainty [C]. Proceedings of Fifth World Congress on Computational Mechanics, Vienna, Austria, 2002: 1-10.
    [114] V Jr?tschmer. A unified approach to fuzzy random variables [J]. Fuzzy sets and systems, 2001, 123(1): 1-9.
    [115] N Watanabe, T Imaizumi. A fuzzy correlation coefficient for fuzzy random variables [C]. Proceedings of IEEE International Fuzzy systems conference Proceedings, Seoul, Korea, 1999: 1035-38.
    [116] A Colubi, C Fernández-García, MáGil. Simulation of random fuzzy variables: An Empirical approach to statitical/probabilistic studies with fuzzy experimental data [J]. IEEE Trans Fuzz Sys, 2002, 10(3): 384-90.
    [117] GY Wang, Y Zhang. The theory of fuzzy stochastic processes [J]. Fuzzy sets and systems, 1992, 51(2): 161-78.
    [118]吕震宙,冯元生.结构强度的广义可靠性模型[J].机械科学与技术, 1996, 15(1): 45-50.
    [119] I Elishakoff, B Ferracuti. Fuzzy sets based interpretation of the safety factor [J]. Fuzzy sets and systems, 2006, 157(18): 2495-512.
    [120]胡宝清.模糊理论基础[M].武汉:武汉大学出版社, 2004.
    [121]陈举华,于奎刚,史岩彬.基于灰色理论的机电系统全寿命小子样系统研究[J].机械设计, 2005, 22(9): 7-9.
    [122]吴俊飞,李瑰贤,李华敏等.灰色关联分析法在机械可靠性工程中的应用[J].哈尔滨工业大学学报, 1999, 31(5): 114-17.
    [123]罗佑新.灰色关联分析在疲劳中的应用[J].机械, 1994, 21(4): 19-22.
    [124]李正农,袁文阳,张风等.基于灰色系统理论的结构时变可靠度分析[J].武汉水利电力大学学报, 1996, 29(6): 163-165.
    [125]陆洲导,李灿灿,李刚.灰色聚类法在已有建筑物可靠性鉴定中的应用[J].同济大学学报(自然科学版), 2006, 34(7): 874-879.
    [126] L Fryba, N Yoshikawa. Bounds analysis of a beam based on the convex model of uncertain foundation [J]. Journal of Sound and Vibration, 1998, 212(3): 436-46.
    [127] SR Tzan, CP Pantelides. Convex mdoels for impulsive response of structures [J]. J Eng Mech, 1996, 122(6): 521-29.
    [128] ZP Qiu. Convex models and interval analysis method to predict the effect of uncertain-but-bounded parameters on the buckling of composite structures [J]. Comput Methods Appl Mech Eng, 2005, 194(18-20): 2175-89.
    [129] Y Ben-Haim. Convex models of uncertainty in radial pulse buckling of shells [J]. J Appl Mech, 1993, 60(3): 683-88.
    [130] Y Ben-Haim. Convex models of uncertainty: Applications and implications [J]. Erkenntnis, 1994, 41(2): 139-56.
    [131] CY He, JH Zhang. Convex-model analysis of the seismic response [J]. Appl Math Mech, 1997, 18(10): 941-47.
    [132] CP Pantelides, S Ganzerli. Desing of trusses under uncertain loads using convex models [J]. J Struct Eng, 124(3): 318-29.
    [133] Y Ben-Haim. Fatigue lifetime with load uncertainty represented by convex model [J]. J Eng Mech, 1994, 120(3): 445-62.
    [134] Y Ben-Haim, G. Chen, TT Soong. Maximum Structural Response Using Convex Models [J]. J Eng Mech, 1996, 122(4): 325-33.
    [135] I Elishakoff, P Elisseefff, SAL Glegg. Non-probabilistic, convex theoretical modeling of scattering material properties [J]. AIAA Journal, 1994, 32(4): 843-49.
    [136] Y Ben-Haim. Sequential Tests Based on Convex Models of Uncertainty [J]. Mechanical systems and Signal Processing, 1998, 12(3): 427-48.
