贝叶斯概率水文预报系统及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文结合国家“973”和国家自然科学基金资助项目,在详尽综述国内外流域水文模型、洪水预报系统以及水文预报不确定性研究进展的基础上,着重研究并探讨了概念性流域水文模型参数优选技术以及贝叶斯概率水文预报系统的建模与应用。论文主要结论和创新点如下:
     (1) 综述了国内外概念性流域水文模型参数优选技术的研究现状,介绍并比较了常用的参数优选方法;着重探讨了目标函数及其组合求解技术,深入研究了多目标参数自动优选问题的参数解空间。实例研究结果表明:多目标参数自动优选方法能综合考虑水文过程的各要素,优于传统的单目标参数优选结果。
     (2) 介绍了贝叶斯预报处理器(BPF)和水文不确定性处理器(HUP),分别对其进行了实例研究。引入平稳序列的线性AR模型与线性扰动模型(LPM)对HUP的先验分布与似然函数作了改进。改进的HUP结构简单,避免了正态分位数转化,降低了由于选取、优选各变量边缘分布函数而产生的误差,并且较HUP的预报精度有一定提高。
     (3) 综述了国内外定量降水预报方法的研究进展及其与水文模型的耦合途径,分析研究了一个定量降水预报不确定性处理器(PUP)。在此基础上,提出并建立了三峡水库区间流域随机降水模型,选用最近邻相似法模拟降水量的时段分配系数。将所建随机降水模型与区间洪水预报模型相耦合,分析得到区间流域定量降水预报不确定性的解析解。实例研究结果表明,耦合模型可提高三峡水库区间流域的洪水预报精度,并提供了待预报流量的区间估计。
     (4) 比较分析了基于预见期降水信息的水文不确定性处理器(PD-HUP)。建立了贝叶斯概率水文预报系统以分析水文预报不确定性对预报结果的影响,利用全概率公式将PD-HUP与所建三峡水库区间流域随机降水模型耦合起来,得到水文预报不确定性的解析解。选取三峡水库区间流域的水文、气象资料对所建系统进行检验与探讨,结果表明贝叶斯概率水文预报系统可显著提高预报精度,并提供了待预报流量的分布函数和区间估计。
     (5) 提出了一个基于贝叶斯方法的实时洪水预报模型。该模型采用ARMA模型描述实测流量的先验分布,采用AR模型模拟预报残差的似然函数,并假定先验分布和似然函数均服从正态分布。根据贝叶斯公式综合得到后验分布函数,以其均值作为最终校正结果以发布洪水警报和防洪调度决策。实例研究结果表明:所建模型可显著提高预报精度,优于AR模型和递推最小二乘法(RLS),并提供了预报值的后验密度函数、区间估计等信息,实现了预报、校正与决策的有机耦合。
On the basis of reviewing of the hydrological model, flood forecasting system and hydrologic forecasting uncertainty in home and in abroad, the parameter calibration techniques for conceptual hydrological model and the probabilistic hydrologic forecasting system were studied and discussed in detail. This study was supported by the National Key Basic Research Program and the National Natural Science Foundation of China. The main results and innovation points of this thesis were summarized as follows:(1) After concisely reviewed the parameter calibration techniques for conceptual hydrological model, the parameter optimization algorithms were introduced and compared and the parameter space was analyzed deeply. The multi-objective functions and their combination as well as the solutions were also discussed in detail. It is found that automatic calibration using multiple objectives could consider of different aspects of the discharge hydrograph and has a better goodness-of-fit than that of the traditional single objective function.(2) The Bayesian processor of forecasting (BPF) and hydrologic uncertainty processor (HUP) were introduced and applied in the Baiyunshan basin and Three Gorges Reservoir (TGR) intervening basin, respectively. An autoregressive model and a linear perturbation model (LPM) were proposed to describe the Bayesian prior distribution and likelihood function of the HUP, respectively. The modified HUP is superior to current HUP that can not only avoid the normal quantile transform, but also can decrease the errors associated with the selection and calibration of the marginal distribution of the observed and simulated discharge. The application results show that the modified HUP can improve the flood forecasting accuracy.(3) The quantitative precipitation forecasting (QPF) and the coupling of the QPF with hydrologic model, and a precipitation uncertainty processor (PUP) were concisely reviewed and studied. A stochastic precipitation generator for TGR intervening basin was developed and the nearest neighbor bootstrapping regressive (NNBR) method was adopted to simulate the temporal disaggregation of the precipitation forecasts. The stochastic precipitation generator was coupled with the proposed flood forecasting model for TGR intervening basin and the analytic distribution of the quantitative precipitation forecasting uncertainty was obtained. It is shown that the coupling model could increase the flood forecasting precision and could also provide the interval estimation of the discharges to be forecasted.