钢框架风荷载作用下适用性研究及可靠度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在结构设计中,考虑风荷载作用时,必须同时兼顾结构的安全性和适用性。结构的安全性主要包括结构的承载力和稳定性,适用性主要指结构的水平侧移及舒适度。结构适用性问题虽然不会直接影响结构安全,但是,如果结构侧移过大或产生过度振动,会严重影响建筑物的使用,给使用者带来不舒适的感觉。近年来,随着钢框架结构在我国得到了越来越广泛的应用,钢框架的适用性问题越来越突出,迫切需要开展进一步的研究。
     对钢框架房屋进行适用性研究主要存在以下两个关键问题有待解决:
     1、钢框架风荷载作用下适用性研究不多,规范条文也比较简略,使得设计人员在进行钢框架设计时,容易忽略适用性不足所带来的一系列问题,并且随着我国国民生活质量水平的日益提高,建筑的使用者们也对其建筑的居住和工作环境提出了更高的要求,设计者对适用性考虑的不足会严重影响建筑物的使用。同时,国内外对钢框架在正常使用极限状态下的可靠度研究开展得较少,成果也不成熟。为了保证结构在设计基准期内正常使用时能具有良好的工作性能,对钢框架进行正常使用极限状态下可靠度的研究十分必要,以利于在统一的结构可靠性设计标准下对其进行设计
     2、现行GB50017-2003《钢结构设计规范》中对结构的水平侧移限值方面给出了统一的规定,对设计方法方面,允许设计人员同时采用一阶分析方法或二阶分析方法来对结构进行分析。由于一阶分析与二阶分析所用的方法不同,这样,对于同一个结构,在相同的荷载条件下,如果采用了一阶分析的方法,计算出的结构侧移满足现行钢结构设计规范侧移限值的要求,当采用二阶分析的方法后,因二阶侧移会比一阶侧移增大很多,因此会出现二阶侧移不满足现行钢结构设计规范的情况,从而导致设计人员无据可依。
     基于上述背景,本文主要做了以下几方面的工作:
     (1)研究了风荷载计算方法、风荷载重现期、非结构构件的侧移损坏限值、结构分析方法及计算模型对钢框架在风荷载作用下侧移计算的影响,对目前钢框架侧移限值研究中存在的一些问题进行了分析与研究。同时给出了符合我国国情的钢框架风荷载作用下侧移调查问卷,可用于对我国结构工程师钢框架侧移设计现状进行调查研究。
     (2)着重针对结构分析方法对钢框架在风荷载作用下侧移计算的影响开展了深入研究,分别采用传统一阶侧移计算方法、二阶简化侧移计算方法、二阶精确侧移计算方法对一榀2跨15层钢框架在正常使用极限状态时的侧移变形进行了计算,获得了钢框架在三种计算方法下的顶点侧移及层间侧移,并将获得的侧移计算结果进行了对比,研究了钢框架考虑二阶效应后对结构侧移变形的影响。
     (3)在上述基础上,针对钢框架结构考虑二阶效应后层间侧移和顶点侧移限值的取值进行了研究,通过结合规范中的二阶分析方法及可靠度理论,提出了钢框架结构考虑二阶效应影响后的层间侧移限值及顶点侧移限值,并通过算例对该侧移限值的使用进行了验证。
     (4)对钢框架在风荷载作用下的舒适度限值开展了研究,总结了影响人体舒适度的因素,结合香港规范、加拿大规范以及美国规范中有关舒适度要求的规定,提出了我国钢框架在风荷载作用下建议采用的顶点加速度限值。
     (5)基于我国JGJ99—89《高层民用建筑钢结构技术规程》和GB50017-2003《钢结构设计规范》中钢框架侧移及舒适度验算的计算模型,给出了结构在风荷载作用下侧移、舒适度的极限状态方程及统计参数,参考本文提出的二阶侧移限值及人体舒适度限值标准,提出了对钢框架建筑进行适用性可靠度分析的模型。采用国际结构安全度联合会(JCSS)推荐使用的JC法对钢框架正常使用极限状态适用性可靠度进行了计算,并通过算例进行了验证。
Safety and serviceability of steel frame structures under wind load must be considered in their design. The safety of the structures includes the bearing capacity and stability, the serviceability of the structures mainly refers to the lateral drift and human comfort. Although structural serviceability issues will not directly affect the safety of structures, but if the structure drift is too large or has excessive vibration, it will seriously affect the use of the building, make the users feel uncomfortable. In recent years, the steel frame structure has been more widely used in china, the serviceability problems of steel frame are becoming prominent and need for further research in urgent.
