高能量光泵太赫兹气体激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹波具有透视性、安全性、光谱分辨本领等特点,在无损检测、安全检查、光谱分析等领域有重要的应用前景。光泵太赫兹气体激光器是获得高能量高功率相干太赫兹波的重要技术,通过改变增益介质和泵浦光波长可以获得数千条太赫兹谱线。很多太赫兹增益介质的吸收谱都在CO2激光的波长范围内,横向放电激励大气压(TEA) CO2激光器的脉冲能量和峰值功率很高,是脉冲光泵太赫兹激光器最有效的泵浦源。
     本论文利用TEA CO2激光器泵浦NH3、CH3OH和D2O产生脉冲太赫兹激光,主要研究内容包括提高太赫兹激光能量和转换效率的方法,以及太赫兹激光参数和特性的测试技术。
     为了获得多条太赫兹谱线,需要泵浦激光实现波长调谐输出,本论文首先研究高能量TEA CO2激光器的光栅选支技术。探讨了光栅选支的原理,光栅参数的设计依据,以及光栅的Littrow安装结构。利用闪耀光栅实现两种型号TEA CO2激光器的选支输出,其中TEA-30型激光器输出58条支线,最高能量13J,TEA-300型激光器输出49条支线,最高能量54J。为了实现单支线振荡,激光谐振腔必须足够长以增大相邻支线间的线色散。在高气压工作的TEA-300型激光器的混合气体中加入少量三乙胺可以稳定辉光放电和激光脉冲能量,但会降低9μm带支线的能量。
     合理设计太赫兹激光振荡器可以有效提高太赫兹激光的转换效率,本论文设计了两套太赫兹激光振荡器真空系统。其中低真空系统由石英玻璃管激光腔、机械泵、热偶规等组成,以O型橡胶圈密封;高真空系统由不锈钢管激光腔、涡轮分子泵、复合高真空规等组成,主要以刀口法兰和铜垫圈密封。提出用Ge标准具作为振荡器的太赫兹高反镜,其太赫兹反射率可达78%,太赫兹部分反射镜使用石英晶体。
     为了获得高能量太赫兹激光,需要高增益的太赫兹增益气体。利用前面设计的选支TEA CO2激光器和太赫兹激光振荡器,研究了NH3、CH3OH和D2O的太赫兹谱线特性。利用TEA-300的10P(32)支线泵浦NH3产生的151.5μm谱线能量高达204mJ,9R(16)支线泵浦产生的90μm谱线能量为130mJ。利用Ge标准具充当太赫兹激光振荡器的高反镜时,151.5μm谱线的光子转换效率高达20.8%。CH30H蒸汽由TEA-30的9P(16)支线泵浦产生的570.5gm谱线能量为0.39mJ,9P(36)支线泵浦产生的118.8μm谱线能量为0.27mJ。D2O蒸汽由TEA-30的9R(22)支线泵浦产生高增益的385μm谱线,使用Ge标准具高反镜的效率是金属线栅高反镜的3.5倍。3851μm谱线的最高能量为4.44mJ,光子转换效率为7.0%。
     对太赫兹激光各项参数的研究有利于充分掌握光泵太赫兹激光的特性,本论文最后研究了脉冲光泵太赫兹激光的波长、光束质量、偏振和大气传输特性的测试技术。提出用两个全同Ge标准具组成法布里-玻罗(F-P)干涉仪测量太赫兹激光波长,Ge标准具F-P干涉仪的理论精细度(相邻透射峰的相位差2π与透射峰的相位半宽度之比)大于12.5,实际的波长测量误差小于±1%。利用激光模式仪分析了脉冲光泵NH3太赫兹激光的光束质量,151.5μm谱线的远场发散角约为衍射极限的7倍。检测了TEA-30的9R(22)支线和D20的385μm谱线的偏振特性,结果显示9R(22)支线基本是光栅的TM线偏振光(偏振方向与光栅刻槽方向垂直),而385gm谱线在垂直于泵浦光的偏振方向上增益较强。通过测量太赫兹激光传输10m后的剩余能量,发现90μm谱线的大气吸收严重,151.5μm和385μm谱线的大气吸收相对较小。
     本论文建立了完整的脉冲光泵太赫兹激光器及其测试系统,太赫兹脉冲能量高达204mJ,提出的Ge标准具太赫兹高反镜使太赫兹光子转换效率达20.8%,研制出新型太赫兹波长计,测试了太赫兹光束质量、偏振和大气传输等特性。本论文实现的高能量高效率光泵太赫兹激光器系统将有助于推动太赫兹波在透视成像和无损检测领域的应用。
The unique characteristics of terahertz (THz) waves include:1) THz waves are transparent to most dry dielectric materials;2) THz waves are safe to biological tissues;3) many molecules have spectroscopic fingerprints in THz range. These characteristics make THz waves have promising applications in nondestructive evaluation, safety inspection, spectral analysis, etc. Optically pumped THz lasers (OPTLs) are important techniques to obtain high-energy high-power coherent THz waves. OPTLs can emit thousands of THz lines when the active medium and the pump wavelength are changed. Many THz active media can be pumped by CO2lasers, and high-energy high-peak-power TEA (Transversely Excited Atmospheric) CO2lasers are the most efficient pump sources for OPTLs.
     In this paper, TEA CO2lasers are used to pump NH3, CH3OH and D2O to emit pulsed THz laser radiation. To increase THz energy and conversion efficiency, and measure the parameters of the laser lines are the main research contents.
