生物表面活性剂及其修复沉积物中铅污染的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的发展,大量重金属进入沉积物中,严重危害水生生物的生长,并通过生物富集、食物链放大等过程,进一步影响陆地物种和人类,给国家的经济造成了重大危害。近年来,重金属修复方法得到广泛研究。常采用的重金属修复方法主要有物理修复、化学修复和生物修复方法。物理修复工程量大,耗材耗力,而且很难将沉积物处理到要求值;化学修复会造成二次污染,因此都不是理想的重金属修复方法。生物表面活性剂是微生物在一定条件下产生的集亲水性和亲油性于一体的代谢产物。生物表面活性剂具有无毒、易生物降解等环境友好性,因而十分适合修复重金属污染。
     本文首先介绍了沉积物中重金属污染现状,主要修复方法及生物表面活性剂的应用;实验是以油田污水所筛选的高产生物表面活性剂菌株为实验对象,通过单因素分析方法确定了菌株的最佳发酵条件并提取生物表面活性剂;采用多种方法鉴定生物表面活性剂的结构,确定其为糖脂类生物表面活性剂;最后重点考察了在各条件下,生物表面活性剂对沉积物中重金属及其各形态的去除效果并探讨了生物表面活性剂与重金属作用的机理。所得结论如下:
     (1)菌株B-1为混合菌株,经分离得到两株菌,分别为Bbai-1和Bru-1。通过菌的生理生化特性试验及16S rDNA对菌株进行鉴定,初步确定Bbai-1为负短短芽孢杆菌属,Bru-1为泛生菌属。
     (2)通过实验得到该菌的最佳发酵条件。培养基组成:花生油40 g/L;尿素5 g/L;K2HPO4 3 g/L;NaCl 5 g/L;pH值为7。培养条件:温度为25℃,转速为150 r/min。
     (3)B-1所产表面活性剂是一种糖脂类的生物表面活性剂,产量为0.6-0.7 g/L,临界胶束浓度为175 mg/L,对温度、pH值及盐度具有较好的稳定性。与合成表面活性剂相比,生物表面活性剂的乳化能力保持时间更长,具有更好的稳定性。
     (4)与化学合成表面活性剂相比,生物表面活性剂能有效去除沉积物中的铅。生物表面活性剂溶液的浓度及pH值对铅的去除率影响较大。在pH值为9时铅的去除效果最好,去除率为50.7%。加入低浓度的阳离子可以促进铅的去除,当加入浓度为10 mmol/L的NaNO_3,铅的去除率为46.6%。增加淋洗次数及时间有助于铅的去除,但是考虑到应用的经济性最佳淋洗时间为60 h。生物表面活性剂对天然沉积物中铅的去除率低于人为污染沉积物的去除率,为38.0%。对于铅的不同存在形态,生物表面活性剂对可交换态、碳酸盐结合态及Fe-Mn氧化态有较好的去除效果。
     (5)淋洗前后沉积物的红外光谱对照可知,生物表面活性剂可能是通过改变沉积物的表面性质,从而将重金属由沉积物上解析下来。
With the development of industry, a mass of heavy metals are released into sediment. Contamination in sediment can endanger the growth of aquatic organism, and then harm land species and humans through bioconcentration and food chain amplifying function. It is promising to remove heavy metal from sediment because of its toxicity. In recent years, remediation methods to heavy metals were widely studied. There are three main methods to remediate heavy metal pollution, including physical method, chemical method and bioremediation method. The disadvantage of physical method is consumable, and physical method can’t remove heavy metals to background value. Chemical method can induce secondary pollution. So physical method and chemical method are not ideal remediation to heavy metals. Biosurfactants are amphiphilic molecules with both hydrophilic and hydrophobic portions which are produced by microorganism. Biosurfactant applications in environmental industries are promising due to their biodegradability, low toxicity and effectiveness in enhancing the biodegradation and solubilization of low solubility compounds.
