乌桕抑螺效果及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物抑螺相对于传统的物理与化学药物抑螺而言可具有经济上高效、生态上环保、效用上持续等显著优点,利用植物抑螺技术防治血吸虫病有着极其广阔的应用前景。为了深入挖掘我国抑螺植物资源,加大血吸虫病植物防治力度,本文选择了我国重要经济树种、传统土农药——乌桕为对象,对其抑螺效果、抑螺有效活性成分的提取、分离与鉴定,以及基于生物化学和超微结构角度下的抑螺机理等方面,开展了全面系统的分析研究,为科学评价与合理利用抑螺植物提供方法及依据。具体内容与结论如下:
     1、通过对乌桕根、枝、叶和种子等不同器官的四种不同溶剂粗提物的抑螺效果分析,发现乌桕不同器官均具有良好的抑螺效果,显示乌桕树种是一种优良的抑螺植物材料。比较得出,不同器官中以新叶的粗提物抑螺效果最佳,同时,对于前一年的落叶,也仍表现出良好的抑螺效果,说明乌桕叶具有持续稳定的抑螺特性;其最佳溶剂为石油醚。
     新叶石油醚提取物浸杀3d、4d、5d的LC50分别为20.327,7.125,5.724mg/L,落叶石油醚提取物分别为37.570,18.248,9.446mg/L。新叶石油醚提取物浸杀5d的LC90为24.409 mg/L,落叶石油醚提取物为69.922mg/L。新叶石油醚提取物相较落叶石油醚提取物,表现出更好的抑螺活性,但新叶与落叶石油醚提取物的抑螺效果均达到WHO规定的有效灭螺剂标准,即粗提物浓度低于100 mg/L时应具有有效杀螺活性的要求。
     2、应用色谱层析与薄层层析法分离纯化石油醚新叶提取物,结果显示弗罗里硅土填充柱洗脱的分离效果最佳,并可将石油醚提取物中的抑螺物质分离集中在较窄的区域,即实验中的496-526收集管中(浓缩后记为A12)。对A12分离进一步发现在相同的浓度和环境条件下,54-56管归类的一组抑螺活性最强,30mg/L的浓度浸杀3天,钉螺的死亡率达到了100%;其次为100-250管,达90%;再次为41-50管,为80%。表明这些管中含有抑螺活性物质。
     3、采用GC-MS方法对具有抑螺活性的样品浓缩物中极性较小、沸点较低的物质进行了研究,分离与鉴定了相关化合物,确定3,7,11,15-四甲基-2-烯-1-十六醇、棕榈酸、9,12,15-十八烯酸甲酯、1,2-苯二甲酸双( 2-乙基己酯)、8,11,14-烯-二十酸(8,11,14-Eicosatrienoic acid)等可能是主要的抑螺物质。
     4、采用HPLC-TOFMS法对具有抑螺活性的四个样品中极性较大、沸点较高的物质进行了分析鉴定,从化合物的共性方面考虑, C44H58N2O3、C24H42N2O8、C25H44N6O13、C22H43NO和C20H36N4O5几个成分出现的几率较高,其中C44H58N2O3在四个样品中均发现,C24H42N2O8在三个样品中存在,C25H44N6O13、C22H43NO和C20H36N4O5在两个样品中存在。这些成分可能具有抑螺活性。
     5、抑螺的生物化学机理研究表明:①糖元方面,随着处理液的浓度增加和处理时间的延长,钉螺体内糖元的含量显著降低。浓度为10mg/L、20mg/L、30mg/L、40mg/L、50mg/L的A12-2处理液浸杀钉螺96小时后,其肌糖元含量分别比对照降低了40.9%、49.8%、61.5%、63.3%、72.5%。分析认为:A12-2影响了钉螺的肝功能,使局部肝细胞坏死,直接影响糖元合成;激活或钝化糖元代谢过程中的某些酶,促进糖元分解和抑制糖元合成,导致糖元含量下降;影响消化道功能,引起摄食量减少,细胞摄取葡萄糖减少,糖元合成下降是主要原因。
     ②蛋白质方面,钉螺头足部与肝脏部总蛋白含量经24h~96h处理后,都表现出降低→增高→降低的趋势。处理液开始作用时,钉螺体内总蛋白含量逐步下降,至48h后呈上升趋势分别达到1.726 g/L与1.997 g/L,这可能是由于钉螺受到A12-2处理后刺激了体内代谢,从而产生大量特定蛋白质以克服这种逆境胁迫的结果。随着时间的延长,钉螺体内总蛋白含量又不断下降直至超过钉螺的生理阈值,影响其能量代谢而使个体活性降低,渐至死亡。
     ③相关酶的活性方面,碱性磷酸酶、琥珀酸脱氢酶、谷草转氨酶的活性在A12-2处理液的作用下,随着处理时间的延长和浓度的增加,都表现出显著降低→缓慢升高→显著降低的变化趋势。三种酶的这一变化趋势与有机体基于应激性的正常病理反应完全一致。而谷丙转氨酶活性随着时间的增加呈现不断降低的单一变化趋势,说明处理液对谷丙转氨酶有着更为直接的抑制作用。
     6、抑螺的超微结构机理研究表明:①钉螺头、触角以及足部等外部结构方面,应用扫描电镜,对经过15mg/L、30mg/L两个浓度处理24h、72h后的钉螺进行测定显示,随着浸杀时间延长和浓度增加,钉螺头和触角都由表面皱褶非常明显到结构遭到破坏,趋向平坦,并出现糜烂物且表面明显变形,严重溃损。足部开始肿胀,继而出现糜烂物,溃烂变形,并可见浸蚀孔洞,表面绒毛脱落,最终严重变形,裂变溃伤现象明显。
     ②钉螺内部肝脏结构方面,应用透射电镜,对经过15mg/L浓度A12-2处理液处理24h后的钉螺进行测定显示,肝细胞呈现肿胀,细胞核核膜变形,出现大量溶酶体,且部分溶酶体呈空泡状。部分线粒体表现出肿胀,呈狭长状,小部分已呈空泡,嵴模糊病损。粗面内质网杂乱分布且肿胀。随着处理时间的增加,出现大量中晚期溶酶体,以及大量小型空泡,细胞核肿胀,核内物质散乱分布,线粒体已经变形,由于自溶作用,核膜消失,渐成空泡等现象较为明显。
     ③经过处理液浸杀后的钉螺,其肝脏细胞线粒体出现嵴模糊的病损,说明钉螺的氧化磷酸化过程受到极大影响。同时粗面内质网受到破坏,会造成整个机体的代谢紊乱。这与经过处理后的钉螺体内碱性磷酸酶、谷草转氨酶、谷丙转氨酶、琥珀酸脱氢酶及糖元含量的变化相吻合。钉螺经A12-2处理后,其肝细胞内细胞器、膜结构的破坏,均意味着肝功能的下降、肝器质的损坏,细胞结构和功能的破坏最终导致钉螺死亡。
     7、本项研究,分析鉴定了乌桕的抑螺物质,即3,7,11,15-四甲基-2-烯-1-十六醇、C44H58N2O3等可能的抑螺化合物,深入揭示了乌桕的抑螺机理,即乌桕中的抑螺物质对钉螺的软体组织、肝细胞结构以及新陈代谢、酶的活性等具有严重的损伤或抑制作用,研究结果充分表明乌桕是一种极有价值的优良植物抑螺资源。