(4) A precipitation-dependent hydrologic uncertainty processor (PD-HUP) was studied and discussed. A probabilistic hydrologic forecasting system based on Bayesian method was developed to simulate the influence of flood forecasting accuracy corresponding to the predictive uncertainty, which is decomposed into quantitative precipitation forecasting uncertainty and hydrological model uncertainty. The PD-HUP and the proposed stochastic precipitation generator for TGR intervening basin were integrated together to get the predictive density function. By using the hydrologic and meteorological data of the TGR intervening basin, the proposed system was studied and discussed, it is shown that the proposed system not only can increase the forecasting precision, but also provide more useful information for flood control decision-making, such as the predictive distribution, interval estimation and so on.(5) A real-time flood-updating model based on the Bayesian method was proposed and developed. The ARMA model was used to describe the prior distribution of observed discharge and the AR model was adopted to simulate the likelihood function of forecasting error. Both the prior distribution and the likelihood function were assumed to be linear-normal distribution and they were integrated together to form a Bayesian posterior distribution, the mean values were treated as the finial results to issue flood warring and flood control decision-making. It is shown that the proposed model not only has a more superior forecasting precision than AR model and the recursive least-squares estimate (RLS) model, but also provides the posterior distribution of the discharge to be forecasted as well as the interval estimation, which could combine forecasting process and decision-making process together.
引文
[1] 郭生练,水库调度综合自动化系统[M].武汉:武汉水利电力大学出版社,2000.
    [2] 葛守西,现代洪水预报技术[M].北京:中国水利水电出版社,1999.
    [3] Krzysztofowicz, R., 2001. The case for probabilistic forecasting in hydrology [J]. J. Hydrol., 249(1-4): 2-9.
    [4] 黄伟军 丁晶,水文水资源系统贝叶斯分析现状与前景[J].水科学进展,1994,5(3):242-247.
    [5] Horton, R. E., 1931. The Role of Infiltration in the Hydrologic Cycle [J]. Trans. AGU, 189-202.
    [6] Sherman, L. K., 1932. Streamflow from Rainfall by the Unit Hydrograph Method [J]. Eng. N. Rec, 108: 501-505.
    [7] McCarthy, G. T., 1938. The unit hydrograph and flood routing. Presented at conference of U. S. Corps of Engineers, North Atlantic Division, (6).
    [8] Linsley, P. K., Kohler, M. A., Paulhus, J. L. H., 1949. Mc grow-Hill, New York 418-424.
    [9] Snyder, W. H., 1955. Hydrograph analysis by the method of least squares [J]. Proc. Am. Soc. Civil Engrs., 81, Separate No. 793.
    [10] Nash, J. E., 1957. The form of the instantaneous unit hydrograph [J]. Intern, Assoc. Sci, Hydrology, 45(3): 114-121.
    [11] Nash, J. E., 1960. An Unit Hydrograph Study-with Particular Reference to British Catchments [J]. The Institution of Civil Engineers Proceedings 17: 249-280.
    [12] Dooge, J. C., 1973. Linear Theory of Hydrologic Systems.美国政府印刷事务所,书号0100-02447.
    [13] Cook, H. L., 1946. The Infiltration Approach to the Calculation of Surface Runoff [J]. Trans. AGU, 27: 726-747.
    [14] Linsley, R. K., Kohler, M. A., Paulhus, J. L. J., 1949. Applied Hydrology. Me Grow-Hill, New York, 418-424.