     Summarization of the thesis introduced the situation of heavy metal pollution in sediment, main removal heavy metal methods and the applications of biosurfactant. In this study, bacteria B-1 isolated from oily-waste water is object of this study. The best fermentation condition was determined by one-variable-at-a-time method, and obtained large yield biosurfactant at that condition. Biosurfactant was extracted and analysed its structure by thin layer chromatography and Fourier transform infrared. The result suggested that biosurfactant produced by bacteria B-1 was glycolipid. At last, Pb removal efficiency by biosurfactant at difference conditions was tested. The conclusions are as follows:
     (1) Two strains were isolated from bacteria B-1, named Bbai-1 and Bru-1. Bbai-1 and Bru-1 were identified as Brevibacillus parabrevis and Pantoea agglomerans respectively by biochemical and physiological characteristics, morphological and 16S rDNA.
     (2) The study of B-1 fermentation determined the optimal substrate component was (in gram per liter of water): peanut oil 40 g/L; urea 5 g/L; K2HPO4 3 g/L; NaCl 5 g/L; pH 7.0. And the B-1 was cultured in a gyratory shaker at 150 r/min at 25℃.
     (3) A biosurfactant with a low critical micelle concentration, CMC (175 mg/L), was produced by B-1 strain. The yields of crude biosurfactant were 0.6-0.7 g. Measurements of surface tention showed a high level of tolerance to temperature, pH and salinity of the product.
     (4) Compared to synthesized surfactant SDS, biosurfactant removed heavy metal more effective. 14.6% lead could be removed by SDS solution, while biosurfatant can remove 25.3% lead at the concentration lower than SDS concentration. The concentration and pH of biosurfactant solution can influence removal efficiency of Pb at a large degree. Removal efficiency of Pb could be enhanced with the increase of the biosurfactant concentrations, and could finally reach 25.3%. The best remediation was got when the pH of biosurfactant was 9, and 50.7% lead was removed at the condition. The ionic strength had a slightly influence on the removal of lead. Removal efficiency of Pb increased to 46.6% when adding 10 mmol/L NaNO3 to biosurfacment solution. With increasing the concentration of NaNO3, the effect of Pb removal decreased. With increasing washing time and times, removal efficiency of Pb was improved. Considering application economy, 60 h was determined as the optimal washing time. Lead in inartificial polluted sediment was more difficult to remove than it in artifical polluted sediment by biosurfactant. Comparing the spices transformation of lead before and after remediation in the sediment by Tessier method, it was evident that soluble species, carbonated fractions and iron-manganese oxides bound of Pb adsorb on the sediment were wiped off effectively.
     (5) Fourier transform infrared illustrated that biosurfactants change sediment surface properties, and cause heavy metals desorption from sediment.
引文
[1]李晓静,周晓阳.重金属污染与植物修复[J].北方园艺, 2010, 4: 214-217.
    [2]蒋炳言,汪琳琳.中国水系沉积物重金属污染现状[J].科技信息, 2009, 9: 374-375.
    [3]王海东,方凤满,谢宏芳.中国水体重金属污染研究现状与展望[J].广东微量元素科学, 2010, 17(1): 14-18.
    [4]杨元根,刘丛强,张国平,等.铅锌矿山开发导致的重金属在环境介质中的积累[J].矿物岩石地球化学通报, 2003, 22(4) : 3095-3091.
    [5]马秀萍,井维鑫,王茜,等.丹河水洗表层沉积物重金属污染及生态风险评价[J].农业环境科学学报, 2010, 29(6): 1180-1186.
    [6]郑琳,崔文林,贾永刚.青岛海洋倾倒区沉积物重金属污染及其生态风险评价[J].海洋环境科学, 2008, 27(增刊2): 45-49.
    [7]何光俊,李俊飞,谷丽萍.河流污泥的重金属污染现状及治理进展[J].水利渔业, 2007, 27(5): 60-62.
    [8] Tessier A., Campbell P. G. C., Bisson M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals[J]. Analytical chemistry, 1979, 51(7): 844-851.
