一维纳米管功能化的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(carbon nanotube,CNT)是1991年被发现的一种具有准一维管状结构的纳米材料。其独特的结构和奇特的性质使得它在纳米电子器件、储能、气体传感、场发射与平板显示等众多领域有着广泛的应用。目前,人们已经成功合成了很多纳米管材料,比如硼氮纳米管、硅碳纳米管等。它们的性质与其独特的结构是密切相关的。研究它们的微观结构、性能和反应对于探讨其形成机理,开发其应用潜力具有十分重要的意义。
     近年来相关理论和数值算法的飞速发展,使得基于密度泛函理论的第一性原理方法在凝聚态物理、量子化学和材料科学中得到非常广泛的应用。在本论文中,我们利用密度泛函理论评估了碳纳米管、硼氮纳米管和硅碳纳米管三类纳米管在分子气敏元件和场发射器件设计方面的应用。本文得到的结果如下:
     一、CNT具有高的比表面积,可以用来探测一些气体(O2, NO2)的存在。然而,一些有毒气体(CO)不能吸附于CNT,因此CNT不能探测CO气体。本文通过密度泛函理论,通过研究CO在Rh修饰的(8,0)CNT(Rh-CNT)上的吸附,我们探讨了Rh-CNT对CO气体的气敏性能。计算结果表明,Rh原子的吸附“激活”了CNT上部分碳原子,因此Rh原子和被其激活的碳原子都作为CO分子的吸附位置。结果表明,CO在Rh原子上的吸附能(>1.0 eV)远大于在“被激活”碳原子上的吸附(~0.6 eV),两种类型的吸附都伴随着一定数量的电荷转移,且Rh-CNT电子结构发生一定程度的变化。因此,从电荷转移角度来说,Rh-CNT可以用来探测CO气体。然而,过大的吸附能则不利于分子气敏元件的重复利用。
     二、被切割纳米管端口原子有较强的化学活性,通过一定的化学反应可对其进行化学修饰。我们系统研究了几种气体分子(包括H2、H2O、O2和N2)在开口BNNT端口上的吸附,进而探讨了开口BNNT结构、导电性及磁性的变化。结果表明,除N2分子外,其它气体分子在开口硼氮纳米管端口都被分解。开口硼氮纳米管导电性的变化依赖于吸附的气体种类。此外,N-rich-ended BNNT端口一些N原子的未饱和键被外来气体饱和,因此这些端口N原子的磁性大大降低。
     三、基于碳纳米管场发射的平面显示器(FED)是最接近实际应用的。BNNT具有很好的耐高温性和抗氧化性,并且开口BNNT具有独特的电学和磁性等特性。然而,相对于开口CNT场发射性质的研究,开口BNNT场发射性质的研究尚未见报道。本文我们研究了O2和H2O吸附对开口(8,0)硼氮纳米管场发射性质的影响。我们发现,在1eV/?的外加电场下,气体在开口BNNT端口的吸附能力显著增强,电离能和带隙发生不同程度的变化。具体来说,N-rich-ended BNNT的电离能被降低,而B-rich-ended BNNT的电离能有一定程度的增加。这表明,N-rich-ended BNNT更适合用来设计纳米场发射器。
     四、过渡金属修饰的碳纳米管在储氢、气体传感、纳米磁性器件等方面有着重要的应用。硅碳纳米管是继碳纳米管之后成功合成的半导体纳米材料之一,具有独特的性质和广泛的应用。为了更深入揭示硅碳纳米管化学性质以及探索其应用前景,通过密度泛函理论计算,我们首次研究了一系列过渡金属在硅碳纳米管管外壁的吸附。我们发现,这些过渡金属可以化学吸附到硅碳纳米管表面。键能介于1.17 eV(Cu)~3.18 eV(Pt)范围内。此外,这些过渡金属的吸附导致硅碳纳米管能带结构和Fermi能级附近态密度发生了很大的变化。但这些变化仅和硅碳纳米管所吸附过渡金属的种类有关,而和过渡金属在硅碳纳米管上吸附的位置关系不大。一个例外是Ti原子的吸附:当Ti原子吸附到硅碳纳米管六元环中心时,硅碳纳米管由半导体转化为金属型材料;而当Ti原子吸附到硅碳纳米管的碳原子上时,硅碳纳米管仍为半导体材料。最后,我们也发现过渡金属的吸附导致相当数量的电荷转移,并使得硅碳纳米管表现出不同的磁性。
     五、理论表明SiCNT管壁化学活性高于CNT和BNNT,这使得SiCNT能够吸附一些CNT和BNNT无法吸附的气体,因此可以用来做为这些气体的传感器。为了检验硅碳纳米管是否可以用来作为二氧化碳分子的气体传感器,我们研究了CO2分子在一系列硅碳纳米管上的吸附。我们发现纳米管管径和CO2吸附数量决定了硅碳纳米管和CO2间的相互作用。此外,我们观察到CO2在硅碳纳米管管壁吸附能小于1 eV,电荷转移约为0.20 e。因此,硅碳纳米管可以用来作为CO2的传感器。
     六、利用非金属物质劈裂N-H键和O-H键对于合成重要的胺基化合物和有机含氧化合物是十分必要的。本文通过密度泛函理论研究发现纯硅碳纳米管可以有效地劈裂氨分子中的N-H键以及水、甲醇和乙醇分子中的O-H键,同时预测了劈裂机理及劈裂产物的进一步转化。
The carbon nanotube (CNT), which was discovered in 1991, possesses the quasi-one-dimensional structure. The unique properties of carbon nanotube render it have wide potential applications in energy storage, sensor, and so on. Recently, many other nanotubes, such as boron nitride nanotubes (BNNT) and silicon carbide nanotubes (SiCNT), have been synthesized. The investigation on their structures, properties and the reactions might play an important role on the exploration of their potential applications.
     With the progress in density functional theory (DFT) and its numerical methods, DFT based first-principles calculation has become a routine method for condensed matter theory, quantum chemistry and material science. In the present paper, using DFT calculations, we examine the possibility of the potential applications of several functionalized nanotubes, including CNT, BNNT, and SiCNT, in the detection of gas molecule, the design of field emitter. Our result might provide the guidance for the related studies in experiment. The obtained results are summarized as follows:
     (1) As is known, CNT has high-ratio surface, thus it can be used to detect the presence of some molecular gases, including O2 and NO2. However, some toxic gases (such as CO) can’t be sensed by CNT because of the weak adsorption on CNT. In this paper, we investigate the interaction between Rh-decorated (8,0) SWCNT CO gases by using density functional theory (DFT) methods. The results indicate the adsorption of Rh has activated its nearest carbon atoms. Both the Rh-site and the“activated”C-sites are considered as reactivity sites for the adsorption of CO gases. We found that the adsorption energy of CO gas on Rh site is larger than that of the“activated carbon atoms”. The adsorption of CO and Rh and the“activated carbon atom”could lead to certain charge transfer and the changes of electronic properties of Rh-CNT. Thus, in view of the charge transfer, the Rh-CNT is a good candidate for the detection of CO. Yet, the Rh-decorated SWCNT is not reusable for CO gases detecting due to the large binding energy. These calculation results are useful not only to explain the sensing mechanisms but also to evaluate the potential for SWCNTs-based sensing materials at room temperature.
     (2) Since the atoms of the edges of open nanotubes have high reactivity, the chemical functionalization of the open nanotube may modify their electronic and magnetic properties. In this paper, we have systematically studied the effects of several gaseous adsorbates (H2, N2, O2, and H2O) on the electronic properties of open edges of boron nitride nanotubes (BNNTs) by using density functional theory calculations. The results indicate that all of the molecules, except N2, dissociate and chemisorb on open BNNT edges with large adsorption energies. Additionally, the electronic and magnetic properties of the BNNTs with open edges could be modified to various degrees due to the adsorption, which are dependant on the kinds of the adsorbates. Finally, we note the magnetic properties of the adsorbed N atoms of N-rich-ended BNNT are significantly decreased because the dangling bond is saturated.
     (3) The CNT-based field emission display is the most potential in application. BNNT possesses good stability and exhibits significant resistance to oxidation at high temperature. Interestingly, the BNNT with open edges has unique electronic and magnetic properties. In the present work, through density functional theory (DFT) calculations, we present the first attempt on the effects of O2 and H2O adsorption on the field-emission properties of an open-ended (8, 0) BNNT. The two adsorbates can adsorb at the tips of the open-ended BNNT with large adsorption energies and significant charge transfer. An applied electric field of 1 eV/? at the tube tip (a) significantly increases the adsorption energy to stabilize the adsorbates, and (b) alters the emission properties such as ionization potential (IP) or band-gap. The IP of the open N-rich-ended BNNT is lowered, thereby making it easier to lose electrons. However, there is a slight increase of the IP for the open B-rich-end BNNT. Our results would be useful not only to better understand the property of open-ended BNNTs, but also to design more efficient field emitters of molecular electronic devices in experiments.