It has a great pospective using plant molluscicide technique to control schistosomiasis, because of its high efficiency in ecnomic, environment friendly in ecology and duration in effectiveness, compared to the traditional physo-chemical drugs of molluscicidal materials. In order to quest the snail-inhibiting plant resources, and also to enhance schistosomiasis-controlling potential, in this work, we selected the important economic species - the traditional pesticides - Sapium sebiferun as an target object. the molluscicidal effectiveness, and the the extraction, separation and identification of the active compounds were systematically investigated, and the mechanism based on biochemical and ultrastructural areas were studied. This work can provide method for scientific evaluation and rational use of molluscicidal plants. The main results were as follows:
     1. It was found that there were good effectiveness to control snail in different organs of Sapium sebiferun through the investigation of the snail-inhibiting effect by extraction of effective components in the roots, branches, leaves and seeds of tube Sapium using four solvents, indicating that Sapium sebiferun is a great plant for snail– inhibiting material. By compared, we think that the new leaves were best one for controlling snail, and secondly, the old leaves falled the year before, showing a persisted characteristics of controlling snail. It also showed the petroleum ether was best solvent for extraction of active components among the fours.
     LC50 of snail, by immersed in the extract of petroleum ether of new leaves for 3d, 4d, 5d were 20.327, 7.125, and 5.724 mg/L respectively, and of ols leaves, 37.570, 18.248, 9.446 mg/L, respectively. LC90 of snail, by immersed in the extract of petroleum ether of new leaves for 5d was 24.409 mg/L, while of old lesves, 69.922 mg/L. New leaves has better active snail-inhibiting potential than that of old ones, however, the both ones had attained the requirement of WHO for effective snail-inhibiting standard, which is that there is an effective snail-inhibiting activity when the concentration of crude extracts were lower than 100 mg/L.
     2. It showed Florisil-packed column was the best one for separation of active components by using ether chromatography or thin layer chromatography to purify the extract of petroleum ether of the new leaves, and that can concentrate the target components to a narrow area, namely the 496-526 tube (A12). After further separation of the A12 sample, we found the activity of the classifiction of 54-56 tube was most stronger for controlling snail. Mortal rate of snail was 100% in the concentration of 30mg/L, immersed for 3 days, and followed by 100-250 tube, to 90%, and by 41-50 tube, to 80%. This result showed these tubes containing the active substance to control snail.
     3. GC-MS was applied to separate and identify the nonpolar and low-boiling-point active components in the concentrated extracts. It confirmed that the compounds of 3,7,11,15 - tetramethyl -2 - en -1 - hexadecadiene alcohol, palmitic acid, 9,12,15 - 18 allyl methyl, 1,2 - terephthalic acid bis (2 - ethylhexyl), and 8,11,14 - en - 20 acid (8,11,14 -Eicosatrienoic acid) et al. were potential snail-inhibiting substance.
