采用腔体吸收器的线聚焦太阳能集热器的理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
线聚焦太阳能集热器是规模化太阳能中高温利用特别是中温利用的主要技术和手段,在需要热源温度在100℃—300℃之间的中高温利用领域,线聚焦太阳能集热器能够保持较高的光热转换效率,同时在规模化应用中具有很好的经济优势。目前线聚焦太阳能集热器中的吸收器多采用直通式金属—玻璃真空集热管,虽然高真空夹层大大减少了热损失,但是同时存在着金属与玻璃的封接出长期工作后漏气的问题,而采用以黑腔原理为基础的腔体吸收器可以有效的避免上述问题,提高系统运行的可靠性,降低研究和生产的难度和成本。因此本文开展了基于抛物面槽式反射镜/线聚焦平板菲涅尔透镜和腔体吸收器的中高温太阳能集热器及其应用的理论及实验研究,主要研究工作包括:
     (1)利用几何光学理论建立了截面为圆锥曲线的槽式反射镜和线聚焦平板型菲涅尔透镜的三维聚光模型,利用该模型计算并分析了入射角度、焦距误差、追踪误差和加工误差对聚光比和平板吸收器上光带的能量分布的影响;设计并加工了抛物面槽式反射镜和平板菲涅尔两种聚光器,对其聚光性能和接收角进行了实验研究。理论和实验研究结果表明:吸收器开口宽度为5cm,接收角控制在±0.4°内时可以获得较高的光学效率。
     (2)自行设计和加工半圆形、圆弧形、三角形和正方形四种不同几何形状的腔体吸收器,从实验和理论两方面入手分析了腔体吸收器的光学性能和热力学性能,分析结果表明,三角形的腔体吸收器具有更好的光学效率和较小的热损失。最终选择了三角形腔体和两侧反射的矩形腔体吸收器并对其结构进行优化,证明在采用抛物面槽式反射镜作为聚光器时三角形腔体吸收器的开口深度为4cm时最好,正方形腔体吸收器的开口深度为2cm时最好。根据最终的优化结果加工成了长度为1m的两种吸收器。
     (3)自行设计了采用腔体吸收器的0.64m2平板菲涅尔透镜太阳能集热器和8m2抛物面槽式集热器的支撑结构和驱动装置,开发了能够准确有效的实现单轴追踪的微型控制器。其中以抛物面槽式反射镜+三角形腔体吸收器太阳能集热器的性能最优,晴好天气时集热器在半小时之内从环境温度升至366℃,根据实验测得的集热器效率曲线,在介质温度150℃,直射辐射600W/m2条件下,集热器效率达46%。在集总参数法的基础上建立了建立了抛物面槽式+腔体吸收器太阳能集热器的瞬态传热模型,利用该模型分析了结构参数和材料特性对抛物面槽式反射镜+腔体吸收器集热器热效率的影响,结果表明,当聚光器的开口宽度大于2m,保温材料的导热系数小于0.0035W/mK,腔体吸收器内表面发射率小于0.1时,抛物面槽式反射镜+腔体吸收器集热器的性能可以接近采用直通式真空管的太阳能集热器。
     (4)建立了固定、单轴追踪和双轴追踪的集热器阵列排布方式的几何模型,根据该模型可以指导工程实际中阵列的排布,计算了各种阵列的最优间距并将结果拟合成公式作为设计时的参考。
     (5)构建了两种采用抛物面槽式聚光镜+三角形腔体吸收器太阳能集热器的太阳能系统——地热与太阳能联合的发电系统以及基于双螺杆动力机的太阳能冷热电联供系统,并对其在西藏地区的应用进行了可行性分析,结果显示对于第一种类型的系统,在一年之内,最高时可以将不采用太阳能辅助过热的发电系统的发电功率提高38.6%;对以第二种类型的系统,从能量平衡的角度来看,系统的全年热效率达到了40.2%,这要远高于普通槽式热发电系统的热效率;而从可用能的角度分析,系统的?效率有13.1%,略高于普通槽式热发电系统的?效率。
Linear concentrating solar collector is a main technique in the area of middle and high temperat. solar thermal utilization. When the heat source temperat. range is between 100?C and 300?C, linear solar collector can keep high thermal efficiency and advantage of cost. At present, the most popular absorbed used in linear solar collector is the metal-glass evacuated tube. Although the evacuated layer between metal tube and glass annular largely reduces the heat loss, it is inevitable that there is vacuum leakage after long time working. But the reliability can be increased effectively and research and producing cost will also be down if the cavity absorbed is chosen. So this thesis is devoted to research on the middle-high temperat. parabolic trough/Fresnel lens solar collector with cavity absorber and its application. The main works are summarized as following:
     (1)Three dimensions concentrating mathematical models for linear flat Fresnel lens and trough reflector which cutting surface is conic curve are developed. The influences of incidence angle, focus error, tracking error and surface error on concentration ratio and energy distribution in the concentrated light trap have been investigated. Based on the theoretical analysis results, one kind of parabolic trough reflector and one kind of flat plate Fresnel lens are designed and made. Moreover, experimental investigation of concentrating performance and accept angle have been done. The experimental results show that good optical efficiency can be gotten when the apert. width of absorber is 5cm and the accept angle is controlled between -0.4°and +0.4°