     The wavelength of the pump laser must be tuned to obtain various THz lines, so a blazed grating is used to realize wavelength tuning of high-energy TEA CO2lasers. The line-tuning theory, designing principles of grating parameters and the Littrow configuration are discussed. A blazed grating is used to tune the wavelengths of two TEA CO2lasers. The TEA-30laser emits58lines with the highest energy13J, and the TEA-300laser emits49lines with the highest energy54J. In order to ensure single line oscillating, the laser cavity length must be large enough to increase the dispersion between adjacent lines. A little triethylamine should be added in the high-pressure gas mixture of TEA-300to stabilize the glow discharge, but the triethylamine will decrease the energy of9μm lines.
     The configuration of the THz laser oscillator is designed to obtain high energy conversion efficiency. A low vacuum system and a high vacuum system are designed. The low vacuum system, sealed with O-type rubber rings, is composed of a quartz glass tube, a mechanical pump, a thermocouple gauge, etc. The high vacuum system, sealed with knife-edge flanges and copper rings, is composed of a stainless steel tube, a turbo molecular pump, a combined high vacuum gauge, etc. We propose that a Ge etalon is used as the high-reflectivity mirror of the THz resonator, and the THz reflectivity can reach78%. Crystal quartz is used as the output coupler.
     THz media with high gain are essential for realizing high-energy THz lasers. The TEA CO2lasers and THz laser oscillators mentioned before are used to pump NH3, CH3OH, and D20to emit pulsed THz laser lines. When the10P(32) line of TEA-300pumps NH3, the151.5μm line reaches204mJ. When the9R(16) line is the pump wavelength,130mJ90μm radiation is obtained. When the Ge etalon acts as the high-reflectivity mirror, the photon conversion efficiency of151.5μm reaches20.8%. When the9P(16) and9P(36) lines of TEA-30pump CH3OH vapor,0.39mJ570.5μm line and0.27mJ118.8μm line will be emitted, respectively. When D2O vapor is pumped by the9R(22) line of TEA-30, intense385μm THz line will be emitted. Both a Ge etalon and a metal grid polarizer are used as the high-reflectivity mirrors, and the Ge etalon mirror is3.5times as efficient as the metal grid mirror. The highest energy of the385μm line is4.44mJ, and the corresponding photon conversion efficiency is7.0%.
     Research on the parameters of THz laser lines are important for understanding the characteristics of OPTLs. The parameters of the THz laser lines are investigated, including THz wavelengths, beam quality, polarization and atmospheric transmission character. Fabry-Perot interferometers (FPIs) composed of two metal grid polarizers or two identical Ge etalons are presented to measure the THz wavelengths. The theoretical finesse, defined as the ratio of2π to the phase halfwidth of the transmission fringes of the Ge FPI, is larger than12.5. The practical measuring errors of THz wavelengths are within±1%. A pyroelectric camera is used to analyze the beam quality of NH3THz laser lines. The far-field divergence angle of151.5μm line is7times of the diffraction limit. The polarization characteristics of the9R(22) line of TEA-30and the385μm line of D2O are measured, and the results show the9R(22) line is almost linearly polarized with a horizontal polarization direction and the gain of the385μm line is larger in the vertical polarization direction. By measuring the transmitted energy of THz lines at10m off the output window of the laser oscillator, the atmospheric transmission characteristics can be analyzed. The results show the90μm line is absorbed strongly by the air, and the absorption coefficients at151.5μm and385μm are less than90μm.
     In this paper, a complete OPTL and THz measuring system has been set up. The highest THz pulse energy reaches204mJ, and the photon conversion efficiency reaches20.8%with a Ge etalon high-reflectivity mirror. A novel THz wavemeter has been designed and the parameters of the THz laser lines are investigated, including THz wavelengths, beam quality, polarization and atmospheric transmission character. The high-enery high-efficiency OPTL system obtained in this paper can be useful for the applications of transmission imaging and nondestructive evaluation.