     4. Apliction of HPLC-TOFMS to analyse the polar and high-boiling-point active components in the four concentrated extracts, we found that the appearing rate of the compounds C44H58N2O3, C24H42N2O8, C25H44N6O13, C22H43NO and C20H36N4O5 were very high, in which the C44H58N2O3 were found in four samples, C24H42N2O8 existed in three samples, and C25H44N6O13, C22H43NO and C20H36N4O5 existed in the two samples. It showed these compound were potential snail-inhibiting components.
     5. Snail-inhibiting mechanism of biochemistry showed that: 1) with increasement of solution concentration and prelonging of treatment time, the snail body glycogen levels were significantly lower. After immersed for 96 hours in 10, 20, 30, 40, and 50mg/L of treatment concentration, the levels of the muscle glycogen content in snail were lower of 40.9%, 49.8%, 61.5%, 63.3%, 72.5% than those of the control test. We think that A12-2 affected the snails liver function, and that lead to the necrosis of partial liver cell, and also impact the synthesis of glycogen. It activate or passivate certain enzymes in the process of glycogen metabolism, and promote glycogen breakdown and inhibition of glycogen synthesis, leading to glycogen content decreased. And it also affect gastrointestinal function, reducing of food intake, and decreasing glucose uptake. The decreasement of glycogen synthesis may be the main reason.
     2) For total protein investigation, it have shown the trend of decreasement– increasement– decreasement after 24-96h treatment for heed and liver of snail. When the treatment solution activiated, the total protein content in the oncomelania body was decreased step by step, until to 48 h, increased, and up to 1.726 g/L and 1.997 g/L respectively. this may be activated by A12-2, snails accelerated the metabolism in its body, and produces a large number of specific proteins to overcome this stress condition. With prolonging of time, the snail body began to decline until the total protein content was more than snail's physiological threshold, and that affected the energy metabolism, leading to the activity-decrease of individual snail until to death.
     3) for investigation of enzymes: activity of alkaline phosphatase, succinate dehydrogenase, aspartate aminotransferase showed the trend of significant decreasement– slow increasement–significant decreasement with prolonging of treatment time and increasement of concentration in the action of A12-2 treatment solution. The change of the three enzymes was correlated with the change of organic pathology based on the normal stress response. The ALT activity was decreased with increasing of time, indicating direct inhibition of treatment solution to alanine aminotransferase.
     6. Snail-inhibiting mechanism of ultrastracture showed that: 1) Application of scanning electromicroscopy to observe the head and antennae of snail, we found that the structure of the surface folds in the head and antennae were destructed significantly, and tended to flat, under the concentration of 15 and 30 mg/L for 24 and 72 h. There also has appeared the marked erosion material to the surface deformation, leading to a serious collapse damage. Foot began to swell, inflammate, and erode, deform, resulting to visible holes of erosion, loss of surface hair, severe deformation in the end. there is clearly the phenomenon of erosions.
     2) Application of TEM to observe the liver of snail, it found that the liver cells were swollen, the nucleus membrane shape was as a large number of lysosomes, vacuolization and some lysosomes, when immersed in 15 mg/L of A12-2 treatment solution for 24 h. Some mitochondria swelled, appearing a long and narrow shape, a small part of vacuolization, and a cristae fuzzy lesion. Rough endoplasmic reticulum chaotically distributed, and swelled. When the treatment concentration and treatment time increased, a large number of middle and late lysosomes and numerous small vacuoles appeared, and nuclear swelled and material in nuclear scattered, mitochondria deformed. Due to autolysis reaction, the membrane of nuclear disappears, and gradually became empty bubbles and other obvious phenomena.
     3) Treated snails after the liquid immersion, the liver cell mitochondria cristae was ambiguous lesions, indicating the process of oxidative phosphorylation of snails had been impacted. While rough endoplasmic reticulum is damaged, leading to disorder of metabolism in the body. This is consistent with the change of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, succinate dehydrogenase and glycogen content in the snail body after treatment.
     Treated by A12-2 solution, the liver cell organelles and membrane structure in smail were damaged, those meaned the decline of liver function, the damaging of the liver devices. The damage of cell structure and function was eventually leaded to the death of snail.
     7. The snail-inhibiting materials in Sapium sebiferun were analysed and identified, 3,7,11,15 - tetramethyl -2 - en -1 - hexadecadiene alcohol and C44H58N2O3 et al. were potential snail-inhibiting compounds. In this work, the snail-inhibiting mechanism was widely expositted, it was found that the compounds in Sapium sebiferun has a potential damage or inhibition to soft tissue, liver structure, metabolism, and activity of enzyme. The results showed that Sapium sebiferun is a relatively new type of molluscicidal plant resources, their active components can inhibit the survival of snails through the following channels:
引文
[1]肖羽柏长江流域资源环境与危机综合管理的研究宏观管理2009,9,37
    [2]陈雷强化流域综合管理确保长江永续利用中国水利2009.9
    [3]姚士谋.长江流域城市发展的个性与共性问题[J ]。长江流域资源与环境,2001 ,10 (2) :97-105.