     (2)Four shapes of cavity absorbed which are semi-circular, arc, triangle and square shape are designed and made. Their optical and thermal performances are investigated under both experiment and theory. According to the results, the triangle shape cavity absorbed has better optical performance and the minimum heat loss. Furthermore, triangle cavity and squared cavity with two reflectors are chose and their construction is optimized. The conclusion is that the optimized depth of the former is 4cm and that of the later is 2cm. Based on these results, two kinds of 1m length cavity absorbed is produced.
     (3)The 0.64m2 flat plate Fresnel lens solar collector and 8m2 parabolic trough solar collector are designed and manufact.d. The developed micro controller for one-axis automatic sun-tracking can track the sunlight accurately. In four kinds of designed linear concentrating solar collectors, the parabolic trough solar collector with triangle cavity absorber appears the best performance. In fine day, the highest temperat. can reach 366°C. According to the thermal efficiency curve, the thermal efficiency of this solar collector is 46% when the flow media temperat. is 150°C and beam solar radiation is 600 W/m2. Moreover, heat transfer model is developed and the effect of struct. and material on thermal performance is analysis. The results show that the performance parabolic trough solar collector with cavity absorber is near that of parabolic trough solar collector with evacuated tube if the concentrator apert. is larger than 2m, the heat conductivity of insulation material is smaller than 0.0035 W/mK and the emissity of selective coating is smaller than 0.1.
     (4)The geometric models of the arrangement of non-tracking, one-axis tracking and two-axis tracking solar collector array have been developed. These models are useful for guiding how to arrange collector array in engineering practice. At the same time, the optimum distance of the array of three kinds collectors are calculated and fitted in equations, which can be used for reference.
     (5)Two kinds of systems in which linear concentrating solar collector can be used is supposed. One is the combined geothermal and solar power generation system, the other is combined CCHP system based on helical screw expander. Possibility analysis in Tibet is investigated. For the former system, the assisted heating of solar energy can enhance the power generation 38.6% (maximum). For the later one, both the yearly energy efficiency (40.2%) and exergy efficiency (13.1%) are higher than those of normal solar power generation system in which parabolic trough collector is used.
引文
[1] D.R. Mills, G.L. Morrison. Compact linear Fresnel reflector solar thermal power plants. Solar Energy 1999,68: 263–283.
    [2] K.W. Stone. C.W. Lopez. R.E. McAlister. Economic performance of the SCE stirling dish. ASME Journal of Solar Energy Engineering,1995,117(8), 210-214.
    [3] D. Mill. Advances in solar thermal electricity applications. Solar Energy,2004,76:19-31.
    [4] R. Best, N. Ortega. Solar refrigeration and cooling. Renewable Energy, 1999, 16:685-690.
    [5]王如竹,代彦军,吴静怡,许煜雄,翟晓强.太阳能热集成技术在全国首座生态建筑示范楼的应用.太阳能. 2005.1:24-26.
    [6] Erickson, Donald C. Isaac Solar Absorption Icemaker. Soltech 91.