     The following two key issues need to solve in the serviceability research of steel frame structures:
     First, our country is currently lack of research on serviceability of steel frame under wind load, the code's specifications for the lateral drift are also relatively brief. It will make designers easy to overlook a series of problems which cause by serviceability when designing a steel frame. As our nation's living condition getting improve day by day, the building's user also ask for a higher demand of they living and working environment in the building. If the designers lack of consideration of the building's serviceability,it will seriously affect the use of the building. At the same time,the researches on reliability of steel frame under serviceability limit state are also few,and the research results are not mature enough. in order to ensure the structurals have good performance when in service, it is necessary to carry out researches on the reliability of steel frame under serviceability limit state.
     Secondly, in our nation's current GB50017-2003'Code for Design of Steel Structure', the structure's drift limits are given in a uniform provision, when it allows designers to use both first-order and second-order analysis methods for structural analysis. for the drift result obtain by second-order analysis is more than the result obtain by first-order analysis, so, for the same structure, in the same load conditions, if we adopt first-order analysis method to calculate the drift of structure to meet the required drift limits of current steel structure design specifications, when we adopt second-order analysis method, the drift result may not satisfied with the specifications, it will make designers feel confused.
     Against this background, this article mainly carries out researches on the following areas:
     First, this paper research on those factors including wind load calculation methods, wind load return period, nonstructural component's drift damage thresholds, structure analysis method and calculation model which effect the calculation of structural drift under wind loads. Then carry out studies on those problems currently exist in drift limit research of steel frame. At last, a drift questionnaire of steel frame under wind load which meet our national conditions is given, it can be used to investigate and study the current structure engineers design situation of steel frame.
     secondly, this paper respectively used traditional first order calculation method, second-order simplified calculation method and second-order accurate calculation method to calculate a2-bays15-story steel frame's lateral drift, the peak drift and inter-story drift of the steel frame use by three different methods are obtained. Then those drift results were compared. The influences on the drift of steel frame when considering second-order effect are study.
     Third, this article research on the reasonable inter-story drift and peak drift limits of steel frame considering the second-order effect, the second-order inter-story drift and peak drift limits of steel frames is given by using reliability theory and the analysis method which is used in present standard. Some examples are carrying out for the second-order drift limits verification.
     Fourth, the paper launched a study on human comfort limits of steel frame under wind loads, those factors that affect human comfort are summarized. Finally, the recommendations of peak acceleration limit of steel frame under wind load are given.
     Fifth, based on the calculation model of drift and human comfort in our nation's JGJ99-89'Technical Specification for Steel Structure of Tall Buildings' and GB50017-2003'Code for Design of Steel Structure', the limit state equation and statistical parameters of drift and human comfort are given. Reference to the second-order drift and human comfort limits proposed in this paper, the reliability analysis model of steel frame on serviceability limit state is proposed. Finally, the reliability of steel frame under serviceability limit state is calculated by JC method and has been verified by some numerical examples.
引文
[1]赵西安.高层建筑结构实用设计方法.上海:同济大学出版社,1992,47-50,74-78,102-118.
    [2]Marianne N Michaels, Kenny C S Kwok, Peter A Hitchcock.Human body response to low frequency narrowband random building motions.The seventh Asia-Pacific conference on wind engineering.Taipei, Taiwan,2009:195-198.
    [3]戴国欣,夏正中.建筑钢结构适用性分析.建筑结构学报,2000,21(3):36-40.
    [4]JGJ99-98.高层民用建筑钢结构技术规程.北京:中国建筑工业出版社1999,11-29.