    [9] Davidson C. M., Thomas R. P., Mcvey S. E.,et al. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediment[J]. Analytical chenica acta, 1994, 291: 277-286.
    [10]高芳蕾,董岩翔,王世纪.矿区土壤重金属的形态分布及生物活性[J].安徽农业科学, 2009, 37(12): 5614-5616.
    [11]汪玉娟,吕文英,刘国光,等.沉积物中重金属的形态及生物有效性研究进展[J].安全与环境工程, 2009, 16(4): 27-29.
    [12]陈静生.河流水质原理及中国河流水质[M ].北京:科学出版社, 2006.
    [13]邱耀文,朱良生,黎满球,等.海陵湾沉积物重金属与粒度分布特征[J].海洋通报. 23(6): 49-53.
    [14]谢鸿志,胡友彪.不同pH条件对城市污泥中重金属生物有效性的影响[J].安徽农业科, 2009, 37(5): 2163-2164.
    [15]毕春娟,陈振楼,许世远.上海白龙港排污口附近潮滩沉积物中重金属总量及其化学形态分析[J].海洋环境科学, 2002, 21(4): 1-5.
    [16]张雁生,侯诗宝,杜晶晶,等.河流沉积物重金属研究进展[J].云南农业大学学报, 2009, 24(4): 630-633.
    [17]常晋娜,瞿建国.水体重金属污染的生态效应及生物检测[J].四川环境, 2005, 24(4): 29-33.
    [18]谷巍,施国新,韩城辉,等.汞、镉污染对轮叶狐尾藻的毒害[J].中国环境科学, 2001, 21(4): 371-375
    [19] Kavun V. Y., Shulkin V. M., Khristoforova N. K. Global outlook on nutrition and the environment: meeting the challenges of the next millennium[J]. The Science of the Total Environment, 2000, 249(1-3): 331-346.
    [20] Sleep B. E.,McClure P. D. Removal of volatile and semivolatile organic contamination from siol by air and stream flushing[J ]. J. Contam.Hydrol. 2001, 50(1-2): 21-40.
    [21]李海波,李培军,孙铁珩,等.用淋洗法修复张士灌区Cd Pb污染沉积物的研究[J].农业环境科学学报. 2005. 24(2): 328-332.
    [22]程艳,高静,徐红纳,等.螯合剂EDTA简介[J].化学教育. 2009(5): 4-6.
    [23]路景玲,徐颖,魏晓云,等.螯合剂处理重金属污染底泥研究进展[J].环境保护科学. 2010, 36(4): 36-39.
    [24]可欣,李培军,巩宗强,等.重金属污染土壤修复技术中有关淋洗剂的研究发展[J].生态学杂志, 2004, 23(5): 145-149.
    [25] Sun B., Zhao F. J., Lombi E., et al. Leaching of heavy metal from contaminated soil using EDTA[J ]. J. Environ. Poll, 2001, 113: 111-120.
    [26]冯素萍,鞠莉,沈永,等.沉积物中重金属形态分析方法研究进展[J].化学分析计量, 2006, 15(4): 72-74.
    [27]胡随喜,巴雅尔,张建平,等.表面活性剂对土壤中镉的吸附解析的研究[J].江苏环境科技, 2007, 20(2): 4-6.
    [28]王连生,郁亚娟,黄宏,等.淮河沉积物中重金属的测定和评价方法[J].环境科学研究, 2003, 16(2): 26-28.
    [29]王鹤茹,刘燕舞.污染土壤生物修复进展[J].安徽农业科学, 2010, 38(20): 11013-11014.
    [30]陈玉成.污染环境生物修复工程[M].北京:化学工业出版社. 2003, 36-37.
    [31]李红霞,赵新华,马伟芳.植物对河道污染沉积物中重金属的修复[J].中北大学学报.2010, 31(2): 145-149.
    [32]沈德中.污染环境的生物修复[M ].北京:化学工业出版社, 2002.