    [15] Dooge, J. C. I., 1959. A general theory of the unit hydrograph [J]. J. Geophys. Res., 64(1): 241-256.
    [16] Amorocho, J., Orlob, G. T., 1961. Nonlinear Analysis of Hydrologic System. Univ. of Colif. Water Res. Center, Contribution No. 40, Nov.
    [17] Chow, V. T., 1967. A general report on new ideas and scientific methods in hydrology (simulation of the hydrologic behavior of watershed). Proc. Int, Hydrol. Symp., Fort Collins, Colo. 50-65.
    [18] WMO, 1975. Intercomparison of conceptual models used in operational hydrological forecasting. Operational Hydrology Report No. 7, WMO-PubI., No. 429, WMO, Geneva, Switzerland.
    [19] Crawford, N. H., Linsley, R. K., 1966. Digital Simulation in Hydrology, Stanford Watershed Model IV.
    [20] 熊立华 郭生练.分布式流域水文模型[M].北京:中国水利水电出版社,2004.
    [21] Burnash, R. J. C., Ferral, R. L., McGuire, R. A., 1973. A Ganeralied Streamflow System: Conceptual Modeling for Digital Computers.
    [22] 袁作新,流域水文模型[M].北京:水利电力出版社,1990.
    [23] Sittner, W. T., Schanss, C. E., Monro, J. C, 1969. Continuous Hydrograph Synthesis with an API-Type Hydrologic Model [J]. Water Resour. Res., 5(5): 1007-1022.
    [24] Soil Conservation Service (SCS) Computer model for project formulation hydrology, Tech. Release No. 20, USD A, Washington, D. C.
    [25] Feldman A. D., 1981. "HEC models for water resources system simulation: Theory and experience." [J]. Adv. Hydrosci., 12: 297-423.
    [26] Sugawara, M., et al., 1974. "Tank model and its application to Bird Creek, Wollombi Brook, Bikin River, Kitsu River, Sanga River and Nam Mune." Research Note, National Research Center for Disaster Prevention [J]. Kyoto, Japan, 11: 1-64.
    [27] Sugawara, M., 1995. "Chapter 6: Tank model."In: Computer models of watershed hydrology, V. P. Singh, ed., Water Resources Publications, Littleton, Colo. USA.
    [28] Beven, K J., Kirkby, M. J., 1979. A physically-based variable contributing area model of basin hydrology [J]. Hydrol. Sci. bull, 24(1): 43-69
    [29] Ciarapica L., Todini E., 2002. TOPKAPI: a model for the representation of the rainfall-runoff process at different scales [J]. Hydrol. Processes, 16, 207-229. DOI: 10.1002/hyp. 342.
    [30] Abbott, M. B., et al., 1986. An introduction to the Europen Hydrological System [J]. J. Hydrol., 87(1): 45-77.
    [31] Todini. E., 1996. The ARNO rainfall-runoff model [J]. J. Hydrol., 175(1-4): 339-382.
    [32] Todini E., 2002. "Chapter 16: The ARNO model." In: Mathematical models of large watershed hydrology. Singh, V. P., and Frevert, D. K., Ed. U.S.
    [33] Wood, E. F., Lettenmaier, D. P., Zartarian, V. G 1992. A land-surface hfdrology parameterization with subgrid variability for general circulation models [J]. J. Geophys. Res, 97: 2717-2728.
    [34] Liang, X., Lettenmaier. D. P., Wood, E. F., Burges, S. J., 1994. A simple hydrologically based model of land surface water and energy fluxes for general circulation models [J]. J. Geophy. Res, 99(D7): 14415-14428.
    [35] Liang, X., Lettenmaier, D. P., Wood, E. F., 1996. Surface soil moisture parameterization of the VIC-2L model: evaluation and modifications [J]. Global Planet. Change, 13: 195-206.
    [36] Liang, X., Xie, Z., 2001. A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models [J]. Advances in Water Resources, 24: 1173-1193.