    [5]TJ17-74.钢结构设计规范.北京:中国计划出版社,1974,1-24.
    [6]GBJ17-88.钢结构设计规范.北京:中国计划出版社,1988,11-39.
    [7]GB50017-2003.钢结构设计规范.北京:中国国计划出版社,2003,13-14.
    [8]魏明钟.钢结构设计新规范应用讲评.北京:中国建筑工业出版社,1991,63.
    [9]澳门特别行政区第29/2001号行政法规.建筑钢结构规章http://www.1dstruc.com/simple/index.php?t29042.html,2005-8-11.
    [10]Code of Practice for the Structural Use of Steel 2005.HK:Buildings Department of HKSAR Government,2005,46-48.
    [11]ANSI/AISC 360-05.Specification for Structural Steel Buildings.Chicago:AISC, 2005,143-144.
    [12]ASCE7-05 Minimum design loads for buildings and other structure, New York: ASCE,2006,384.
    [13]AS4100-1998.Steel Structures,Canberra: Standards Association of Australia,1998,39-42.
    [14]BS 5950.Structural use of steel work in buildings. London:British Standards Institution,1990,23-24.
    [15]CAN/CSA-S16-01.Limit States Design of Steel Structures.Ottawa:Canadian Standards Association,2005,133-135.
    [16]EN 1993-1-1-2005.Eurocode 3:Design of Steel Structure,75.
    [17]Gardner L, Nethercot D A. Designers' Guide to EN 1993-1-1 Eurocode 3: Design of Steel Structures. London:Thomas Telford Publishing,2005,130-135.
    [18]魏琏.高层建筑结构位移控制研讨.建筑结构,2000,30(6):27-30.
    [19]Fleming J F, Podolny W Jr, Rile T S.Drift study of tapered framework.Civil Engineering,1967,37 (17):34-41.
    [20]Augustyn J. Structural Design of Tall Steel Buildings in the Light of Polish Standards and Specifications. In:Proceedings of the Regional Conference on Planning and Design of Tall Buildings. Warsaw:Warsaw Technical University, 1973,199-209.
    [21]Johnston B G. Drift Criteria. In:Proceedings of the Regional Conference on Planning and Design of Tall Buildings. Warsaw:Warsaw Technical University, 1973,635-641.
    [22]Lemessurier W J. Summary Report on Planning and Design of Tall Buildings. In: Proceedings of the Regional Conference on Planning and Design of Tall Buildings. Warsaw:Warsaw Technical University,1973,89-96.
    [23]Faltus F,Marek P J.Current Specifications for Steek Buildings in Czechoslovakia and Comments to Standards in Some other East-European Countries. In: Proceedings of the Regional Conference on Planning and Design of Tall Buildings. Warsaw:Warsaw Technical University,1973,37-50.
    [24]Foreman M M.Wind Drift Criteria Currently Employed in Tall Building Design: Master degree of Massachusetts Institute of Technology.Cambridge: Massachusetts Institute of Technology,1975,1-6.
    [25]ASCE Task committee on Drift Control of Steel Building Structures. Wind Drift Design of Steel-Framed Buildings:State of the Art. Journal of Structural Engineering,1988,114(9):2085-2108.
    [26]R H Wood. The stability of tall buildings. Proc. Inst. Civ. Engrs,1958,11: 69-102.
    [27]Freeman S. Racking tests of high-rise building partitions. Journal of the structure division,1977,103(8):1673-1685.
    [28]Council on Tall Buildings and Urban Habitat.Structural design of tall buildings. Planing and Design of Tall Buildings New York:ASCE,1979,345-396.
    [29]Ad Hoc Committee on Serviceability Research. Structural serviceability:a critical appraisal and research needs. Journal of Structural Engineering,1986, 112(12):2646-2664.
    [30]吴绮云.田家骅,徐显毅.砖墙填充框架在单向及反复水平荷载作用下的性能研究.建筑结构学报,1980,8(4):38-44.
    [31]钟益村,田家骅等.钢筋混凝上结构房屋变形性能及容许变形指标.建筑结构,1984.12(2):38-45.