    [4] WHO.Report of the WHO informal consultation on schistosomiasis control. Geneva 2-4 December.WHO/CDS/CPC/SIP/99.2.1998
    [5]毛守白主编.血吸虫生物学与血吸虫病的防治.北京:人民卫生出版社,1990.
    [6]彭镇华.林业生态工程与血吸虫病防治[J ]。中国工程科学,2001 ,7,3 (7) :12-17.
    [7]周晓农.实用钉螺学[M].科学出版社,2005,9,188-189
    [8]毛德华、夏军,洞庭湖湿地生态环境问题及形成机制分析[J].冰川冻土,2002,24(4)444-452
    [9]彭镇华,江泽慧.中国新林种——抑螺防病林研究.北京:中国林业出版社,1995.
    [10]周晓农、汪天平、王立英等,中国血吸虫病流行现状分析,中华流行病学杂志,2004,7,25(7)555-559
    [11]陈贤义、姜庆五.2000年全国血吸虫病疫情通报[J].中国血吸虫病防治杂志,2001,13(3)129-131
    [12]陈贤义、姜庆五等.2001年全国血吸虫病疫情通报[J].中国血吸虫病防治杂志,2002,14(4)241-243
    [13]陈贤义、吴晓华、王立英等.2002年全国血吸虫病疫情通报[J].中国血吸虫病防治杂志,2003,15(4)241-244
    [14]肖东楼、余晴、党辉等.2003年全国血吸虫病疫情通报[J].中国血吸虫病防治杂志,2004,16(6)401-404
    [15]郝阳、吴晓华、夏刚等.2004年全国血吸虫病疫情通报[J].中国血吸虫病防治杂志,2005,17(6)401-404
    [16]郝阳、吴晓华、夏刚等.2005年全国血吸虫病疫情通报[J].中国血吸虫病防治杂志,2006,18(5)321-324
    [17]郝阳、吴晓华、郑浩等.2006年全国血吸虫病疫情通报[J].中国血吸虫病防治杂志,2007,19(6)401-404
    [18]郝阳,郑浩,朱蓉等。2008年全国血吸虫病疫情通报[J] .中国血吸虫病防治杂志,2009,21(6)451-457
    [19]郭家钢,余晴.近年来我国血吸虫病的流行态势及趋势[J].中国血吸虫病防治杂志,2005,17(5),321-323
    [20]张素娟,赵先贵,任贵镇等,江西省耕地压力时空差异分析及预测,[J].土壤,2009,41(1):142—146
    [21]彭镇华,长江中下游滩地杨树栽培与利用,[J].中国林业出版社2002.8:1-16
    [22]刁承泰,黄京鸿,三峡水库水位涨落带土地资源的初步研究[J].长江流域资源与环境1999,8(1):75-80
    [23]李劲峰,长江滩地资源调查与开发,长江流域资源与环境,[J].1997,6(3):217-219
    [24]吴立勋、汤玉喜、吴敏等,滩地淹水时间对杨树生长的影响及滩地宜林性划分的研究,[J].林业实用技术,2004,7:7-10,
    [25]张世清、汪天平、葛继华等,三峡大坝工程对长江安徽段滩地开发利用及其对血吸虫病流行的影响,[J].中国寄生虫病防治杂志,2000,13(4):276-278
    [26]江苏省林学会、江苏省水利学会,江苏境内长江滩地综合开发治理考察报告,[J].江苏林业科技,1992,增刊:5-9,
    [27]唐万鹏、胡兴宜、王宏等,长江中下游(湖北段)低丘滩地综合治理与开发,[J].东北林业大学学报,2002,30(4):23-28,
    [28]江波、袁位高、戚连忠等,江河滩地优质大径杨木培育关键技术研究,[J].林业科学,2002,38(1):69-77
    [29]王宗海、吕聚煜、陈述亮等,鄱阳湖平原滩地杨树短周期工业原料林造林技术参数研究,[J].江西林业科技,2005,2:
    [30]左书华、李九发,上海潮滩滩涂资源的合理开发与利用及可持续发展,[J].海洋地质动态,2007,23(1):22-26
    [31]周汉祥,肖俊文.汉寿县五一村以人畜同步化疗为主控制血吸虫病流行的九年效果.湖南医学,1992,12: 32~33.
    [32]曾小军,吴福东,张绍基等.洲岛型重疫区居民选择性化疗后血吸虫再感染观察.中国血吸虫病防治杂志,1996,8(2): 83~85.
    [33]彭立斌,吴宏春,汪彤等.铜陵县老洲乡家畜血吸虫病重复感染及影响因素的调查.中国兽医寄生虫病,2001,9(2): 37~38.
    [34]Cheng MG.Progress and problems in schistosomiasis control in China.Trop Med Parasitol,1989,40:174~176.
    [35]Cheng TH.Schistosomiasis in Mainland China. A review of research and control programs since 1949. Am J Trop Med Hy,1971,20:26~53.