    [137] M Lombardi. Optimization of uncertain structures using non-probabilistic models [J]. Computers & Structures, 1998, 67(1): 99-103.
    [138] ZP Qiu, XJ Wang. Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach [J]. Int J Solid Struct, 2003, 40(20): 5423-39.
    [139] ZP Qiu, XJ Wang. Two non-probabilistic set-theoretical models for dynamic response and buckling failure measures of bars with unknown-but-bounded initial imperfections [J]. Int J solid Struct, 2005, 42(3-4): 1039-54.
    [140] I Elishakoff, P Colombi. Combination of probabilistic and convex models of uncertainty when scare knowledge is present on acoustic excitation parameters [J]. Comput Meth Appl Mech Eng, 1993, 104: 187-209.
    [141] RE Moore. Interval analysis [M]. Englewood Cliffs, NJ: Prentice Hall, 1966.
    [142] ZP Qiu, XJ Wang, MI Friswell. Eigenvalue bounds of structures with uncertain-but-bounded parameters [J]. J Sound Vibration, 2005, 282(1-2): 297-312.
    [143] ZP Qiu, SH Chen, HB Jia. The rayleigh quotient iteration method for computing eigenvalue bounds of structures with bounded uncertain parameters [J]. Computers & Structures, 1995, 55(2): 221-27.
    [144] ZP Qiu, SH Chen, I Elishakoff. Bounds of eigenvalues for structures withan interval description of uncertain-but-non-random parameters [J]. Chaos, Solutions :& Fractals, 1996, 7(3): 425-34.
    [145] ZP Qiu, SH Chen, I Elishakoff. Non-probabilistic eigenvalue problem for structures with uncertain parameters via interval analysis [J]. Chaos, Solutions :& Fractals, 1996, 7(3): 303-8.
    [146] ZP Qiu, I Elishakoff, JH Starnes. The bound set of possible eigenvalues of structures with uncertain but non-random parameters [J]. Chaos, Solutions :& Fractals, 1996, 7(11): 1845-57.
    [147] ZP Qiu, I Elishakoff. Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis [J]. Comput Meth Appl Mech Eng, 1998, 152(3-4): 361-72.
    [148] ZP Qiu, I Elishakoff. Anti-optimization technique-a generalization of interval analysis for nonprobabilistic treatment of uncertainty [J]. Chaos, Solutions :& Fractals, 2001, 12(9): 1747-59.
    [149] ZP Qiu, JX Hu, JL Yang, et al. Exact bounds for the sensitivity analysis of structures with uncertain-but-bounded parameters [J]. Appl Math Mech, (2007), doi:10.1016/j.ap.2007.03.004.
    [150] ZP Qiu, XJ Wang. Solution theorems for the standard eigenvalue problem of structures with uncertain-but-bounded parameters [J]. J Sound Vibration, 2005, 282(1-2): 381-99.
    [151] ZP Qiu, XJ Wang, JY Chen. Exact bounds for the static response set of structures with uncertain-but-bounded parameters [J]. Int J solid Struct, 2006, 43(21): 6574-93.
    [152] ZP Qiu, XJ Wang. Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis [J]. Int J Solid Struct, 2005, 42(18-19): 4958-70.
    [153] ZP Qiu, XJ Wang. Several solution methods for the generalized complex eigenvalue problem with bounded uncertainties [J]. Int J solid Struct, 2005, 42(9-10): 2883-900.
    [154] JS Sim, ZP Qiu, XJ Wang. Modal analysis of structures with uncertain-but-bounded parameters via interval analysis [J]. J SoundVibration, 2007, 303(1-2): 29-45.
    [155] SH Chen, ZP Qiu, DT Song. A new method for computing the upper and lower bounds on frequencies of structures with interval parameters [J]. Mechanics Research Communications, 1995, 22(5): 431-39.
    [156]邱志平,马丽红,王晓军.不确定非线性结构动力响应的区间分析方法[J].力学学报, 2006, 38(5): 645-51.
    [157]苏静波.工程结构不确定性区间分析方法及其应用研究[D].河海大学, 2006.