    [32]童岳生,钱国芳.砖填充墒钢筋混凝土框架的变形性能与承载能力.西安冶金 建筑学院学报,1985,37(6):1-20.
    [33]张晖,杨联萍,周文星.钢筋混凝土超高层建筑层间位移限值的探讨.建筑结构学报,1999,20(3):8-14.
    [34]忻鼎康,胡绍隆,蒋利学等.超高层混凝土结构的层间变形限值.建筑结构学报,2000,21(3):10-14.
    [35]袁钰,吴京.屈曲约束支撑框架层间位移及其限值的探讨.建筑结构,2009,39(8):73-76.
    [36]Pernica G. Dynamic live loads at a rock concert. Canadian Journal of Civil Engineering,1983,10(2):185-191.
    [37]National Building Code of Canada. Ottawa:National Research Council of Canada,1977,102-105.
    [38]钢构造建筑物钢结构设计技术规范(钢结构极限设计法).台北:中华民国内政部建筑研究所,2003,10-13.
    [39]建筑研究所.建筑物耐风设计规范及解说.台北:营建杂志社,2004,112-115.
    [40]Load and Resistance Factor Design Specification (For structural steel buildings), New York:AISC,1999,79-80.
    [41]Griffis L. Serviceability limit states under wind load, Engineering Journal, 1993,30(1):1-16.
    [42]User's Guide — NBC 2005 Structural Commentaries (Part 4). Ottawa:National Research Council of Canada,2006:56-57.
    [43]Chen P W, Robertson L E. Human perception threshold of horizontal motion. Journal of Structural Division,1972,98 (8):1681-1695.
    [44]Hansen R J, Reed J W, Vanmarcke E H. Human response to wind-induced motion of buildings. Journal of Structural Division,1973,99 (7):1589-1605.
    [45]Goto T. The criteria to motions in tall buildings (Part 1) factors affecting human perception and tolerance of motion. Transactions of the Architectural Institute of Japan,1975,237 (11):109-119.
    [46]Goto T. Studies on wind-induced motion of tall buildings based on occupants' reactions. Journal of Wind Engineering and Industrial Aerodynamics,1983, 13:241-252.
    [47]Lee B E. The perception of the wind-induced vibration of a tall building—a personal viewpoint. Journal of Wind Engineering and Industrial Aerodynamics, 1983,12:379-384.
    [48]Kanda J. Tamura Y, Fujii K. Probabilistic criteria for human perception of low-frequency horizontal motions. Proceedings of Symposium/Workshop on Serviceability of Buildings, Ottawa,Canada,1988,260-269.
    [49]Kanda J, Tamura Y, Fujii K. Probabilistic perception limits of low-frequency horizontal motions. Conference with International Participation, Serviceability of Steel and Composite Structures Proceedings, Pardubice, Czechoslovakia, 1990,61-72.
    [50]Jeary A P, Morris R G, Tomlinson R W. Perception of vibration tests in a tall building. Journal of Wind Engineering and Industrial Aerodynamics,1988,29: 361-370.
    [51]Goto T, Iwasa Y, Tsurumaki H. An experimental study on the relationship between motion and habitability in a tall residential building. Proceedings of Tall Buildings:2000 and Beyond, Fourth World Congress, Hong Kong,1990.
    [52]Kanda J, Tamura Y, Fujii K, et al. Probabilistic evaluation of human perception threshold of horizontal vibration of buildings (0.125 to 6.0 Hz). Proceedings of Structure Congress ⅩⅡ,Atlanta,1994,648-653.
    [53]Tamura Y. Application of damping devices to suppress wind-induced responses of buildings. Journal of Wind Engineering and Industrial Aerodynamics,1998, 74:49-72.
    [54]Burton M D, Kwok K C S, Hitchcock P A, et al. Frequency dependence of human response to wind-induced building motion. Journal of Structural Engineering,2006.132(2):296-303.
    [55]Kwok K C S, Hitchcock P A. Occupant comfort test using a tall building motion simulator. Proceedings of Fourth International Conference on Advances in Wind and Structures, Jeju, Korea,2008.