    [36]Malek EA, Cheng TC,ed.Medical and Economic Malacology. Academic Press.1974,398.
    [37]Rug M., Ruppel A. 2000. Toxic activities of the plant Jatropha curcas against intermediate snail hosts and larvae of schistosomes. Tropical Medicine and International Health.5(6): 423~430.
    [38]Rug M, Sporer F, Wink M, Liu SY, Henning R & Ruppel A (1997) Molluscicidal properties of Jatropha curcas against vector snails of the human parasites Schistosoma mansoni and S. japonicum: in Biofuels and Industrial Products from Jatropha curcas (eds GM Gübitz, M Trabi & M Mittelbach). Dbv~Verlag der Technischen Universit?t Graz, Austria, pp. 227~232.
    [39]E-Sawy, M. F., Bassouny, K. and Magdoub, A. I. 1981. Biological combat of Schistosomiasia: Ambrosia martima (damisissa) for snail control. J. Egypt. Soc. Parasitol., 11: 99~117.
    [40]Liu, S. Y., Sporer,F., Wink, M., Jourdane , J.et. al. 1997. Anthraquinones in Rheum palmatum and Rumex dentatus (Polygonaceae), and phorbol esters in Jatropha curcas (Euphorbiaceae) with molluscicidal activity against the schistosome vector snails Oncomelania, Biomphalaria and Bulinus. Tropical Medicine and International Health, 2(2): 179~188.
    [41]Archibald R.G. The use of fruit of the tree Balanites aegyptica in the control of schistosomiasis in the Sudan. Teans R Soc Med Hyg. 1933, 27: 207~211.
    [42]Goll PH, Lemma A, Duncan J,et al. Control of schistosomiasis in Adwa, Ethiopia, using the plant molluscicide endod (Phytolacca dodecandra). Tropenmed Parasitol. 1983 Sep, 34(3): 177~183.
    [43]Yasuraoka, K., Hashiguchi, J. and Blas, B.L. 1980. Laboratory assessment of the molluscicidal activity of the plant Jatropha curcas against Oncomelania snail. Proceedings of the Philippine-Japan joint conference on schistosomiasis research and control, Manila, 110~112.
    [44]黄文通,杨罗静,谈佩萍等.中草药皂碱对钉螺、血吸虫毛勘和尾勘杀灭作用初步观察.中国寄生虫学与寄生虫病杂志,1995,13(3): 236~237.
    [45]於凤安,彭卫平,彭镇华等.利用植物他感作用抑螺效果的研究.应用生态学报,1996,7(4): 407~410.
    [46]马安宁,王万贤,杨毅等.抑螺植物资源的开发利用研究.自然资源学报,2000,15(1): 40~45.
    [47]Eline Boelee, Hammou Laamrani. Environmental control of schistosomiasis through community participation in a Moroccan oasis, Tropical Medicine and International Health,2004,9(9): 997~1002.
    [48]赵慰先.人体寄生虫病学.北京:人民卫生出版社,1994,391~404.
    [49]肖东楼,余晴,党辉等. 2003年全国血吸虫病疫情通报.中国血吸虫病防治杂志,2004,16(6): 401~404.
    [50]Zhou XN,Chen M,McManus D,et cl. Schistosomiasis control in the 21st century Proc Int SymSchis, Shanghai, July 4~6,2001. Acta Trop, 2002, 82(2):95~114.
    [51]周述龙,林建银,蒋明森等.血吸虫学.北京:科学出版社,2001,162~166.
    [52]周晓农.实用钉螺学[M].科学出版社,2005,9,249-250
    [53]彭镇华.林业生态工程与血吸虫病防治[J].科学, 2005, 57 (1) : 34 - 36
    [54]江泽慧.兴林抑螺论文选集[C].北京:中国林业出版社, 1995: 105 - 164
    [55]彭镇华,江泽慧.中国新林种———抑螺防病林研究[M].北京:中国林业出版社, 1995: 23 - 51
    [56] Southgate VR. Schistosomiasis in the Senegal River Basin: before and after the construction of the dams at diama, Senegal and Manantali, Mall and future prospects.[J]. Helminthol, 1997, 71 (2): 125-132.
    [57]孙启祥,彭镇华,周金星.抑螺防病林生态控制血吸虫病的策略与机理分析[J].安徽农业大学学报,2007,34(3):338-341.
    [58]孙启祥,张建峰,吴立勋.滩地杨树人工林抑螺效果与碳汇效应中国生态农业学报, 2008, 16(3):701~706.
    [59]许发森,钱晓红,文松等.安宁河流域植物、土壤特征与钉螺分布的关系[J].四川动物,1999,(2):62-63
    [60]周晓农.实用钉螺学[M].科学出版社,2005,9,188-189
    [61]马拆修,何昌浩,常汉斌.钉螺爬行速度及影响因素的实验研究[J].中国血吸虫病防治杂志,2000,12
    [62]潘昭汉,叶廉,陈春和等.钉螺静水和动水沉降实验研究[J].武汉水利水电大学学报,1998,20(1)
    [63] Li Damei, Wang Xiaogsan. ONCOMELANIA’S HYDRAULIC TRANSPORT [J].Resources andEnvironment in the Yangtze Basin 1999,8(1)100-107.
