脑卒中躯干肌电生理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:脑卒中所致的偏瘫是由上运动神经元病变引起的,表现为损伤程度远端比近端重,四肢比躯干重。Carr LJ等证明躯干受双侧神经神经中枢支配,但在偏瘫患者的康复过程中,可常常看到偏瘫患者躯干控制功能发生障碍,对于躯干屈伸功能的研究,有的结果表明是由于躯干肌活动增强,健侧与患侧之间不平衡造成,有的结果与之相反。对于旋转功能的研究,除日本学者利用Cybex仪进行分析外,目前无人作其他方面的研究。本试验利用表面肌电仪收集躯干屈伸肌的sEMG信号,加以处理分析,具体研究偏瘫患者竖脊肌、腹直肌在屈伸动作中的改变及腹内斜肌、腹外斜肌、背阔肌、胸大肌、腰竖脊肌、胸竖脊肌在旋转动作中的改变,揭示其改变的机制及临床意义,是本试验的主要目的。
     材料与方法:实验对象取自2003年7月至2003年12月在吉林大学康复医学研究生培养基地(大连船舶神经康复医院)确诊住院的脑卒中偏瘫患者18例,7例正常人。对受试者进行肌电测试前先进行运动功能评价,根据运动评估量表(MAS法)将坐位平衡在II级至IV级步行能力III级及以下的病人分为一组,定为重偏瘫组。将坐位平衡V级及以上,步行能力在V级及以上的病人分为一组,定为轻偏瘫组。将正常人作为正常对照组。
     试验在防电磁干扰肌电图室内进行,采用DNI-200P型肌电图仪,Ag-Agcl表面电极,仔细处理肌肉表面,收集双侧腰竖脊肌、腹直肌、腹内斜肌、腹外斜肌、背阔肌、胸大肌的肌电信号。
     将受试者固定在无靠背椅子上,双手交握放于膝上。共需做
    
    
    五组动作:(1)受试者从放松坐位到直立坐位。(2)受试者从直立坐位至身体前倾45度处。(3)受试者从直立坐位至后伸30度处。(4)受试者从直立坐位至垂直向左旋转45度处。(5)受试者从直立坐位至垂直向右旋转45度处。分别记录受试者在放松坐位(静息位)、直立坐位、前倾45度位、后伸30度位、左旋45度位、右旋45度时的电压值。记录方法为描计基线6秒,以后每隔2秒记录一次,每个位置记录3次,取其平均值。
     采用SPSS11.0统计软件包进行数据处理,三组之间比较采用单因素方差分析(One way ANOVA),组内同种肌肉左右两侧比较采用配对样本t检验,以P<0.05、双侧检验为显著性水平。
     结果:对数据进行标准化处理。正常人竖脊肌曲线有明显的峰值,出现在前倾/静息时,而重偏瘫组无论是健侧或患侧,曲线较缓和,峰值出现不明显,与轻偏瘫组及正常组有明显的差异(P<0.05),且前倾与后伸比值也呈现比轻偏瘫组及正常组低的倾向(P>.05),轻偏瘫患者与正常人比较,曲线大致相当,统计学处理也没有明显差异。重偏瘫患者患侧腹直肌曲线较平坦,无明显的波峰及最低点,后伸/静息值较轻偏瘫患者及正常人低,前倾/后伸值较轻偏瘫者及正常人低,轻偏瘫患者与正常人比较无明显差异。
     与正常人比较,向健侧旋转时,重偏瘫病人健侧背阔肌、腹内斜肌的活动减低;向患侧旋转时,重偏瘫病人患侧背阔肌、腹内斜肌的活动减低。腹外斜肌、胸大肌的活动与正常组无明显差异。正常人左侧腰、胸竖脊肌的活动均较右侧强,重偏瘫患者无此差别。轻偏瘫患者躯干旋转肌群的活动与正常人无明显差异。
    
     结论:重偏瘫患者双侧竖脊肌前倾功能减退,双侧腹直肌后伸功能减退,轻偏瘫患者与正常人无明显差异。重偏瘫患者健侧与患侧躯干肌未见明显不平衡性,轻偏瘫患者与正常人也未见明显不平衡性。重偏瘫患者双侧腹内斜肌旋转功能减退,双侧背阔肌旋转功能减退,轻偏瘫患者与正常人无明显差别。重偏瘫患者双侧腹外斜肌、胸大肌在旋转中与正常人无明显差异,轻偏瘫患者与正常人无明显差别。竖脊肌在旋转中起稳定躯干的作用,重偏瘫患者双侧竖脊肌在旋转中与正常人无明显差异,轻偏瘫患者与正常人也无明显差异。综合来说,重偏瘫患者躯干屈伸旋转肌群功能减退,使重偏瘫患者躯干控制功能发生障碍。在偏瘫患者的康复过程中,重视肢体功能恢复的同时,也应强调躯干肌的训练,早期进行躯干肌训练可提高偏瘫的康复效果,有重要的意义。
Objective: Hemiparesis caused by upper motor lesions is known to be more detrimental to distal than proximal body musculature. This “proximal to distal” gradient of impairment is explained by the fact that motor neurons innervating axial and proximal limb muscles receive both ipsilateral and contralateral descending inputs, whereas peripheral muscles are supplied by motor neurons, of which the supraspinal input is mainly contralateral. But in the rehabilitation course of hemiparesis, the disfunction of trunk muscles is also seen. There some reports that the flexion-extension function of trunk muscles decrease. Some believe that the imbalance of paretic side and non-paretic side caused by the enhanced activity of trunk muscles contributes to the decrease. While some one have the contrary result. About rotatory function, there is no relative reports except Japanese scholar’ study using cybex to analyse the rotatory function. This paper uses surface EMG to collect data of flexion- extension muscles and rotatory muscles, and to study the presentation of lumber、thoracic erector spinae and rectus abdominis in trunk flexion-extension and the presentation of internal oblique、external oblique、latissimus dorsi、mass pectoris、lumber erector spinae、thoracic erector spinae in rotatory. To depict the change of trunk muscles and to clarify the clinical sense is the main purpose of this study.
    