    [7] G.L. Gupta, H.P. Garg. System design in solar water heaters with natural circulation. Solar Energy 1968,12:163–82.
    [8] H.M. Henning, T. Erpenbeck, C. Hindenburg, I.S. Santamaria. The potential of solar energy use in desiccant cooling cycles. International Journal of Refrigeration, 2001,24, 3:220-229.
    [9] Mustacchi C, Cena V. Solar desalination: design, performances, economics, Sogesta, 1981.
    [10] Kalogirou S. Use of parabolic trough solar energy collectors for sea-water desalination. Applied Energy,1998, 60(2):65–88.
    [11] Steinfeld A, Larson C, Palumbo R, Foley M. Thermodynamic analysis of the co-production of zinc and synthesis gasusing solar process heat. Energy,1996, 21:205–22.
    [12] Palumbo R, Rouanet A, Pichelin G. Solar thermal decomposition of TiO2 at temperat.s above 2200 K and its use in the production of Zn and ZnO. Energy,1995, 20:857–68.
    [13] Ewa Radziemska. Thermal performance of Si and GaAs based solar cells and modules: a review. Progress in Energy and Combustion Science, 2003, 29:407-424.
    [14] Issac R. Holstroemn.张汝舫译.太阳能电池与太阳能电子线路.上海:上海科学技术文献出版社:1986,11.
    [15] Lovegrove K, Luzzi A, Kreetz H. A solar driven ammonia based thermo-chemical energy storage system. Proceedings of ISES Solar World Congress on CD-ROM, Jerusalem, Israel;1999.
    [16] Sayigh A.A.M, Momirlan Magdalena M.san L, Veziroglu T.N. The use of solar energy in hydrogen production. Renewable Energy,1996, 9: 1258-1261.
    [17] Hassan K., El-Refair M.F. Theoretical performance of cylindrical parabolic solar concentrators. Solar Energy, 15, 1973:219-244.
    [18] Evans D.L. On the performance of cylindrical parabolic solar concentrators with flat absorbers. Solar Energy, 19, 1977:379-385.
    [19] Martinez I., Almanza R., Mazari M., Gorrea G. Parabolic trough reflector manufact. with aluminum first surface mirrors thermally sagged. Solar Energy Materials & Solar Cells, 2000, 64: 85-96.
    [20] Bakos G.C., Ioannidis I., Tsagas N.F., Seftelis I. Design, optimisation and conversion-efficiency determination of a line-focus parabolic-trough solar-collector (PTC). Applied Energy, 2001, 68: 43-50.
    [21] Arasu A.V., Sornakumar T. Design, manufact. and testing of fiberglass reinforced parabola trough for parabolic trough solar collectors. Solar Energy, 2007, 81: 1273-1279.
    [22] Riffelmann K.J., Neumann A., Ulmer S. Performance enhancement of parabolic trough collectors by solar flux meas.ment in the focal region. Solar Energy, 2006, 80: 1303–1313.
    [23] Maccari A., Montecchi M. An optical profilometer for the characterisation of parabolic trough solar concentrators. Solar Energy, 2007, 81: 185–194.
    [24] Uroshevich M. Solar collectors, U.S. Pat, 1981.
    [25] Brunotte M., Goetzberger A., Blieske U. Two-stage concentrator permitting concentration factors to 300×with one-axis tracking. Solar Energy, 1996, 56: 285–300.
    [26] Omer S.A., Infeld D. G.. Design and thermal analysis of a two stage solar concentrator for combined heat and thermoelectric power generation. Energy Conversion & Management, 2000, 41: 737-756.
    [27] Richter J.L. Optics of a two-trough solar concentrator. Solar Energy, 1996, 56: 191–198.
    [28] Gee R., Cohen G., Greeenwood K. Operation and preliminary of the Duke Solar Power Roof: A roof-integrated solar cooling and heating system, Raleigh, NC27604.
    [29] Wang J., Zhang Y.M., Liu D.Y., An C.C. Development and study on vacuum absorber tube, Proc of 2007 Solar World Congress, Beijing, 1813-1817 September 2007.
    [30] Wang J., Zhang Y.M., Liu D.Y., Guo S. Development and study on heat-pipe type vacuum absorber tube, Proc of 2007 Solar World Congress, Beijing, 1818-1822 September 2007.