    [158]苏静波,邵国建.基于区间分析的工程结构不确定性研究现状与展望[J].力学进展, 2005, 35(3): 338-44.
    [159] RE Moore. Methods and applications of interval analysis [M]. Philadelphia: SIAM, 1979.
    [160] HL Sun, WX Yao. The basic properties of some typical system's reliability in its interval form [J]. Structural Safety(2007): doi:10.1016/ j.strusafe.2007.05.003.
    [161]程远胜,钟玉湘,曾广武.基于概率和非概率混合模型的结构鲁棒设计方法[J].计算力学学报, 2005, 22(4): 501-5.
    [162] G Alefeld, J Herzberger. Introduction to interval computations [M]. New York: Academic Press, 1983.
    [163] L Jaulin, K Michel, D Olivier. Applied interval analysis [M]. London: Springer, 2001.
    [164] G Alefeld, D Claudio. The basic properties of interval arithmetic, its sofeware realizations and some applications [J]. Computers & Structures, 1998, 67(1): 3-8.
    [165] R Moore, W Lodwick. Interval analysis and fuzzy set theory [J]. Fuzzy sets and systems, 2003, 135(1): 5-9.
    [166] SS Rao, L Berke. Analysis of uncertain structural systems using interval analysis [J]. AIAA Journal, 1997, 35(4): 727-35.
    [167]吕震宙,冯蕴雯,岳珠峰.改进的区间截断法及基于区间分析的非概率可靠性分析方法[J].计算力学学报, 2002, 19(3): 260-64.
    [168] JLD Comba, J Stolfi. Affine arithmetic and its applications to computergraphics. [C]. Proceedings of Proceedings of Anais do VII SIBGRAPI, 1993: 9-18.
    [169] LH de Figueiredo, J Stolfi. Affine arithmetic:concepts and applications [J]. Numerical algorithms, 2004, 37(1-4): 147-58.
    [170]郭书祥,李杰.计算不确定结构系统静态响应的一种可靠方法[J].计算力学学报, 2003, 20(6): 662-69.
    [171] H Ishihuchi, M Tanaka. Multiobjective Programming in Optimization of the Interval Objective Function [J]. Europ J Operat Res, 1990, 48(2): 219-25.
    [172]徐泽水,达庆利.区间数的排序方法研究[J].系统工程, 2001, 19(6): 94-96.
    [173]张兴芳,张兴伟.区间数的排序及其在系统决策中的应用[J].系统工程理论与实践, 1999, 19(7): 112-15.
    [174]曾文艺,罗成忠,内孜阿吉.区间数的综合决策模型[J].系统工程理论与实践, 1997, 17(11): 48-50.
    [175]张全,樊治平,潘基惠.区间数多属性决策中一种带有可能度的排序方法[J].控制与决策, 1999, 14(6): 703-6,711.
    [176]刘进生,王绪柱.区间数排序[J].工程数学学报, 2001, 18(4): 103-9.
    [177]徐泽水,达庆利.区间数排序的可能度法及其应用[J].系统工程学报, 2003, 18(1): 67-70.
    [178]吴江,黄登仕.区间数排序方法研究综述[J].系统工程, 2004, 22(8): 1-4.
    [179]达庆利,刘新旺.区间数线性规划及其满意解[J].系统工程理论与实践, 1999, 19(4): 3-7.
    [180]张全,樊治平,潘基惠.不确定性多属性决策中区间数的一种排序方法[J].系统工程理论与实践, 1999, 19(5): 129-33.
    [181] A Sengupta, TK Pal. On Comparing Interval Numbers [J]. Europ J Operat Res, 2000, 127(1): 28-43.
    [182] Y Nakahara, M Sasaki, M Gen. On the Linear Programming Problems with Interval Coefficients [J]. Int J Comput Indust Eng, 1992, 23(1-4): 301-4.
    [183] Kundu. Min-transitivity of fuzzy leftness relationship and its application todecision making [J]. Int J Comput Indust Eng, 1997, 86(3): 357-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700