    [64]肖荣炜,叶嘉馥,陶亮风.长江三峡建坝库区钉螺孳生及坝下游钉螺向库区扩散问题的研究[A].长江三峡工程生态与环境影响文集[C].北京:水利水电出版社,1988.57-175
    [65]许发森、文松、钱晓洪等.三峡库区社会因素对血吸虫病流行的影响[J].实用寄生虫病杂志1999,7(2):74-75
    [66]丁一汇,任国玉,石广玉等.气候变化国家评估报告(I):中国气候变化的历史和未来趋势[J]..气候变化研究进展,2006,2(1):3-8.
    [67]周晓农、汪天平、王立英等.中国血吸虫病流行现状分析[J].中华流行病学杂志,2004,25:555-558
    [68]彭文祥、张志杰、庄建林等.气候变化对血吸虫病空间分布的潜在影响[J].科技导报,2006.24(7)58-60
    [69]张旭东,彭镇华,周金星.抑螺防病林生态系统抑螺机理的研究进展[J].世界林业研究,2006,19(3):38-43
    [70]徐有明,邹明宏,史玉虎等.枫杨的生物学特性及其资源利用的研究进展[J].东北林业大学学报,2002,30(3);42-47
    [71] Dye et al. 1992, A comparison of heat pulse method and deuterium tracing method for measuring transpiration from Eucalyptus grandis trees. J. Exp. Bot. 43:337-343.
    [72] Edwards W. R. N. 1986, Precision weighing lysimeter for trees, using a simplified tared-balance design. Tree physiol. 1: 127-141.
    [73] Farquhar, G. D. 1978.Feedforward responses of stomata to humidity. Aust. J. Plant. Physiol.5: 787-800.
    [74] Dunin et al..1986.Evaluation of the ventilated chamber technique for measuring evaporation from a forest. Hydro .Proc. 1: 47-62.
    [75] Fritschen et al. A 28-meters Douglas-fir in a weighing lysimeter. For. Sci., 1973, 19: 256-261
    [76] Gash J H C, Wight IR and Lloyd C R. Comparative estimates of interception loss from three Coniferous forests in Great Britain. J. Hydrol, 1980, 48: 89-105.
    [77] Greenwood et al. 1979, Evaporation from vegetation in landscape developing secondnary salinity using the ventilated-chamber technique I comparative transpiration from juvenile Eucalyptus above saline ground-water seeps. J. Hydrol. 42: 369-382.
    [78] Hatton. T. J., S. J. Moore and P.H. Reece. 1995. Estimating stand transpiration in a Eucalyptus populnea woos land with the heat pulse method: Measurement errors and sampling strategies. Tree Physiol. 15:219-227.
    [79] Irvine, J., Perks, M.P., et al.,1998,the response of pinus sylverstris to drought: stomatal control of transpiration and hydraulic conductance. Tree Physiol., 18: 393-402.
    [80]於凤安,彭卫平,彭镇华,等.利用植物他感作用抑螺效果的研究[J].应用生态学报,1996,7(4):407-410
    [81] Guo Y. H. 1987. Plant molluscoide studies in the People’s Republic of China In: Mott, K. E. (ed.) Plant Molluscoides. A Willy Medical Pubbcation, 289-298.
    [82] K.Hostellmann et. Alplanta Medica, 1982, 44 (1): 34.
    [83]糜留西,张丽红,崔天义等,灭钉螺植物的筛选[J].武汉植物学研究,1997,15(4):378~380
    [84] HRrhorne J B,Tomas Ba rheran F A.Eco Logica L Chemistry and Biochemistry of Plant Terpenoids Oxford:Oxford Un Pr .1991 264~286
    [85] Kenneth E Mort.Plant Mo Lluscicides Geneva:World Hen HealthOrgani~tion,1987.251~267
    [86] Knight et al. 1981, Transpiration from 100-year-old lodgepole pine forests estimated with whole-tree potometers. Ecology 62: 717-726.
    [87] Lagergren F., Lindroth A., 2002, Transpiration response to soil moisture in pine and spruce trees in Sweden. Agriculture and For. Meteor. 112: 67-85.
    [88] Leyton I et al. Rainfall interception in forest and moorland. In: Int. Symp. Forest Hydrology. Pergamon Press. Oxford, 1965, 163-178.
    [89] Powell D B B. Thorpe M R, 1977, Dynamic aspects of plant-water relations in environmental effects on crop physiology, London, Academic Press, 1977: 259-279.
    [90] Robert J., 1983. Forest transpiration: A convservative hydrological process Joun. of Hydrol. 66: 133-141.
    [91] Roberts, J.1977,The use of tree-cutting techniques in the study of the water relations of pinus sylvestris. L. J .Exp. Bot. 28: 751-767
    [92] Rutter.A.J. 1966. Studies in the water relations of Pinus sylvestris in plantation, evaporation of intercepted water, and evaporation from the soil surface. J. Ecol. 3:393-405.