    [31] Boyd D.A., Gajewski R., Swift R. A cylindrical blackbody solar energy receiver. Solar Energy, 1976, 18: 395–401.
    [32] Barra O.A., Franceschi L. The parabolic trough plants using black body receivers: experimental and theorectical analyses. Solar Energy, 1982, 28: 163–171.
    [33]侴乔力,徐光,李新秋,葛新石.中温太阳能集热器系统热状态特性数值模拟的三维动态热网络实验验证.太阳能学报. 1999,20(2):196-199.
    [34]侴乔力,葛新石,李业发,程曙霞,刘理江.管簇结构腔体式吸收器热效率所受边界条件的影响.太阳能学报. 1996,17(1):81-86.
    [35]侴乔力,葛新石,程曙霞,李业发.管簇结构腔体式吸收器热性能的数值分析.太阳能学报. 1997,:36-38,45.
    [36]侴乔力,余光宝,葛新石,曹杰.太阳能集热器长度的优化计算.煤气与热力. 1996,16(1):21-28.
    [37] Li M., Wang L.L. Investigation of evacuated tube heated by solar trough concentrating system. Energy Conversion & Management, 2006, 47: 3591-3601.
    [38] S.D.Odeh, G.L.Morrison and M.Behnia. Modelling of parabolic trough direct steam generation solar collectors. Solar Energy. 1998, 62: 395–406.
    [39] Minzer U., Barnea D., Taitel Y. Flowrate distribution in evaporating parallel pipes—modeling and experimental. Chemical Engineering Science. 2006, 61: 7249-7259.
    [40] Taitel Y., Minzer U., Barnea D. A control proced. for the elimination of mal flow rate distribution in evaporating flow in parallel pipes. Solar Energy, 2008, 82: 329–335.
    [41] Martinez I. Almanza R. Experimental and theoretical analysis of annular two-phase flow regimen in direct steam generation for a low-power system. Solar Energy, 2007, 81: 216–226.
    [42] Eck M., Steinmann W.D., Rheinlander J. Maximum temperat. difference in horizontal and tilted absorber pipes with direct steam generation. Energy. 2004,29:665–676.
    [43] Valenzuela L., Zarza E, Berenguel B, Camacho E.F. Control concepts for direct steam generation in parabolic troughs. Solar Energy. 2005, 78: 301–311.
    [44] Valenzuela L., Zarza E, Berenguel B, Camacho E.F. Control scheme for direct steam generation in parabolic troughs under recirculation operation mode. Solar Energy. 2006, 80: 1–17.
    [45]王军,张耀明,金保生,刘德有,安翠翠.太阳能热发电中的聚光器.太阳能. 2007: 30-34.
    [46] Naeeni N., Yaghoubi M. Analysis of wind flow around a parabolic collector (1) fluid flow. Renewable Energy. 2007, 32: 1898-1916.
    [47] Kritchman E.M., Friessem A.A., Yekutieli G. High concentrating Fresnel lenses. Applied optics. 1979, 18: 2688-2695.
    [48] Kritchman E.M. Color-corrected Fresnel lens for solar concentration. Optics letters. 1980, 5: 35-37.
    [49] Lorenzo E., Luque A. Fresnel lens analysis for solar energy application. Applied optics. 1981, 20: 2941-2945.
    [50] Lorenzo E. Chromatic aberration effect on solar energy systems using Fresnel lens. Applied optics. 1981, 20: 3729-3732.
    [51] Lorenzo E., Luque A. Comparison of Fresnel lenses and parabolic mirrors as solar energy concentrators. 1982, 21: 1851-1853.
    [52] Franc F., Jirka V., Maly M., Nabelek. Concentrating collectors with flat linear Fresnel lenses. Solar & wind technology. 1986, 3: 77-84.
    [53] Lewandowski A., Simms D. An assessment of linear Fresnel lens concentrators. Energy. 1987, 12: 333-338.
    [54] Al-Jumaily K.E.J., Al-kaysi M.K.A. The study of the performance and efficiency of flat linear Fresnel lens collector with sun tracking system in Iraq. Renewable Energy. 1998, 14: 41-48.