     Subjects and methods: 18 strokes and 7 normals are involved in this study. Before test, all the patients accept MAS. According to MAS, the patients are divided into two groups: hemiplegia: sitting balance is beween II and IV degree and walking ability is below III degree. Hemiparesis: sitting balance is beyond V (including V) and walking ability is beyond V (including V). We choose 7 normals as controls.
     We use DNI-200P EMG machine and Ag-Agcl surface electrodes. Deal with the skin carefully when place electrodes and collect the EMG signals of bilateral lumber erector spinae、thoracic erector spinae、rectus abdominis、internal oblique、external oblique、latissimus dorsi、mass pectoris. The subjects are fixed on the chair without backrest. They are required to carry out five kinds of actions: (1) from relaxed sitting to upsitting. (2) to upsitting to forward 45degree. (3) to upsitting to backward 30 degree. (4) to upsitting to left rotatory 45degree.(5) to upsitting to right rotatory 45degree. At the end of each action, the EMG signals are collected three times every 2 seconds. We calculate the mean voltage value as the main data. Use SPSS 11.0 to analyse the data. Use independent t test to analyse the difference within the groups and use one way ANAVO to analyse the difference between groups. The significance is P <0.05, bilateral tested.
     Results: The curve of erector spinae of normals have apparent peak which occurs at forward/rest, while the curve of hemiplegia
    
    
    have not apparent peak no matter of paretic side and non-paretic side. There is significant difference between groups. The hemiplegia have less activity than hemiparesis and normals. When compared with normals, the rectus abdominis of hemiplegia have no apparent peak and tuough which occurs at backward/rest and forward/backward in normals. The significant difference between groups can also be seen. The hemiplegia have less activity than hemiparesis and normals. While the hemiparesis have the exactly the same activity when compared with normals.
     When compared with normals, the activity of internal oblique and latissimus dorsi decreases no matter when hemiplegia turn to the non-paretic side and non-paretic side. The activity of external oblique、mass pectoris have no significant difference when compared with normals. The normals have more activity of left erector spinae than of right erector spinae no matter when turn to left and turn to right. While the hemiplegia and hemiparesis have no such appearance. Hemiparesis have the same presentation of internal oblique、latissimus dorsi、external oblique、mass pectoris when compared with normals.
引文
常冬梅, 陈立嘉等. 闹卒中偏瘫的躯干与骨盆控制及站立与步行训练. 中国康复理论与实践, 2002,8(2):84-6.
    Carr LJ, Harrison LM. Evidence for innervation of certain homologous motoneurone pools in man. J Physiol, 1994,Mar 1;475(2):217-27.
    NG JosephK. -F, et al. Normalization for trunk muscles in subjects with and without back pain. Med. Sci. Sports Exerc, 2002,34(7): 1082-86.
    Zetterberg, C, G. B. J. Andersson, et al. The activity of individual trunk muscles during heavy physical loading. Spine, 1987, 12: 1035-1040.
    Ashton-Miller, J. a, et al. Biomechanics of the human spine and trunk. Exerc. Sport Sci. Rev. 1988, 16:169-204.
    Dumas, G. A, et al. A three-dimensional digitization method to measure trunk muscle lines of action. Spine, 1988, 13: 532-41.
    Vink, P, E. A. van der velde, et al. A functional subdivision of the lumber extensor musculature: recruitment patterns and force- RA-EMG relationships under isometric condition. Electromyogr. Clin. Neurophysiol, 1987, 27:517-25.
    Paton, M. E, et al. Functional differentiation within latissimus dorsi. Electromyogr. Clin. Neurophysiol, 1995,35:301-9.
    Tanaka S, H achisuka K, et al. Muscle strength of trunk flexion in
    
    
    post-stroke hemiplegic patients. Am J Phys Med Rehabil, 1998, 77(4)288-90.
    Tanaka S, H achisuka K, et al. Trunk rotatory muscle performance in post-stroke hemiplegic patients. Am J Phys Med Rehabil, 1997, 76(5)366-9.
    Dickstein R, Sheffi S, et al. Activation of flexor and extensor trunk muscles in hemiparesis. Am J Phys Med Rehabil, 2000, 79(3): 228-34.
    U. Winzeler-Mercay, H. Mudie. The nature of the effects of stroke on trunk flexor and extensor muscles during work and at rest. Disabil Rehabil, 2002, 24(17):875-86.
    Hsieh CL, Sheu CF, er al. Trunk control as an early predictor of comprehensive activities of daily living function in stroke patients. Stoke, 2002, 33(11):2626-30.
    陆敏, 尤春景. 脑卒中偏瘫患者躯干控制能力对ADL的影响. 中国康复, 1998, 13(3): 107-8.
    魏国荣, 宋兰欣. 躯干肌训练对偏瘫患者恢复的影响. 中国康复医学杂志, 1998, 13(3):108-10.
    石坚, 王淑英. 偏瘫的躯干治疗价值. 中国康复理论与实践, 1996, 2(1): 6-8.
    Dabies PM. Right in the Middle. Springer-Verlag Berlin Heidelberg, 1990,1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700