引文
[1]许景周,张希成.太赫兹科学技术和应用.(第一版).北京:北京大学出版社,2007.1-20
    [2]P. H. Siegel. Terahertz technology. IEEE Trans. Microw. Theory Tech.,2002, 50(3):910-928
    [3]B. Ferguson, X. C. Zhang. Materials for terahertz science and technology. Nat. Mater.,2002,1(1):26-33
    [4]张存林,张岩,赵国忠.太赫兹感测与成像.(第一版).北京:国防工业出版社,2008.1-9
    [5]Q. Chen, Z. P. Jiang, G. X. Xu, et al. Near-field terahertz imaging with a dynamic aperture. Opt. Lett.,2000,25(15):1122-1124
    [6]Q. Li, S. Ding, R. Yao, et al. Real-time terahertz scanning imaging by use of a pyroelectric array camera and image denoising. J. Opt. Soc. Am. A,2010,27(11): 2381-2386
    [7]S. Ariyoshi, C. Otani, A. Dobroiu, et al. Terahertz imaging with a direct detector based on superconducting tunnel junctions. Appl. Phys. Lett.,2006,88(20): 203503
    [8]A. W. M. Lee, Q. Qin, S. Kumar, et al. Real-time terahertz imaging over a standoff distance (>25 meters). Appl. Phys. Lett.,2006,89(14):141125
    [9]J. F. Federici, B. Schulkin, F. Huang, et al. THz imaging and sensing for security applications-explosives, weapons and drugs. Semicond. Sci. Technol.,2005,20(7): S266-S280
    [10]R. Appleby, H. B. Wallace. Standoff detection of weapons and contraband in the 100 GHz to 1 THz region. IEEE Trans. Antennas Propag.,2007,55(11): 2944-2956
    [11]J. A. Zeitler, L. F. Gladden. In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms. Eur. J. Pharm. Biopharm.,2009,71(1): 2-22
    [12]Y. L. Hor, J. F. Federici, R. L. Wample. Nondestructive evaluation of cork enclosures using terahertz/millimeter wave spectroscopy and imaging. Appl. Opt., 2008,47(1):72-78
    [13]A. G. Davies, A. D. Burnett, W. Fan, et al. Terahertz spectroscopy of explosives and drugs. Mater. Today,2008,11(3):18-26
    [14]J. Hooper, E. Mitchell, C. Konek, et al. Terahertz optical properties of the high explosive (3-HMX. Chem. Phys. Lett.,2009,467309-312
    [15]D. G. Allis, J. A. Zeitler, P. F. Taday, et al. Theoretical analysis of the solid-state terahertz spectrum of the high explosive RDX. Chem. Phys. Lett.,2008,46384-89
    [16]J. Federici, L. Moeller. Review of terahertz and subterahertz wireless communications. J. Appl. Phys.,2010,107(11):111101
    [17]J. R. Pardo, J. Cernicharo, E. Serabyn. Atmospheric transmission at microwaves (ATM):an improved model for millimeter/submillimeter applications. IEEE Trans. Antennas Propag.,2001,49(12):1683-1694
    [18]S. Paine, R. Blundell, D. C. Papa, et al. A Fourier transform spectrometer for measurement of atmospheric transmission at submillimeter wavelengths. Publ. Astron. Soc. Pac.,2000,112(767):108-118
    [19]J. R. Pardo, E. Serabyn, J. Cernicharo. Submillimeter atmospheric transmission measurements on Mauna Kea during extremely dry El Nino conditions: implications for broadband opacity contributions. J. Quant. Spectrosc. Ra.,2001, 68(4):419-433
    [20]E. Serabyn, E. W. Weisstein, D. C. Lis, et al. Submillimeter Fourier-transform spectrometer measurements of atmospheric opacity above Mauna Kea. Appl. Opt., 1998,37(12):2185-2198
    [21]H. Matsuo, A. Sakamoto, S. Matsushita. FTS measurements of submillimeter-wave atmospheric opacity at Pampa la Bola. Publ. Astron. Soc. Jpn,1998,50(3): 359-366
    [22]S. Matsushita, H. Matsuo, J. R. Pardo, et al. FTS measurements of submillimeter-wave atmospheric opacity at Pampa la Bola II:supra-terahertz windows and model fitting. Publ. Astron. Soc. Jpn,1999,51(5):603-610
    [23]C. C. Zammit, R. E. Hill, R. W. Barker. Atmospheric emission and attenuation in the range 100 to 600 GHz measures from a mountain site. Int. J. Infrared Millimeter Waves,1982,3(2):189-203
    [24]曹俊诚.太赫兹量子级联激光器研究进展.物理,2006,35(8):632-636
    [25]S. Kumar. Recent progress in terahertz quantum cascade lasers. IEEE J. Sel. Top. Quant.,2011,17(1):38-47
    [26]R. Kohler, A. Tredicucci, F. Beltram, et al. Terahertz semiconductor-heterostructure laser. Nature,2002,417(6885):156-159
    [27]S. Kumar, Q. Hu, J. L. Reno.186 K operation of terahertz quantum-cascade lasers based on a diagonal design. Appl. Phys. Lett.,2009,94(13):131105
    [28]H. Li, J. C. Cao. Effect of injection coupling strength on terahertz quantum-cascade lasers. Semicond. Sci. Technol.,2011,26(9):95029
    [29]S. Y. Tochitsky, J. E. Ralph, C. Sung, et al. Generation of megawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs. J. Appl. Phys.,2005,98(2):26101
    [30]Y. Jiang, Y. J. Ding. Efficient terahertz generation from two collinearly propagating CO2 laser pulses. Appl. Phys. Lett.,2007,91(9):91108
    [31]K. Kawase, J. Shikata, H. Ito. Terahertz wave parametric source. J. Phys. D Appl. Phys.,2002,35(3):R1-R14
    [32][32] S. Koji, K. Kodo. Monochromatic-tunable terahertz-wave sources based on nonlinear frequency conversion using Lithium Niobate crystal. Ieee J. Sel. Top. Quant.,2008,14(2):295-306
    [33]T. J. Edwards, D. Walsh, M. B. Spurr, et al. Compact source of continuously and widely-tunable terahertz radiation. Opt. Express,2006,14(4):1582-1589
    [34]Y. Lu, X. Wang, L. Miao, et al. Efficient and widely step-tunable terahertz generation with a dual-wavelength CO2 laser. Appl. Phys. B-Lasers Opt.,2011, 103(2):387-390
    [35]Y. Lu, X. Wang, L. Miao, et al. Terahertz generation in nonlinear crystals with mid-infrared CO2 laser. Chinese Phys. Lett.,2011,28(3):34201
    [36]K. Zhong, J. Yao, D. Xu. Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO. Opt. Commun., 2010,283(18):3520-3524
    [37]B. Sun, J. Liu, E. Li, et al. Investigation of pump-wavelength dependence of terahertz-wave parametric oscillator based on LiNbO3. Chinese Physics B,2009, 18(7):2846-2852
    [38]B. Sun, J. Liu, E. Li. Investigation of a novel frequency-tuning method for terahertz-wave parametric oscillators. Opt. Express,2008,16(25):20817-20825
    [39]B. Sun, S. Li, J. Liu. Terahertz-wave parametric oscillator with a misalignment-resistant tuning cavity. Opt. Lett.,2011,36(10):1845-1847
    [40]G. P. Gallerano, S. Biedron, "Overview of terahertz radiation sources," in Proceedings of the 2004 FEL Conference, (2004), pp.216-221.