    [93] Rutter,A.J., 1967,studies on the water relations of pinus sylverstris in plantation conditions. PartⅤ. Responses to variation in soil water conditions. J. Appl. Ecol., 4: 73-81.
    [94] Schulze,E. D. 1986. Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annu. Rev. Plant Physiol. 37: 247-274.
    [95] Smith, D. M. And S.J. Allen, 1996. Measurement of sapflow in plant stems. J. Exp.Bot. 47:1833~1844.
    [96] Smith et al., Measurement of sap flow in stems. J. Exp. Bot. 1996, 47: 1833-1844.
    [97] Swanson, R.H 1994. transpired by trees is indicated by heat pulse velocity. Agri. Meteorol. 72.113-132.
    [98] Swanson, R.H., Significant historical developments in thermal methods for measuring sap flow in trees. Agric .For. Meteorol., 1994, 72: 113-132.
    [99]何昌浩、夏国瑾、耿辉,槟榔碱和氯硝柳胺联合应用对钉螺足跖平滑肌收缩活动的增效作用[J].中国血吸虫病防治杂志1999,11(6):331-332
    [100]李赋京,钉螺的解剖和比较解剖,湖北:湖北人民出版社,1956.1
    [101]耿辉、夏国瑾、何昌浩.摈榔碱对湖北钉螺足肌胆碱能受体的作用,中国血吸虫病防治杂志.1999.11(5):281
    [102]杨光忠,王松平,张世琏等.从植物中寻找农药活性物质—枫杨化学成分的研究,湖北化工,1996,增刊:41-42
    [103]江苏新医学院.中药大辞典[M].上海;上海科技出版牡,1979.
    [104]马安宁,王万贤,杨毅等.抑螺植物资源的开发利用研究[J].自然资源学报.2000,15(1):40-45.
    [105]吴立勋,程政红,徐世风,等.滩地造林与抑螺防病关系的研究[ J ].湖南林业科技, 1996, 23 (1) : 10 - 18
    [106]张旭东,杨晓春,彭镇华.钉螺分布与滩地环境因子的关系.生态学报, 1999, 23(2): 265~269.
    [107]霍光华,高荫榆,陈明辉.乌桕叶抑菌活性功能成分的研究[J].食品与发酵工业,2005,31(3):52—56.
    [108]张广伦,钱学射,顾龚平等,燃料油植物乌桕的栽培与管理及桕籽加工,中国野生植物资源2009.10,28(5)66-69 [ 109 ]郄亚微.能源林树种乌桕组织培养技术体系的研究[D ].华中农业大学硕士论文, 2008. [ 110 ]祖元刚.生物柴油[M ].北京:科学出版社, 2006: 48 - 49.
    [111]柳润辉,孔令义.乌桕叶酚性成分研究[J].中国中药杂志,2005,30(15):1213.
    [112]陈玉,杨光忠,张世琏,等.乌桕化学成分研究进展[J].天然产物研究与开发,1999,ll(5):ll4.
    [113]陈冀胜,郑硕,中国有毒植物,[M],科学出版社, 1987, 261~262
    [114]霍光华,高荫榆,李红.乌桕叶营养成分的研究[J].食品科学,2005,26(4):239—243.
    [115]熊文愈,汪汁珠,石同岱等中国木本药用植物[M]上海科技教育出版社,1993. 423
    [116]沙世炎,徐礼桑、中草药有效成分分析法[M]下册,北京:人民卫生出版社,1984. 279
    [117]黄斌学,黄增琼,许小林,等乌桕叶提取物镇痛抗炎作用的实验研究,中成药,2004,6,26(6):476-480
    [118]董鹏,张丽兰乌桕叶膏治疗毒蛇咬伤66例[J].中国社区医师,2002,(3):41
    [119]林同,黎荣彬,陆宁将,夹竹桃、鱼藤、乌相对锈同心舟蛾的毒杀活性,昆虫知识。2006,43(6)517-519
    [120]林捷,伊可儿,叶功富等,20种树木提取液对蔬菜害虫胃毒作用的研究,江西农业大学学报,2003,8,25(4)582-588 [121 ]Martin P A , Pedigo L P.薛建平译.植物杀虫剂的过去、现在和未来[J ] .国外农学—植物保护,1993(6) . [122 ]吴文君.天然产物杀虫剂———原理·方法·实践[M] .西安:陕西科学技术出版社,1998. 124~137. [123 ]刘东泽,赵杰,刘志诚,20种植物提取物对几种昆虫的拒食作用,农药学学报,2003,9,5(3):90-95 [124 ]曾鑫年.植物杀虫剂和拒食剂:新来源及展望[J ].农药译丛, 1995, 17 (3) : 21-24. [125 ]杨毅王万贤,枫杨水浸液周年灭钉螺实验初报,湖北大学学报(自然科学版)1998,20(4):390-393 [126 ]柯文山杨毅,枫杨,羊蹄水浸液对钉螺肝功能的影响湖北大学学报(自然科学版)2000, 22(1):77-79 [127 ]李晓宇,王万贤,枫杨水浸液对钉螺酯酶同工酶的影响,湖北大学学报(自然科学版)2000, 22( 1):88-90
    [128]彭旦明,周光雄,马珠,等.2005.枫杨、乌桕对钉螺毒性的研究[C].//江泽慧.兴林抑螺论文选集.北京:中国林业出版社:84-89.