    [56]黄本才.高层民用建筑钢结构人体舒适度验算.建筑结构,1998,6:47-49.
    [57]李国强,李杰.高层建筑舒适度验算.工业建筑,1991,11:29-31.
    [58]GB50068-2001.建筑结构可靠度设计统一标准.北京:中国计划出版社,2001,12.
    [59]Galambos T, Ellingwood B. Serviceability limit states:deflection. Journal of Structural Engineering,1986,112(1):67-84.
    [60]D M Frangopol, Rachid Nakib.Reliability analysis of deflection-drift limited structures.Structure Safety,1988,5:159-168.
    [61]董安正,赵国藩.高层建筑结构位移控制的可靠性分析.建筑结构,2003,12(2):3-5.
    [62]董安正,赵国藩.高层建筑结构舒适度可靠性分析.大连理工大学学报,2002,42(4):472-476,
    [63]张扬,戴国欣.建筑钢结构适用性分析与蒙特卡罗实现.建筑科学,2004,20(6):26-31.
    [64]陈绍蕃.钢结构设计中的变形问题.钢结构,2003,18(5):1-5.
    [65]陈绍蕃.钢结构设计原理(第三版).北京:科学出版社,2005,171-213.
    [66]李继华.建筑结构概率极限状态设计.北京:中国建筑工业出版社,1990,259-308.
    [67]GBJ68—84建筑结构设计统一标准.北京:中国计划出版社,1984,21-23.
    [68]张明.结构可靠度分析—方法与程序.北京:科学出版社,2009,15-60.
    [69]《钢结构设计规范》编制组.钢结构设计规范应用讲解.北京:中国计划出版社,2003,16.
    [70]Charney F. Wind Drift Serviceability Limit State Design of Multistory Buildings.Journal of Wind Engineering and Industrial Aerodynamics,1990,36: 203-212.
    [71]Berding D C. Wind Drift Design of Steel Framed Buildings:An Analytical Study and a Survey of the Practice:Master degree of Virginia Polytechnic Institute and State University. Blacksburg:Virginia Polytechnic Institute and State University,2006,9-13.
    [72]GB50009-2001建筑结构荷载规范(2006年版).北京:中国建筑工业出版社,2006,28-48.
    [73]Loh P, Isyumov N. Overall Wind Loads on Tall Buildings and Comparisons with Code Values. Proceedings of the Fifth National Conference on Wind Engineering, Lubbock:Texas Tech University,1985,54-67.
    [74]Gamble S. Wind tunnel testing:A breeze through. Structure Magazine,2003, 11:34-50.
    [75]Finley A Charney, Daniel C Berding. Analysis and Commentary on the Results of a Nation Wide State-of-the-Practice Survey on Wind Drift Analysis and Design. In:Proceedings of the 2007 Structures Congress:New Horizons and Better Practices. New York:ASCE,2007,1-10.
    [76]National Building Code of Canada 1985. Ottawa:Associate Committee on the National Building Code.1985,27-45.
    [77]Algan B. Drift and Damage Considerations in Earthquake Resistant Design of Reinforced Buildings:Doctor degree of University of Illinois.Urbana: University of Illinois,1982,12-80.
    [78]Charney F A. Sources of Elastic Deformation in Laterally Loaded Steel Frame and Tube Structures. In:Proceedings of the world congress on tall buildings. Hong Kong:Council on Tall Buildings and Urban Habitat,1990,893-915.
    [79]童申家,童岳生.风荷载及竖向荷载作用下框架的侧移二阶效应.建筑结构,2006,36(7):41-43.
    [80]李国强,刘玉姝.钢结构框架体系整体非线性分析研究综述.同济大学学报,2003,31(2):138-144.
    [81]Kim SE, Chen WF. Practical advanced analysis for unbraced steel frame design. Journal of Structural Engineering,1996,122(11):1259-65.
    [82]Kim SE, Lee JS, Choi SH, et al. Practical second-order inelastic analysis for steel frames subjected to distributed load. Engineering Structural,2004, 26:51-61.
    [83]朱伯钦,周竞欧,许明哲.结构力学.上海:同济大学出版社,1994,187-219.