    [41]殷勇.360 GHz返波管的研究.真空电子技术,2010,(5):1-3
    [42]李珏岐.THz返波管的研究:[硕士学位论文].成都:电子科技大学图书馆,2011
    [43]陈泽民.自由电子激光的基本原理.物理与工程,2000,10(5):13-16
    [44]N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, et al. Status of the Novosibirsk high-power terahertz FEL. Nuclear Instruments and Methods in Physics Research A,2007,575(1-2):54-57
    [45]蔡根旺,张腊梅,樊志琴.太赫兹自由电子激光器研究进展.科技信息,2009,(29):25-26
    [46]Y. U. Jeong, S. H. Park, B. C. Lee, et al., "Compact terahertz free-electron laser as a users facility," in Proceedings ofAPAC, (Gyeongju, Korea,2004), pp.759-761.
    [47]金晓,黎明,许州等.中国工程物理研究院远红外自由电子激光实验研究.高能物理与核物理,2006,30(增刊Ⅰ):96-98
    [48]D. Saeedkia, S. Safavi-Naeini. Terahertz photonics:optoelectronic techniques for generation and detection of terahertz waves. J. Lightwave Technol.,2008,26(15): 2409-2423
    [49]D. H. Auston, K. P. Cheung, P. R. Smith. Picosecond photoconducting Hertzian dipoles. Appl. Phys. Lett.,1984,45(3):284-286
    [50]J. T. Darrow, X. Zhang, D. H. Auston, et al. Saturation properties of large-aperture photoconducting antennas. IEEE J. Quantum Electron.,1992,28(6):1607-1616
    [51]施卫,张显斌,贾婉丽等.用飞秒激光触发GaAs光电导体产生THz电磁波的研究.半导体学报,2004,25(12):1735-1738
    [52]黄振,于斌,赵国忠.小孔径光电导天线产生太赫兹波的辐射特性.中国激光,2010,37(1):110-114
    [53]K. H. Yang, P. L. Richards, Y. R. Shen. Generation of far-infrared radiation by picosecond light pulses in LiNbO3. Appl. Phys. Lett.,1971,19(9):320-323
    [54]P. Y. Han, X. C. Zhang. Coherent broadband mid-infrared terahertz beam sensors. Appl. Phys. Lett.,1998,73(21):3049-3051
    [55]R. Huber, A. Brodschelm, F. Tauser, et al. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Appl. Phys. Lett., 2000,76(22):3191-3193
    [56]W. L. Faust, R. A. McFarlane, C. K. N. Patel, et al. New infrared maser lines of the noble gases. Bulletin of the American Physical Society,1963,8299
    [57]W. L. Faust, R. A. McFarlane, C. K. N. Patel, et al. Noble gas optical maser lines at wavelengths between 2 and 35 μm. Physical Review,1964,133(6A): A1476-A1486
    [58]L. E. S. Mathias, A. Crocker, M. S. Wills. Laser oscillations at submillimetre wavelengths from pulsed gas discharges in compounds of hydrogen, carbon and nitrogen. Electron. Lett.,1965,1(2):45-46
    [59]T. Y. Chang, T. J. Bridges. Laser action at 452,496, and 541 μm in optically pumped CH3F. Opt. Commun.,1970,1(9):423-426
    [60]T. Y. Chang, T. J. Bridges, E. G. Burkhardt. CW submillimeter laser action in optically pumped methyl fluoride, methyl alcohol, and vinyl chloride gases. Appl. Phys. Lett.,1970,17(6):249-251
    [61]T. Y. Chang, T. J. Bridges, E. G. Burkhardt. CW laser action at 81.5 and 263.4 μm in optically pumped ammonia gas. Appl. Phys. Lett.,1970,17(9):357-358
    [62]T. Y. Chang, J. D. McGee. Millimeter and submillimeter wave laser action in symmetric top molecules optically pumped via parallel absorption bands. Appl. Phys. Lett.,1971,19(4):103-105
    [63]D. T. Hodges, T. S. Hartwick. Waveguide laser for the far infrared (FIR) pumped by a C02 laser. Appl. Phys. Lett.,1973,23(5):252-253
    [64]T. A. DeTemple, T. K. Plant, P. D. Coleman. Intense superradiant emission at 496 μm from optically pumped methyl fluoride. Appl. Phys. Lett.,1973,22(12): 644-646
    [65]T. K. Plant, L. A. Newman, E. J. Danielewicz, et al. High power optically pumped far infrared lasers. IEEE Trans. Microw. Theory Tech.,1974,22(12):988-990
    [66]D. T. Hodges, J. R. Tucker. Pump absorption and saturation in the CH3F 496-μm laser. Appl. Phys. Lett.,1975,27(12):667-669
    [67]T. Y. Chang. Optically pumped submillimeter-wave sources. IEEE Trans. Microw. Theory Tech.,1974,22(12):983-988
    [68]A. J. Beaulieu. Transversely excited atmospheric pressure CO2 laser. Appl. Phys. Lett.,1970,16(2):504-505
    [69]F. Brown, E. Silver, C. E. Chase, et al.10-W Methyl Fluoride Laser at 496 μm. IEEE J. Quantum Electron.,1972,8(6):499-500
    [70]H. R. Fetterman, H. R. Schlossberg, J. Waldman. Submillimeter lasers optically pumped off resonance. Opt. Commun.,1972,6(2):156-159