    [37] Liang, X., Xie, Z., 2003. Important factors in land-atmosphere interactions: surface runoff generations and interactions between surface and groundwater [J]. Global and planetary change, 38: 101-114.
    [38] Bergstrom, S., 1992. The HBV model-its structure and applications. SMHI Rep. RH, No. 4. Norrkoping, Sweden.
    [39] Bergstrom, S., 1995. "Chapter 13: The HBV model." In: Computer models of watershed hydrology, V. P. Singh, ed., Water Resour. Publications, Littleton, Colo.
    [40] Rockwood, D. M., 1882. Theory and practice of the SSARR model as related to analyzing and forecasting the response of the hydrologic systems. Applied modeling in catchment hydrology, V. P. Singh, ed., Water Resources Publications. Colo., 87-106.
    [41] Bumash, R. J. C., Ferral, R. L., McHuire, R. A., 1973. A generalized streamflow simulation system-conceptual modeling for digital computers. Rep., US Dept. of Commerce, National Weather Service, Silver Springs, Md., and State of California, Dept. of Water Resources, Sacramento, Calif.
    [42] Kouwen, N., Soulis, E. D., Pietroniro, A., Donald, J., et al., 1993. Grouped response units for distributed hydrologic modeling [J]. Water Resour Plan Manage, 119(3): 289-305.
    [43] Zhao, R., 1980. The Xinanjiang model, Proceedings Oxford Symposium [J]. IAHS Pub, 129: 351-356.
    [44] Zhao, R., 1992. The Xinanjiang model applied in china [J]. J. Hydrol., 135: 371-381.
    [45] 赵人俊,王佩兰.子洲径流实验站产流产沙分析[J].人民黄河.1980,2(2):15-19.
    [46] 李琪.全国水文预报技术竞赛流域水文模型分析[J].水科学进展,1998,9(2):187-195.
    [47] 雒文生,胡春歧,韩家田.流域超渗—蓄满兼容产流模型的研究[J].水土保持学报,1992,6(4):6-13.
    [48] 包为民,王从良.垂向混合产流模型及应用[J].水文,1997,17(3):18-21.
    [49] 李兰等.流域水文分布动态参数反问题模型.见:朱尔明,中国学会优秀论文集[R],北京:中国三峡出版社,2000,322-329.
    [50] 任立良,刘新仁.数字高程模型在流域水系拓扑结构计算中的应用[J].水科学进展,1999,10(2):129-134.
    [51] 任立良,刘新仁.基于DEM的水文物理过程模拟[J].地理研究,2000,19(4):369-376.
    [52] 郭生练,熊立华等.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,2000,33(6):1-5.
    [53] 郭生练,熊立华等.分布式流域水文物理模型的应用与检验[J].武汉大学学报(工学版),2001,34(1):1-5.
    [54] Singh V P, Frevert D K., 2002. Mathematical Models of Large Watershed Hydrology [M]. Water Resources Publications, U.S.
    [55] O'Connell,P.E.,et al.,1986.英国实时水文预报研究实例.见Kraijenhoff, D.A.,Moll,J.R.,河川径流模拟与预报.荷兰D.Reidel公司出版.
    [56] 张恭肃,朱星明,杨小柳,安波,周森林.洪水预报调度自动化系统[J].水文,1988,8(5):1-6.
    [57] 史密斯,G.F.,1995.美国国家气象局河流预报系统的交互式预报.见:第二次中美水情预报研讨会论文集.北京:中国水利水电出版社.
    [58] 葛守西.专家交互式模式的研究[J].人民长江,1996,27(8):41-43.
    [59] 郭生练,彭辉,王金星.水库洪水调度系统设计与开发[J].水文,2001,21(3):4-7.
    [60] Guo, S., Zhang, H., Chen, H., Peng, D., Liu, P., Pang, B., 2004. Reservoir flood forecasting and control system in China [J]. Hydro. Science. J., 49(6): 959-972.
    [61] 沈燕舟(译).概率水文气象预报[A].第三届国际水文计划和国际水文科学协会George Kovacs研讨会论文译文选辑[C].水文科技信息,1997(增刊),23-28.