    [55] Singh P.L., Ganesan S., Yadav G.C. Performance study of a linear Fresnel concentrating solar device. Renewable Energy. 1999, 18: 409-416.
    [56] Rosell J.I., Vallverdu X., Lechon M.A., Ibanez M. Design and simulation of a low concentrating photovoltaic/thermal system. Energy Conversion & Management. 2005, 46: 3034-3046.
    [57] Winston R., Principles of solar concentrators of a novel design. Solar Energy. 1974, 16: 89.
    [58] Rabl A., Comparison of solar concentrarors. Solar Energy. 1976, 18: 93-111.
    [59] Hsieh C.K. Thermal analysis of CPC Collectors. Solar Energy. 1981, 27: 19-29.
    [60] McIntire W. Truncation of Non-Imaging Cusp Concentrators. Solar Energy. 1979, 23: 351-355.
    [61] Winston R., Hinterberger H. Principles of cylindrical concentrators for solar energy. Solar Energy. 1975, 17: 255-258.
    [62] Welford W.T., Winston R. The optics of nonimaging concentrators: light and solar energy. New York: Academic Press, 1978.
    [63] Rabl A. Optical and thermal properties of compound parabolic concentrators. Solar Energy. 1976, 18: 497-511.
    [64] Prapas D.E., Norton B., Probert S.D. Thermal design of compound parabolic concentrating solar energy collectors. Journal of Solar Energy Engineering. 1987, 109: 161-168.
    [65] Eames P.C., Norton B. A nonlinear steady-state characteristic performance curve for medium-temperat. solar energy collector. Journal of Solar Energy Engineering. 1991, 113: 164-171.
    [66] Eames P.C., Norton B. Detailed parametric analysis of hear transfer in CPC solar energy collectors. Solar Energy. 1993, 50: 321-338.
    [67] Fraidenraich N., De Lima De C.F., Tiba C., Barbosa E.M. De S. Simulation model of a CPC collector with temperat. dependent heat loss coefficienct.
    [68] Carvalho M.J., Collares-Pereira M. Correia de Oliveira J., Farinha M.J., Haberle A., ect. Optical and thermal testing of a new 1.12×CPC solar collector. Solar Energy Materials & Cells. 1995, 37: 175-190.
    [69] Blanco J., Malato J.C., Fernandez P., Vidal A., Morales A. Compound parabolic concentrator trchnology development to commercial solar detoxification application. Solar Energy. 1999, 67: 317-330.
    [70] Oommen R., Jayaraman S. Development and performance analysis of compound parabolic solar concentrators with reduced gap losses–oversized reflector. Energy Conversion & Management. 2001, 42: 1379-1399.
    [71] Tripannagnostopoulos Y., Souliutis M., Nousia T. CPC type integrated collector storage systems. Solar Energy. 2002, 72: 327-350.
    [72] Souliotis M., Tripanagnostopoulos Y. Experimental study of CPC type ICS solar systems. Solar Energy. 2004, 76:389-408.
    [73] Souliotis M., Tripanagnostopoulos Y. Study of the distribution of the absorbed solar radiation on the performance of a CPC-type ICS water heater. Renewable Energy. 2008, 33:846-858.
    [74] http://www.solel.com/products/pgeneration/ls2.
    [75] Eck M., Zarza E., Eickhoff M., Rheinlander J., Valenzuela L. A pplied research concerning the direct steam generation in parabolic troughs. Solar Energy. 2003, 74: 341-351.
    [76] Zarza E., Valenzuela L., Leon J., Hennecke K.,Markus Eck M., ect. Direct steam generation in parabolic troughs: Final results and conclusions of the DISS project. Energy. 2004, 29: 635-644.
    [77] Dersch J., Geyer M., Herrmann U., Jones S.A., Kelly B, ect. Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems.Energy. 2004, 29: 947-959.
    [78] Horn M., Führing H., Rheinl?nder J. Economic analysis of integrated solar combined cycle power plants: A sample case: The economic feasibility of an ISCCS power plant in Egypt. Energy. 2004, 29: 935-945.