    [71]J. R. Izatt, B. L. Bean, G. F. Caudle. One watt, far infrared CH3OH laser. Opt. Commun.,1975,14(4):385-387
    [72]D. R. Cohn, T. Fuse, K. J. Button, et al. Development of an efficient 9-kW 496-μm CH3F laser oscillator. Appl. Phys. Lett.,1975,27(5):280-282
    [73]D. T. Hodges, F. B. Foote, R. D. Reel. Efficient high-power operation of CW far-infared waveguide laser. Appl. Phys. Lett.,1976,29(10):662-664
    [74]E. J. Danielewicz, P. D. Coleman. Hybrid metal mesh-dielectric mirrors for optically pumped far infrared lasers. Appl. Opt.,1976,15(3):761-767
    [75]I. Boscolo. Simple output coupler for optically pumped far infrared lasers. Appl. Opt.,1988,27(16):3325-3327
    [76]A. Semet, J. N. C. Luhmann. High-power narrow-line pulsed 496 μm laser. Appl. Phys. Lett.,1976,28(11):659-661
    [77]T. Y. Chang, C. Lin. Effects of buffer gases on an optically pumped CH3F FIR laser. Journal of the Optical Society of America,1976,66(4):362-369
    [78]P. Mathieu, J. R. Izatt. Narrow-band CO2-TEA laser for efficient FIR laser pumping. IEEE J. Quantum Electron.,1977,13(6):465-468.
    [79]P. Bernard, J. R. Izatt. New CH3OH laser lines pumped with a fine-tuned high-power CO2-TEA laser. Int. J. Infrared Millimeter Waves,1983,4(1):21-36
    [80]Y. Nishi. Assignments of fir laser emissions from CH3OH optically pumped by an intra-cavity etalon tuned TEA-CO2 laser. Int. J. Infrared Millimeter Waves,1987, 8(9):1189-1210
    [81]I. Mukhopadhyay, R. M. Lees. Torsional refilling transitions in tea-pumped CH3OH fir lasers with associated high-resolution fir spectra. International Journal of Infrared and Millimeter Waves,1987,8(11):1471-1482
    [82]G. Duxbury, H. Herman. CW optically pumped far-infrared waveguide laser with variable output Michelson coupler. Journal of Physics E:Scientific Instruments, 1978,11(5):419-420
    [83]Z. Drozdowicz, B. Lax, R. J. Temkin. Gain spectrum of a pulsed laser-pumped submillimeter laser. Appl. Phys. Lett.,1978,33(2):154-156
    [84]J. D. Wiggins, Z. Drozdowicz, R. J. Temkin. Two-photon transitions in optically pumped submillimeter lasers. IEEE J. Quantum Electron.,1978,14(1):23-30
    [85]P. Woskoboinikow, H. C. Praddaude, W. J. Mulligan, et al. High-power tunable 385 μm D2O vapor laser optically pumped with a single-mode tunable CO2 TEA laser. J. Appl. Phys.,1979,50(2):1125-1127
    [86]E. M. Frank, C. Weiss, K. Siemsen, et al. Predictions of far-infrared laser lines from 14NH3 and 15NH3. Opt. Lett.,1982,7(3):96-98
    [87]H. Hirose, H. Matsuda, S. Kon. High power FIR NH3 laser using a folded resonator. International Journal of Infrared and Millimeter Waves,1981,2(6):1165-1176
    [88]H. Hirose, S. Kon. Compact, high power FIR NH3 laser pumped in a three mirror CO2 laser cavity. International Journal of Infrared and Millimeter Waves,1984, 5(12):1571-1579
    [89]H. Hirose, S. Kon. Compact, high-power FIR NH3 laser pumped in a CO2 laser cavity. IEEE J. Quantum Electron.,1986,22(9):1600-1603
    [90]R. Behn, I. Kjelberg, P. D. Morgan, et al. A high power D2O laser optimized for microsecond pulse duration. J. Appl. Phys.,1983,54(6):2995-3002
    [91]R. Behn, M. Dupertuis, I. Kjelberg, et al. Buffer gases to increase the efficiency of an optically pumped far infrared D2O laser. IEEE J. Quantum Electron.,1985, 21(8):1278-1285
    [92]A. Semet, L. C. Johnson, D. K. Mansfield. A high energy D2O submillimeter laser for plasma diagnostics. Int. J. Infrared Millimeter Waves,1983,4(2):231-246
    [93]B. G. Danly, S. G. Evangelides, R. J. Temkin, et al. A tunable far infrared laser. IEEE J. Quantum Electron.,1984,20(8):834-837
    [94]H. O. Everitt, D. D. Skatrud, F. C. DeLucia. Dynamics and tunability of a small optically pumped cw far-infrared laser. Appl. Phys. Lett.,1986,49(16):995-997
    [95]P. Woskoboinikow, J. S. Machuzak, W. J. Mulligan. A high-power 140 GHz ammonia laser. IEEE J. Quantum Electron.,1985,21(1):14-17