    [62] Cooke, W. E., 1906a. Forecasts and verifications In Western Australia [J]. Monthly Weather Review, 34(I): 23-24.
    [63] Cooke, W. E., 1906b. Weighting forecasts [J]. Monthly Weather Review, 34(6): 274-275.
    [64] Antolik, M. S., 2000. An overview of the National Weather Service's centralized statistical quantitative precipitation forecasts [J]. J. Hydrol., 239(1-4): 306-337.
    [65] 丁晶,邓育仁,傅军.探索水文现象变化的新途径——混沌分析[A],现代水文科学不确定性研究与进展[C].成都科技大学出版社,1994,4-7.
    [66] 张洪刚,郭生练,王才君,刘攀,彭定志.概念性流域水文模型参数优选技术研究[J].武汉大学学报(工学版),2004,37(3),18-23.
    [67] Kuczera, G., 1988. On validity of first-order prediction limits for conceptual hydrological models [J]. J. Hydrol., 103: 229-247.
    [68] Freer, J., Beven, A. M., Ambroise, B., 1996. Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach [J]. Water Resour. Res., 32 (7): 2161-2173.
    [69] Franks, S. W., Gineste, P., Beven, K. J., Merot, p., 1998. On constraining the predictions of a distributed model: The incorporation of fuzzy estimates of saturated areas into the calibration process [J]. Water Resour. Res., 34 (4): 787-797.
    [70] 张利平,夏军.短期定量降水预报研究进展[J].武汉水利电力大学学报,2000,33(1):63-67.
    [71] Georgakakos, K. P., Bras, R. L., 1984. A hydrologically useful station precipitation model, 1, Formulation, and 2, Applications [J]. Water Resour. Res., 20: 1586-1610.
    [72] Georgakakos, K. P., 2000. Covariance propagation and updating in the context of real-time radar data assimilation by quantitative precipitation forecast models [J]. J. Hydrol., 239(1-4): 115-129.
    [73] Grecu, M., Krajewski, W. E, 2000. Simulation study of the effects of model uncertainty in variational assimilation of radar data on rainfall forecasting [J]. J. Hydrol., 239(1-4): 85-96.
    [74] Smith, K. T., Austin, G. L., 2000. Nowcasting precipitation-a proposal for a way forward [J]. J. Hydrol., 239(1-4): 34-45.
    [75] Toth, E., Brath, A., Montanari, A., 2000. Comparison of short-term rainfall prediction models for real-time flood forecasting [J]. J. Hydrol., 239(1-4): 133-147.
    [76] Lardet, E, Obled, C., 1994. Real-time flood forecasting using a stochastic rainfall generator [J]. J. Hydrol., 162(3-4): 391-408.
    [77] Kelly, K. S., Krzysztofowicz, R., 2000. Precipitation uncertainty processor for probabilistic river stage forecasting [J]. Water Resour. Res., 36(9): 2643-2653.
    [78] Krzysztofowicz, R., 1999. Bayesian theory of probabilistic forecasting via deterministic hydrologic model [J]. Water Resour. Res., 35(9): 2739-2750.
    [79] Krzysztofowicz, R., Kelly, K.S., 2000. Hydrologic uncertainty processor for probabilistic river stage forecasting [J]. Water Resour. Res., 36(11): 3265-3277.
    [80] 程天文,陈洪经]随机水文学——周文德教授来华讲学主要内容之一[J].水文, 1981, 1(2):30-33.
    [81] 蓝永超.龙羊峡水库入库径流变化特征及趋势预测[J].冰川冻土,1999,21(3):281-286.
    [82] 温泉,张士军,张周胜.探求径流序列中的混沌特性[J].水电能源科学,1999,27(1):21-23.
    [83] 陈守煜.模糊水文学[J].大连理工大学学报,1988,28(1):93-97.
    [84] 蔡华,梁年生,舒畅.水电站洪水预报综合分析专家系统[J].华中电力,2000,13(1):5-6.
    [85]周念来,吴泽宇.水文要素模糊因果聚类预报及其应用[J].郑州工业大学学报,2000,21(1):58-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700