    [79] Hosseini R., Soltani M., Valizadeh G. Technical and economic assessment of the integrated solar combined cycle power plants in Iran. Renewable Energy. 2005, 30: 1541-1555.
    [80] Lentz A., AlmanzaR. Solar–geothermal hybrid system. Applied Thermal Engineering. 2006, 26: 1537–1544.
    [81] Mills D. R., Morrison G. L. Compact linear Fresnel reflector solar thermal powerplants. Solar Energy. 2000, 68: 263-283.
    [82] http://www.solarmundo-power.com/.
    [83] Hause R. Solar cooling plant, Intermediate report. Dornier system GmbH, May, 1979.
    [84] Al-Homoud A.A., Suri R.K. Al-Roumi R., Maheshwari G.P. Experiences with solar cooling systems in Kuwait. Renewable Energy. 1996, 9: 664-669.
    [85] Best R., Ortega N. Solar refrigeration and cooling. Renewable Energy. 1999, 16: 685-690.
    [86] Henning H.M. Solar Air-Conditioning and Refrigeration–Introduction. Workshop of Solar Air-Conditioning and Refrigeration, April, 2007.
    [87] http://www.energy-concepts.com/isaac.html
    [88] Hammad M., Zurigat Y. Performance of a second generation solar cooling unit. Solar Energy. 1998, 62: 79-84.
    [89] Dr. Schubert.德国太阳能空调系统最新实例.太阳能学报.1998(3):18.
    [90]李戬洪,马伟斌,江晴,黄志诚,夏文慧.100kW太阳能制冷空调系统.太阳能学报.1999(3):239-243.
    [91]何梓年,朱宁,刘芳,郭淑玲.太阳能吸收式空调集供热系统的设计和性能.太阳能学报.2001(1):6-11.
    [92] Li Z.F., Sumathy K. Experimental studies on a solar powered air conditioning system with partitioned hot water storage tank. Solar Energy. 2001, 70(5): 285-297.
    [93] Wolicki Z. System description—SunCooler (two stage). Solel document, 2005.
    [94]翟晓强.生态建筑复合能量系统研究.上海交通大学博士学位论文,2005.
    [95]罗会龙.太阳能制冷低温储粮研究.上海交通大学博士学位论文,2005.
    [96] http://www.broad.com/.
    [97] Rivera C.O., Rivera W. Modeling of an intermittent solar absorption refrigeration system operating with ammonia–lithium nitrate mixt.. Solar Energy Materials & Cells. 2003, 76: 417-427.
    [98] Gonzalez M., Rodr?guez L. R. Solar powered adsorption refrigerator with CPC collection system: Collector design and experimental test. Energy Conversion & Management. 2007, 48: 2587-2594.
    [99] El Fadar A., Mimet A., Azzabakh A., Pérez-García M., Castaing J. Study of a new solar adsorption refrigerator powered by a parabolic trough collector. Applied Thermal Energy, in press.
    [100] Pollerberg C., Ali A. H., Dotsch C. Experimental study on the performance of a solar driven steam jet ejector chiller. Energy Conversion & Management, in press.
    [101] Sakuta K., Sawars S., Tanimoto M. Luminescent concentrator module of a practice size. First WCPEC. Hawaii, 1994: 1115-1118.
    [102] Coventry J.S. Performance of a concentrating photovoltaic/thermal solar collector. Solar Energy. 2005, 78: 211-222.
    [103] http://www.team.gc.ca/english/pdf/thurs_menova_e.pdf
    [104] G. Abetti. The Sun. D.Van Nostrand, Princeton, New Jersey, 1938.
    [105] Duffie J.A., Beckmann W.A. Solar engineering of thermal process. John Wiley & Sons Inc., 1991: 342.
    [106]张明,黄良甫,罗崇泰,安栋梁,孙燕杰等.空间用平板形菲涅尔透镜的设计和光学效率研究.光电工程.2001,28(5):18-21.
    [107] GB/T6495.3-1996中华人民共和国国家标准:光伏器件第3部分:地面用光伏器件的测量原理及标准光谱辐照度数据.