    [96]I. Boscolo, A. Pando, A. Passaseo. A high power CH3OH FIR laser system with long-term stability. Int. J. Infrared Millimeter Waves,1986,7(10):1677-1690
    [97]C. T. Gross, J. Kiess, A. Mayer, et al. Pulsed high-power far-infrared gas lasers: performance and spectral survey. IEEE J. Quantum Electron.,1987,23(4): 377-384
    [98]J. Farhoomand, H. M. Pickett. Stable 1.25 Watts CW far infrared laser radiation at the 119 μm methonal line. Int. J. Infrared Millimeter Waves,1987,8(5):441-447
    [99]S. G. Evangelides, J. L. Carson, B. G. Danly, et al. Narrow bandwidth emission from a mirrorless, far infrared,13CH3F laser. IEEE J. Quantum Electron.,1988, 24(1):99-104
    [100]D. C. Yuan, M. R. Siegrist. Time-resolved linewidth and lineshape measurements of a pulsed optically-pumped far infrared D2O laser. J. Appl. Phys.,1990,68(4): 1445-1449
    [101]D. C. Yuan, G. Soumagne, M. R. Siegrist. Mode structure in an optically pumped D2O far-infrared ring laser. IEEE J. Quantum Electron.,1990,26(2):217-221
    [102]S. C. Zerbetto, E. C. C. Vasconcellos. Far infrared laser lines produced by methanol and its isotopic species:a review. Int. J. Infrared Millimeter Waves,1994, 15(5):889-933
    [103]W. Schatz, K. F. Renk, L. Fusina, et al. Far-infrared laser-emission spectroscopy on ammonia isotopomers. Appl. Phys. B-Lasers Opt.,1994,59(4):453-465
    [104]E. R. Mueller, T. E. Wilson, J. Waldman. Generation of high repetition rate far infrared laser pulses. Appl. Phys. Lett.,1994,64(25):3383-3385
    [105]W. Schatz. Generation of tunable far infrared radiation by optical pumping molecular gas lasers. Infrared Phys. Techn.,1995,36(1):387-393
    [106]S. Marchetti, M. Martinelli, R. Simili, et al. High power pulsed millimeter laser Raman generation in CH3F. Opt. Commun.,1997,133(1):310-314
    [107]I. Mukhopadhyay, S. Singh. Optically pumped far infrared molecular lasers: spectroscopic and application aspects. Spectrochim. Acta A.,1998,54(3):395-410
    [108]S. Marchetti, M. Martinelli, R. Simili, et al. Efficient millimetre far infrared laser emissions in different molecular systems. Infrared Phys. Techn.,2000,41(4): 197-204
    [109]L. F. L. Costa, F. C. Cruz, J. C. S. Moraes, et al. New far-infrared laser lines from CH3OD methanol deuterated isotope. IEEE J. Quantum Electron.,2004,40(7): 946-948
    [110]R. C. Viscovini, F. C. Cruz, D. Pereira. Characterization of new FIR laser lines from CHD2OH. IEEE J. Quantum Electron.,2005,41(5):694-696
    [111]A. De Michele, G. Carelli, A. Moretti, et al.12CH3OH and 13CH3OH optically pumped by the 10P and 10HP bands of a pulsed CO2 laser:new far-infrared laser emissions and assignments. Appl. Phys. B-Lasers Opt.,2006,83(4):495-497
    [112]G. Carelli, A. De Michele, A. Moretti. Optical pumping of CHD2OH and CH2DOH methanol isotopomers by means of a new pulsed CO2 laser:characterization of new far-infrared laser emissions. IEEE J. Quantum Electron.,2006,42(4):378-380
    [113]L. F. L. Costa, J. C. S. Moraes, F. C. Cruz, et al. Infrared and far-infrared spectroscopy of CH3OH:terahertz laser lines and assignments. J. Mol. Spectrosc., 2007,241(2):151-154
    [114]R. C. Viscovini, J. C. S. Moraes, L. F. L. Costa, et al. DCOOD optically pumped by a 13CO2 laser:new terahertz laser lines. Appl. Phys. B-Lasers Opt.,2008, 91(3-4):517-520
    [115]A. Moretti, G. Moruzzi, F. Strumia, et al. New terahertz laser lines from 13CD3OH pumped by regular and hot bands CO2 laser. IEEE J. Quantum Electron.,2008, 44(11):1104-1106
    [116]傅恩生,蔡惟泉,王忠志等.光抽运甲基氟远红外激光器.中国激光,1979,(12):12-15
    [117]刘世明,周锦文,武亿文等.光泵CH3F和D20远红外脉冲激光器.电子学通讯,1981,3(2):
    [118]傅恩生,王忠志,石培异.连续波甲醇远红外激光器.光学学报,1982,2(1):9-17
    [119]钟权德,祖钦信.连续光泵119 μm远红外波导激光器.物理,1982,11(11):692-694
    [120]王志忠,屠世谷,廖世强.输出功率稳定的光抽运远红外激光器.中国激光,1983,10(1):64
    [121]屠世谷,王忠志,廖世强等.简单的光泵远红外激光功率稳定系统.中国激光,1984,11(8):488-490
    [122]苏锦文,叶妙根,史国良等.CH30HHCOOHCH3F连续波远红外光泵激光器.红外研究,1984,8(1):26-32
    [123]丘秉生,杨建勋,罗锡璋等.脉冲光泵NH3远红外激光的实验研究.中国激光,1987,14(6):351-354