    [33]王保军.微生物与重金属的相互作用[J].重庆环境科学, 1996, 18(1): 35-38.
    [34]周围,李友国,程国军,等. 1株抗重金属铬细菌的分离、鉴定及抗性基因型的初步研究[J].华中农业大学学报, 2008, 27(2): 248-245.
    [35]李志超.微生物对甲基汞的降解作用[J].环境科学, 1984,5(3): 61-64.
    [36]马满英,施周,刘有势.生物表面活性剂修复HOCS污染土壤的研究进展[J].生态学杂志, 2008, 27(5): 835-840.
    [37] Mulligan C. N., Yong R. N., Gibbs B. F. Heavy metal removalfrom sediments by biosurfactants[J]. J Harzard Mater, 2001, 85: 111-125.
    [38] Miller R. M. Biosurfactant-facilltated remediation of metal-contaminated soils[J]. Environ Health Persp, 1995, 103(1): 59-62.
    [39] Franzetti A., Caredda P.,Ruggeri C., et al. Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies[J]. Chemosphere, 2009, 75: 801-807.
    [40]时进钢,袁兴中,曾光明,等.鼠李糖脂对沉积物中Cd和Pb的去除作用[J].环境化学, 2005, 24(1):55-58.
    [41]崔艳红,黄现青.生物表面活性剂—表面活性素[J].生物技术, 2006, 16(5): 91-94.
    [42]卢宁川,冯效毅.生物表面活性剂强化植物修复重金属污染土壤的可行性[J].环境科技, 2009, 22(4): 18-21.
    [43]吴红,汪薇,韩双艳.鼠李糖脂生物表面活性剂的研究进展[J].微生物学通报. 2007, 34(1): 148-152.
    [44]张天胜.生物表面活性剂及其应用[M].北京:化学工业出版社, 2005, 6-7.
    [45]钱欣平.生物表面活性剂的合成及其促进有机物降解的研究[D].浙江:浙江大学, 2002.
    [46]张天胜.生物表面活性剂及其应用[M].北京:化学工业出版社, 2005, 118-120.
    [47] Tugrul T., Cansunar E. Detecting surfactant-producing microorganisms by the drop-collapse test[J]. World Journal of Microbiology &Biotechnology, 2005, 21(6-7): 851?853..
    [48]刘佳,黄翔峰,陆丽君,等.生物破乳剂产生菌的筛选及其方法研究[J].微生物学通报, 2008, 35(5): 690-695.
    [49]赵国文,张丽萍,白利涛.生物表面活性剂及其应用[J].日用化学工业, 2010, 40(4):293-295.
    [50] Czaplicka M., Chmielarz A. Application of biosurfactants and non-ionic surfactants for removal of organic matter from metallurgical lead-bearing slime. Journal of Hazardous Materials, 2009, 163: 645–649.
    [51]张天胜.生物表面活性剂及其应用[M].北京:化学工业出版社, 2005, 100-103.
    [52]包木太,李彩霞,孙培艳,等.生物表面活性剂及其在重金属污染生态修复中的应用[J].城市环境与城市生态, 2006, 19(5): 1-5.
    [53]陈文球,孙争光.生物表面活性剂的生产与应用[J].胶体与聚合物, 2007, 25(3): 45-46.
    [54]夏咏梅,方云.生物表面活性剂的开发和应用[J].日用化学工程, 1999, 1: 27-31.
    [55] Jain D. K., Collins-Thompson D. L., Lee H. A drop-collapse test for screening surfactant-producing microorganisms[J]. Journal of Microbiological Methods, 1991, 13: 271-279.
    [56]张天胜.生物表面活性剂及其应用[M].北京:化学工业出版社, 2005, 176-178.
    [57] Pruthi v., Cameotra S. S. Rapid method for monitoring maximum biosurfactant production obtained by acetone precipitation[J]. Biotechnology techniques, 1995, 9(4): 271-276.