    [108]方荣生项立成李亭寒陈小霓,太阳能应用技术[M],中国农业机械出版社,1985.9
    [109]陶文铨,数值传热学[M],西安交通大学出版社,2001.5
    [110] Braun J.E., Mitchell J.C. Solar geometry for fixed and tracking srfaces. Solar Energy. 1983, 31(5): 439-444.
    [111] GB/T4271-2000,平板型太阳能集热器热性能试验方法.
    [112] ASHRAE 93-86 Methods of testing to determine the thermal performance of solar collectors.
    [113] GB/T17049-2005,全玻璃真空太阳集热器管
    [114]陈戈,基于太阳能的生态建筑复合能量系统模拟与实验,2005.2,p18.
    [115] Elsayed M.M., Chakroun W. Effect of apert. geometry on heat transfer in tilted partially open cavities. Journal of Heat Transfer. 1999, 121: 819-827.
    [116]白博峰,王彦超,肖泽军.同心环形管强迫流动与传热试验研究.化学工程.2007,35(6):12-15.
    [117]杨世铭,陶文铨.传热学.高等教育出报社,北京,1998:164-174.
    [118]张鹤飞.太阳能热利用原理与计算机模拟[M].西安:西北工业大学出版社.1990:39-41.
    [119]陈维,李戬洪.抛物柱面聚焦的几种跟踪方式的光学性能分析.太阳能学报.2003,24(4):478-482.
    [120] Odeh S.D., Behnia M., Morrison G.L. Performance evaluation of solar thermal electric generation systems. Energy Conversion & Management. 2003, 44: 2425-2433.
    [121] Schramek P., Mills D.R. Heliostats for maximum ground coverage. Energy , 2004, 29: 701-716.
    [122]周大吉,地热发电简述[J],电力勘测设计,第3期,1671-9913(2003)-0001-06.
    [123] DiPippo R., Khalifa H.E., Correia R.J., Kestin J. Fossil superheating in geothermal steam power plants[R]. In: Intersoc Energy Convers Eng Conf 13th, San Diego (California), SAE, August 20-25, 1978.Proceedings.Volume 2. (A79-10001 01-44).
    [124] Janes J., Shurley L.A, Les White P.E., Deter E.R. Evaluation of a Superheater Enhanced Geothermal Steam Power Plant in the Geyser Area[R]. California Energy Commission Siting and Environmental Division, June, 1984. P-700-84-003.receivers [J], Energy 29 (5–6) (2004) 645–651.[5].
    [125] Archibald J., Geoghegan E., Surikova T. Design of solar–geothermal heating and cooling retrofit for a physics laboratory [J], 2002.
    [126] Karagiorgas M., Mendrinos D., Karytsas C. Solar and geothermal heating and cooling of the European centre for public law building in Greece [J], Renewable Energy 29 (2003) 461–470.
    [127]谢鄂军,西藏地热资源开发利用方案探讨[J],西藏科技,2002年第3期.
    [128]郑瑞澄主编,民用建筑太阳能热水系统工程技术手册[M],北京,化学化工出版社,2006.
    [129] Ng K. C., Bong T. Y., Lim T. B. A thermodynamic model for the analysis of screw expander performance. Heat Recovery Systems and CHP 1990, 10:119-33.
    [130] House P. A. Helical-rotor expander applications for geothermal energy conversion. Lawrence Livermore laboratory report UCRL-52043, 1976.
    [131] Walter R.A., Bloomster C.M., Wise S. E. Thermodynamic modeling of geothermal power plants. Pacific northwest laboratories report BNWL-1911 UC-13, 1975.
    [132] Birdsville geothermal power station. www.epa.qld.gov.a.gister/p00395aa.pdf.
    [133] Wang D.C., Wu J.Y., Xia Z.Z., Zhai H., Wang R.Z., Dou W.D.. Study of a novel silica gel-water adsorption chiller. PartⅡ. Experimental study. International Journal of Refrigeration. 2005, 28: 1084-1091.
    [134] Winter C. J., et al. Solar Power Plants, Springer, New York, 1991.
    [135] Ahern J. E.. The exergy method of energy systems analysis, Wiley, New York, 1980.
    [136] Singh N., Kaushik S.C., Misra R.D.. Exergetic analysis of a solar thermal power system. Renewable energy 2000, 19:135-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700