    [124]罗锡璋,郑兴世,丘秉生等.多纵模光泵远红外激光的实验研究.红外研究,1990,9(6):431-434
    [125]X. Huang, Y. Bao, X. Luo, et al. Comparison between single-longitudinal-mode and two-longitudinal-mode pumping cavity OPSMMWL. Int. J. Infrared Millimeter Waves,2002,23(7):1013-1018
    [126]X. Huang, J. Qin, X. Zheng, et al. Experimental study on miniature pulsed CH3OH far-infrared laser. Int. J. Infrared Millimeter Waves,1997,18(3):619-625
    [127]Z. He, Y. Zhang, H. Zhang, et al. Study of optimal cavity parameter in optically pumped D2O gas terahertz laser. J Infrared Milli Terahz Waves,2010,31551-558
    [128]何志红,姚建铨,任侠等.紧凑型超辐射光泵重水气体THz激光器的研制.光 电子.激光,2008,19(1):34-37
    [129]田兆硕,王静,费非等.光抽运全金属太赫兹激光器研究.中国激光,2010,37(9):2323-2327
    [130]S. Hargreaves, R. A. Lewis. Terahertz imaging:materials and methods. Journal of Materials Science: Materials in Electronics,2007,18(Supplement 1):S299-S303
    [131]Y. Jun, R. Shuangchen, Z. Min. Real-time, continuous-wave terahertz imaging by a pyroelectric camera. Chinese Optics Letters,2008,6(1):29-31
    [132]D. T. Hodges. A review of advances in optically pumped far-infrared lasers. Infrared Physics,1978,18(5-6):375-384
    [133]G. Herzberg著.分子光谱与分子结构第二卷.(第一版).王鼎昌译.北京:科学出版社,1986.
    [134]H. R. Fetterman, H. R. Schlossberg, C. D. Parker. CW submillimeter laser generation in optically pumped Stark-tuned NH3. Appl. Phys. Lett.,1973,23(12): 684-686
    [135]T. Y. Chang. Optical pumping in gases. Nonlinear Infrared Generation,1977, 16215-272
    [136]K. Lipton, J. P. Nicholson, R. Illingworth. Tunable single-mode optical pumping of the D2O fir laser. Opt. Commun.,1977,21(1):42-45
    [137]Z. Drozdowicz, R. J. Temkin, B. Lax. Laser pumped molecular lasers——part 1: theory. IEEE J. Quantum Electron.,1979,15(3):170-178
    [138]J. O. Henningsen. Assignment of laser lines in optically pumped CH3OH. IEEE J. Quantum Electron.,1977,3(6):435-441
    [139]E. M. Telles, H. Odashima, L. R. Zink, et al. Optically pumped FIR laser lines from CH3OH:new laser lines,frequency measurements, and assignments. J. Mol. Spectrosc.,1999,195(2):360-366
    [140]D. K. Mansfield, E. Horlbeck, C. L. Bennett, et al. Enhanced, high power operation of the 119 μm line of optically pumped CH3OH. Int. J. Infrared Millimeter Waves, 1985,6(9):867-876
    [141]周炳琨,高以智,陈倜嵘等.激光原理.(第五版).北京:国防工业出版社,2004.280-286
    [142]W. J. Witteman. The C02 laser. (First Edition). Berlin:Springer Verlag, 1986. 1-22
    [143]P. K. Cheo. Handbook of molecular lasers. M. Dekker,1987.1-92
    [144]T. M. Hard. Laser wavelength selection and output coupling by a grating. Appl. Opt.,1970,9(8):1825-1830
    [145]陈钰琦.TEA CO2激光器的大体积放电研究:[博士学位论文].武汉:华中科技大学图书馆,2008
    [146]V. V. Apollonov, G. G. Baitsur, A. M. Prokhorov, et al. Influence of easily ionizable substances on the stability of a volume self-sustained discharge in working CO2 laser mixtures. Soviet Journal of Quantum Electronics,1988,18(3): 351-354
    [147]V. V. Apollonov, Y. M. Vas'Kovskii, M. I. Zhavoronkov, et al. High-power electric-discharge CO2 laser with easily ionizable substances added to the mixture. Soviet Journal of Quantum Electronics,1985,15(1):1-3
    [148]V. A. Batanov, K. Y. Kuz'Min, I. A. Lesnov, et al. Optical characteristics of triethylamine in the spectral range of a CO2 laser. Journal of Applied Spectroscopy, 1991,55(2):795-797
    [149]J. P. Hawranek, W. Wrzeszcz, A. S. Muszyriski, et al. Infrared dispersion of liquid triethylamine. J. Non-Cryst. Solids,2002,305(1-3):62-70
    [150]徐成海,巴德纯,于溥等.真空工程技术.(第一版).北京:化学工业出版社,2006.268-335
    [151]B. S. Patel. Optical suitability of window materials for CO2 lasers. Appl. Opt., 1977,16(5):1232-1235
    [152]T. Hattori, Y. Homma, A. Mitsuishi, et al. Indices of refraction of ZnS, ZnSe, ZnTe, CdS, and CdTe in the far infrared. Opt. Commun.,1973,7(3):229-232
    [153]M. N. Afsar, K. J. Button, "Millimeter-wave dielectric measurement of materials," in Proceedings of the IEEE, (1985), pp.131-153.