    [129]陈利军,尹健,熊建伟,等. 7种药用植物提取物抑菌活性测定[J].安徽农业科学,2006,34(21):55—62.
    [130]唐万鹏,张旭东,胡兴宜,等.益母草水苏碱对钉螺生理生化的影响[J].湿地科学与管理.2006,2(4):44-46.
    [131]王根法,宋庚明.钉螺转氨酶的初步研究[J].中国寄生虫学与寄生虫病杂志,1990.8(2):110-111
    [134]魏京广,霍光华,代建国,等.反相液相色谱法测定乌桕叶中氨基酸含量[J].江西农业学报,2007,19(3):99—101.
    [135]曾维爱,谭济才,张春艳等,植物源农药研究进展[J] .湖南农业大学学报(自然科学版),2006,32(Ⅱ):180—185.
    [136]彭镇华,长江中下游滩地杨树栽培与利用,中国林业出版社2002.8:1-16
    [137]孙启祥、张建锋、周金星,林业血防工程建设中的问题探讨,湿地科学与管理,2006,4(2):44-46
    [138]李广勋.中药药理毒性与临床[M].天津:天津科技翻译出版公司,1992
    [139]时宏,郭洪.用鸟桕脂生产类可可脂的研究进展和前景[J].中国油脂,2001,26(5):91—94.
    [140]杨志斌,齐玉堂,王晓光,等.鸟桕籽制取生物柴油研究初报[J].湖北林业科技,2007,(6):32—34.
    [141]陈文伟.鸟桕样油制备生物柴油的研究[M].南昌:南昌大学出版社,2006.
    [142]杨小明、陈盛霞、张蓉仙等,银杏外种皮石油醚提取物的杀钉螺活性研究,中国人兽共患病学报,2006,22(10)
    [143]Fern-ley HN. 1972. Mammalian Alkaline phosphatase [ J ]. The Enzyme( Edited by Boyer. P D) , (4) : 417~444.
    [144]王根法、宋庚明。1980,钉螺转氨酶的初步研究,中国寄生虫学与寄生虫病杂志,8(2):110
    [145]李畅、侯玉霞,覃兆海等。2009,4,31(2),17-20,琥珀酸脱氢酶的结构与活性氧的产生,世界农药
    [146]蒋蓉、叶元土、蔡春芳等,铜、铁、锰、锌组合对黄颡鱼部分生理机能的影响饲料博览2009.9,31-36
    [147] DI GUILIO R T, WASHBUM P C, WENNING R J, et al .Biochemical Responses in Aquatic Animals: a Review ofDeterminants of Oxidative Stress[J]. Environ Toxico Chem, 1989,25(8): 1103-1123.
    [148]郑永华,蒲富永.汞对鲤鲫鱼组织转氨酶活性的影响[J].西南农业大学学报, 1997, 19(1): 41-45.
    [149]王根法、宋庚明。茶树籽杀钉螺作用的初步试验(J),中国寄生虫学与寄生虫病杂志,1995,13(2):114-116
    [150]王宏,蔡伟民,王万贤等,生态工程中群落模型植物抑螺机理研究(J),长江流域资源与环境,2005,14(1):119-122
    [151]刘颖芳,王万贤,聂冉等,樟树水浸液的抑螺效果(J),动物学杂志,2004,39(3):79-81
    [152]谢明吉,王万贤,大蒜水浸液抑螺实验研究(J),湖北大学学报(自然科学版),2002,24(4):357-363
    [153]左进成,王宏,王万贤,枫杨抑螺活性成分研究(J),湖北大学学报(自然科学版),2001,23(专辑):103-104
    [154]柯文山、王万贤、杨毅等,枫杨对钉螺头足部及肝部损伤的电镜扫描观察,湖北大学学报(自然科学版),1999,21(4):383-385
    [155]罗坤水,余能富,徐林初,邹峥嵘,王玉,彭九生,不同品种(类型)的乌桕叶乙醇提取物抑螺活性研究[J],江西农业大学学报,2009,32(2):341-344。
    [156]项艳,张家胜,覆盖乌桕叶和林下间种对钉螺蛋白质和酯酶同工酶影响的研究[J],安徽农业大学学报,1999,26(4):394-397。
    [157]谭和平,谭福元,邹燕,刘明东,徐文平,核磁共振技术在茶叶生化成分鉴定中的应用[J],分析测试,2009,35(6):70-73
    [158]钟瑞敏,曾庆孝,张振明,王羽梅,彭华贵,气质联用结合保留指数对比在五种木兰科芳香精油成分鉴定中的应用[J],分析测试学报,2006,25(5):16-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700