    [84]W.F Chen,T.Astuta,周绥平,陆楸,韩大建译,吴惠弼校.梁柱分析与设计(第一卷).北京:人民交通出版社,1997,385-390.
    [85]陈惠发.钢框架稳定设计.上海:世界图书出版公司,1999,43-261.
    [86]王勖成.有限单元法.北京:清华大学出版社,2003,1-10.
    [87]舒兴平.高等钢结构分析与设计.北京:科学出版社,2006,134.
    [88]舒兴平,沈蒲生.平面钢框架二阶效应的有限变形理论分析.钢结构,1999,14(43):5-9.
    [89]舒兴平,陈绍蕃.钢框架结构二阶弹性精确分析及简化方法.中国钢结构协会结构稳定与疲劳分会2000年学术交流会论文集:钢结构工程研究③.钢结构,2000,15(增刊):78-90.
    [90]GB50135-2006高耸结构设计规范.北京:中国计划出版社,2007,16.
    [91]赵国藩,金伟良,贡金鑫.结构可靠度理论.北京:中国建筑工业出版社,2000,3-52.
    [92]傅学怡.实用高层建筑结构设计.第二版.北京:中国建筑工业出版社,2010,50-300.
    [93]Islam M S, Ellingwood B, Corotis R B. Dynamic Response of Tall Buildings to Stochastic Wind Load. Journal of Structural Engineering,1990,116(11): 2982-3002.
    [94]Chang F K. Human Response to Motions in Tall Buildings. Journal of the Structural Division,1973,99(6):1259-1272.
    [95]International Organization for Standardization. Guidelines for the evaluation of the response of occupants of fixed structures, especially buildings and offshore structures, to low-frequency horizontal motion (0.063 to 1.0 Hz) ISO 6897:1984. Geneva:International Organization for Standardization,1984,5-17.
    [96]Isyumov N. Criteria for acceptable wind-induced motions of tall buildings. Proceedings of International Conference on Tall Buildings. Rio De Janeiro, 1993.
    [97]Lynn S Beedle. Monograph on planning and design of tall buildings. New York: ASCE,1980,59-73.
    [98]McNamara R, Kareem A, T Kijewski. Ask the Experts...Perception of Motion Criteria for Tall Buildings Subjected to Wind. Proceedings of Structures Congress 2002, Denver,2002.
    [99]Bashor R, T Kijewski-Correa, A Kareem. On the wind-induced response of tall buildings:The effect of uncertainties in dynamic properties and human comfort thresholds.Proc.10th America's Conference on Wind Engineering, Baton Rouge, LA,2005.
    [100]Boggs D. Acceleration indexes for human comfort in tall buildings-peak or RMS? CTBUH Monograph Chpt.13:Motion Perception Tolerance and Mitigation,1997.
    [101]Rachel Bashor, Ahsan Kareem. Probabilistic Assessment of Occupant Comfort in Tall Buildings. Don't Mess with Structural Engineers:Expanding Our Role Proceedings of the 2009 Structures Congress, Austin, Texas,2009.
    [102]Tallin A, Ellingwood B. Serviceability limit states:Wind induce vibrations. Journal of Structural Engineering,1984,110(10):2424-2437.
    [103]Irwin A W. Human response to dynamic motion of structures.The Structural Engineer,1978,56A (9):237-243.
    [104]Kenny C S Kwok, Peter A Hitchcock, Melissa D Burton. Perception of vibration and occupant comfort in wind-excited tall buildings, Journal of Wind Engineering and Industrial Aerodynamics,2009,97:368-380.
    [105]A W Irwin. Perception, comfort and performance criteria for human beings exposed to whole body pure yaw vibration and vibration containing yaw and translational components.Journal of Sound and Vibration,1981,76(4):481-497.
    [106]R. Bashor, T. Kijewski-Correa, A. Kareem. On the Wind-Induced Response of Tall Buildings:The Effect of Uncertainties in Dynamic Properties and Human Comfort Thresholds. Proc.10th America's Conference on Wind Engineering, Baton Rouge, LA,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700