    [154]R. H. Stolen. Far-infrared absorption in high resistivity GaAs. Appl. Phys. Lett., 1969,15(2):74-75
    [155]C. J. Johnson, G. H. Sherman, R. Weil. Far infrared measurement of the dielectric properties of GaAs and CdTe at 300 K and 8 K. Appl. Opt.,1969,8(8):1667-1672
    [156]D. Grischkowsky, S. Keiding, M. van Exter, et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B-Opt. Phys.,1990,7(10):2006-2015
    [157]E. V. Loewenstein, D. R. Smith, R. L. Morgan. Optical constants of far infrared materials 2:crystalline solids. Appl. Opt.,1973,12(2):398-406
    [158]M. N. Afsar, D. D. Honijk, W. F. Passchier, et al. Dispersive fourier transform spectrometry with variable-thickness variable-perature liquid cells. IEEE Trans. Microw. Theory Tech.,1977,25(6):505-508
    [159]H. Angus Macleod著.光学薄膜技术.(第一版).周九林,尹树百译.北京:国防工业出版社,1974.
    [160]M. Born, E. Wolf. Principles of optics. (Seventh Edition). Cambridge:Cambridge University,2005.286-411,752-758
    [161]刘云飞.金属栅网的亚毫米波散射特性研究:[博士学位论文].南京:南京航空航天大学图书馆,2004
    [162]R. Ulrich. Far-infrared properties of metallic mesh and its complementary structure. Infrared Physics,1967,7(1):37-55
    [163]R. C. Compton, L. B. Whitbourn, R. C. McPhedran. Strip gratings at a dielectric interface and application of Babinet's principle. Appl. Opt.,1984,23(18): 3236-3242
    [164]Y. Jin, G. Kim, S. Jeon. Terahertz dielectric properties of polymers. J. Korean Phys. Soc.,2006,49(2):513-517
    [165]D. R. Smith, E. V. Loewenstein. Optical constants of far infrared materials.3: plastics. Appl. Opt.,1975,14(6):1335-1341
    [166]M. N. Afsar, H. Chi,I.I. Tkachov. Millimeter and submillimeterwave transmission and dielectric properties of radome materials. SPIE,1995,255873-85
    [167]F. B. Hat, B. Wyncke. Measurement of the optical constants of crystal quartz at 10 K and 300 K in the far infrared spectral range 10-600 cm-1. Int. J. Infrared Millimeter Waves,1997,18(9):1663-1679
    [168]W. G. Spitzer, D. A. Kleinaman. Infrared lattice bands of quartz. Physical Review, 1961,121(5):1324-1335
    [169]Y. Lee. Principles of terahertz science and technology. (First Edition). Springer, 2008.159-214
    [170]K. Gullberg, B. Hartmann, B. Kleman. Submillimeter emission from optically pumped 14NH3. Phys. Scripta,1973,8(5):177-182
    [171]T. Yoshida, N. Yamabayashi, K. Miyazaki, et al. Infrared and far-infrared laser emissions from a TE CO2 laser pumped NH3 gas. Opt. Commun.,1978,26(3): 410-414
    [172]John A. Dean著.兰氏化学手册.(第十三版).尚久方,操时杰,辛无名等译.北京:科学出版社,1991.
    [173]J. G. Speight. Lange's handbook of chemistry. (Sixteenth Edition). New York: McGraw-Hill,2004.1-199
    [174]G. Moruzzi, J. C. S. Moraes, F. Strumia. Far infrared laser lines and assignments of CH3OH:a review. Int. J. Infrared Millimeter Waves,1992,13(9):1269-1312
    [175]A. A. Vedenov, G. D. Myl'Nikov, D. N. Sobolenko. Generation of coherent far-infrared radiation using lasers. Soviet Physics Uspekhi,1982,25(11):833-853
    [176]W. G. Chambers, A. E. Costley, T. J. Parker. Characteristic curves for the spectroscopic performance of free-standing wire grids at millimeter and submillimeter wavelengths. Int. J. Infrared Millimeter Waves,1988,9(2):157-172
    [177]M. Jackson, P. Noffke, L. R. Zink. Frequency measurement of optically pumped FIR laser emissions from the CH3OD methanol isotope. Appl. Phys. B-Lasers Opt., 2004,78(3):273-274
    [178]D. G. Biron, B. G. Danly, R. J. Temkin, et al. Far-infrared raman laser with high intensity laser pumping. IEEE J. Quantum Electron.,1981,17(10):2146-2152
    [179]S. Y. Tochitsky, C. Sung, S. E. Trubnick, et al. High-power tunable,0.5-3 THz radiation source based on nonlinear difference frequency mixing of CO2 laserlines. J. Opt. Soc. Am. B-Opt. Phys.,2007,24(9):2509-2516
    [180]O. Svelto, D. C. Hanna. Principles of lasers. (Fourth Edition). New York:Springer, 1998.480-483

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700