    [58]聂文燕,李十中.新型生物表面活性剂的分离和鉴定[J].化学工业与工程, 2007, 24(3): 249-253.
    [59]梁生康.鼠李糖脂生物表面活性剂对石油烃污染物生物降解影响的研究[D].青岛:中国海洋大学, 2005.
    [60]张天胜.生物表面活性剂及其应用[M].北京:化学工业出版社, 2005: 181-190.
    [61] Lotfabad T. B., Abassi H., Ahmadkhaniha R., et al. Structural Characterizationof a Rhamnolipid-type Biosurfactant Produced by Pseudomonas aeruginosa MR01:Enhancement of di-rhamnolipid proportion using Gamma Irradiation[J]. Colloids andSurfaces B: Biointerfaces, (2010), 81: 397-405.
    [62] Sarachat T., Pornsunthorntawee O., Chavadej S., et al. Purification and concentration of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa SP4 using foam fraction[J]. bioresource technology, 2010, 101: 324-330.
    [63]曹娟,刘怡辰,张振华,等.脂肽类生物表面活性剂产生菌的分离及特性研究[J].环境科学学报, 2009, 29(10): 2056-2062.
    [64]王学川,廖银燕.生物表面活性剂的发展及其在工业部门的应用[J].科学与技术, 2005,2: 39-42.
    [65]董洪丽.适于开采不经济储量的MEOR技术[J].国外油田工程, 2009, 25(6): 1-5.
    [66]左晶,王学川.生物表面活性剂的应用[J].化学工业与工程技术, 2005, 26(2): 23-26.
    [67]包木太,汪卫东,王修林,等.激活内源微生物提高原油采收率技术[J].油田化学, 2001, 19(4): 382-387.
    [68]陈星杙,刘伟,李蕾,等.微生物提高采收率作用机理研究[J].内蒙古石油化工, 2009, 17: 14-17.
    [69]李道山,廖广志,杨林.生物表面活性剂作为牺牲剂在三元复合驱中的应用研究[J].石油勘探与开发. 2002, 29(2): 106-109.
    [70]伍晓林,陈坚,伦世仪.生物表面活性剂在提高原油采收率方面的应用[J].生物学杂志, 2000, 17(6): 25-28.
    [71]杨师康.生物表面活性剂的应用及发展趋势[J].今日科技, 2002, 9: 40-41.
    [72]刘青芝,郭学平,朱希强.槐糖脂的微生物合成及其应用研究进展[J].食品与药品, 2009, 11(11): 51-54.
    [73]束影,周培.生物表面活性剂及其在化妆品中的应用[J].日用化学品科学, 2010, 33(3): 26-29.
    [74]李敬龙,刘晔,潘爱珍.生物表面活性剂及其应用[J].山东轻工业学院学报, 2004, 18(2): 41-46.
    [75]李祖义,徐国梁,袁长贵,等.生物表面活性剂催化合成蔗糖酯及其应用[J].上海化工, 1999, 21: 6-8.
    [76]王艳,王盛纬.生物表面活性剂在处理原油污水中的应用研究[J].中国高薪技术企业, 2009, 21: 115-116.
    [77]安秀林,李庆忠,张忠智.产生生物表面活性剂菌株I降解原油的研究[J].河北北方学院学报, 2005, 21(1): 20-23.
    [78] Lai C. C., Huang Y. C., Wei Y. H., et al. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil[J]. Journal of hazardous materials, 2009, 167: 609-614.
    [79]蒋煜峰,展惠英,张德懿,等.皂角苷络合洗脱污灌土壤中重金属的研究[J].环境科学学报, 2006, 26(8): 1315-1319.
    [80]杨苏声,周俊初.微生物生物学[M].北京:科学出版社, 2004, 179-181.
    [81] Franzetti A., Caredda P., Colla P. L., et al. Cultural factors affecting biosurfactant productionby Gordonia sp. BS29[J]. International Biodeterioration & Biodegradation, 2009, 63: 943–947.
    [82] Najafi A. R., Rahimpour M. R., Jahanmiri A. H., et al. Enhancing biosurfactant production from an indigenous strainof Bacillus mycoides by optimizing the growth conditions using a response surfacemethodology[J]. Chemical Engineering Journal, 2010,163: 188-194.
    [83] Kiran G. S., Hema T. A., Gandhimathi R., et al. optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3[J]. colloids and surfaces B, 2009, 73: 250-256.
    [84] Lotfabad T. B., Shourian M., Roostaazad R., et al. An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran[J].colloids and surfaces B, 2009, 69: 183-193.
    [85] Chen J., Song X., Zhang H., et al. Production, structure elucidation and anticancer properties of sophorolipid from Wickerhamiella domercqiae[J]. Enzyme and Microbial Technology, 2006, 39: 501–506.
    [86] Konishi M., Fukuoka T., Nagahama T., et al. Biosurfactant-producing yeast isolated from Calyptogena soyoae(deep-sea cold-seep clam) in the deep sea[J]. Journal of Bioscience and Bioengineering, 2010, 110(2): 169-175.
    [87] Joshi S., Bharucha C., Jha S., et al. Biosurfactant production using molasses and whey under thermophilic conditions[J]. Bioresour. Technol, 2008, 99: 195-199.
    [88] Yin H., Qiang J., Jia Y., et al. Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater[J]. Process Biochem, 2009, 44: 302-308.
    [89]时进刚.生物表面活性剂及其在沉积物重金属修复中的应用研究[D].湖南:湖南大学,硕士论文.
    [90] Rodrigues L. R., Teixeira J. A., Mei H. C., et al. Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A[J]. Colloids Surf., B: Biointerfaces, 2006, 53: 105–112.
    [91]国家质量技术监督局. GB17378.5-1998.中华人民共和国国家标准.海洋监测规范. 1999-01-01.
    [92]董炜峰,蓝虹,曹宇峰,等.常压消化体系-原子吸收分光光度法测定海洋沉积物中Cu、Pb、Zn、C d、C r[J].海洋环境化学, 2006, 25(1): 90-92.
    [93]黄宗平,蔡继杰.混合酸消解-原子吸收光谱法测定凡士林中铅和镉[J].光谱实验室, 2003, 20(3): 392-395.
    [94] Juwarkar A. A., Nair A., Dubey K. V., et al. Biosurfactant technology for remediation of cadmium and lead contaminated soils[J]. chemosphere, 2007, 68: 1996-2002.
    [95] Dahrazma B., Mulligan C. N. Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration[J]. Chemosphere, 2007, 69: 705-711.
    [96] Yuan X. Z., Meng Y. T., Zeng G. M., et al. Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion ?otation[J]. Colloids and Surfaces A, 2008, 317: 256-261.
    [97]黄富荣,尹华,彭辉,等.红螺菌吸附重金属红外光谱及原子力成像比较研究[J].离子交换与吸附, 2005, 21(2): 121-126.
    [98]曲荣君,阮文举,王祥梅,等.甲壳质-重金属配合物的红外光谱研究[J].离子交换与吸附, 2000, 16(3): 213-218.
    [99]李星,刘鹏,张志祥.两种水生植物处理重金属废水的FTIR比较研究[J].光谱学与光谱分析, 2009, 29(4): 945-949.
    [100] Czaplicka M., Chmielarz A. Application of biosurfactants and non-ionic surfactant for removal of organic matter from metallurgical lead-bearing slime[J]. Journal of hazardous materials, 2009, 163: 645-649.
    [101] Abouseoud M., Yataghene A., Amrane A., et al. Effect of pH and salinity on the emulsifying capacity and naphthalene solubility of a biosurfactant produced by Pseudomonas ?uorescens. Journal of Hazardous Materials, 2010, 80: 131–136.
    [102]冯素萍,鞠莉,沈永,等.沉积物中重金属形态分析方法研究进展[J].化学分析计量, 2006, l5(4): 72-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700