     (4) Single-walled carbon nanotubes functionalized by the transition metal have attracted considerable interest due to their potential applications in hydrogen storage, gas sensor and nanodevice design. Silicon carbide nanotbues (SiCNTs), which have been synthized in 2001, possess unique properties and wide applications. Aiming to deeply understand the properties of SiCNT and further explore its potential, we first study by using DFT methods the adsorption of various transition metals on the outer surface of SiCNT. The results suggest that these metal atoms can be chemisorbed on the SiCNT and the binding energy ranges from 1.17 eV (Cu-adsorption) to 3.18 eV (Ti-adsorption). Moreover, the band structures and the density of states near the Fermi leves are significantly modified due to the adsorption of transitiom metals. Interestingly, these changes are only depended on the kinds of transition metals, while not their adsorption-sites. An exception is the Ti-adsorption: for the adsorption of Ti on H-site, SiCNT is converted from semiconductor to metal-materials. However, when Ti is adsorbed on C-site of SiCNT, it still keep semiconducting conductor. Finally, an amount of charge transfer is found and the SiCNT might be magenic materials because of the adsorption of transition metal.
     (5) Theoretical studies indicate that the SiCNT has higher reactivity than those of CNT and BNNT. Thus, some gases might be adsorbed on the surface of SiCNT, while not on CNT or BNNT. To explore the possibility of the SiCNTs as potential gas sensors for CO2-detection, we study the CO2 adsorption on various zigzag (n,0) (n = 6, 8, 10, 12, and 18) SiCNTs by density functional theory (DFT) calculations. It is found that tube diameter and CO2 coverage play important roles in the tube-CO2 interaction. Additionally, the average adsorption energy of CO2 on the SiCNTs is less than 1 eV and the charge transfer is about 0.20 e. Because of the sufficient charge transfer and high concentration of CO2, SiCNT could be a perfect material for efficiently detecting the CO2 molecule.
     (6) Effective cleavage of the N-H and O-H bonds at the“metal-free”centers has attracted considerable attention due to the fundamental and industrial importance. In this paper, we show by density functional theory calculations that the pure silicon carbide nanotube (SiCNT) can effectively cleave the N-H bond of ammonia and O-H bond of H-OX (X = H, CH3 and C2H5). It is shown that both the N-H and O-H bond cleavage undergoes two evolution steps: (i) molecular chemisorption of NH3 or H-OX followed by (ii) activated N-H bond of NH3 or O-H cleavage of H-OX. For the N-H bond cleavage of ammonia, the adsorption energy (-1.199 eV) and the subsequent H-transfer barrier (0.842 eV) from Si-atom to the neighboring C-atom indicate a zero total N-H splitting barrier by the Si+-C? center of SiCNT. Similarly, the SiCNT can also barrierlessly split the O-H bonds of H-OX with a considerably larger exothermicity (~-1.800 eV) than that of the N-H bond cleavage (-1.370 eV). Subsequently, the resultant NH2- or OX-groups and H-atom can be converted to useful organic compounds with the presence of CO, which leads to the recovery of pure SiCNT. Our work for the first time demonstrate that the pure SiCNT is very promising in metal-free cleavage and conversion of the N-H or O-H bonds, while would greatly put forward the potential application of SiCNTs.
引文
(1)赵成大.固体量子化学.高等教育出版社. 1997, 69.
    (2) Kroto, H. W.; Heath, J. R.; Brien, S. C. O.; Smalley, C. R. E. Nature, 1985, 318, 162.
    (3) Kr?tschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, R. D. Nature, 1990, 347, 352.
    (4) Iijima, S. Nature, 1991, 354, 56.
    (5) Ebbesen, T. W.; Ajayan, P. M. Nature, 1992, 358, 220.
    (6) Iijima, S.; Ichihashi, T. Nature, 1993, 363, 603.
    (7) Bethune, D. S.; Kiang, C. H.; Devries, M. S. Nature, 1993, 363, 605.
    (8) Liu, C.; Cong, H. T.; Li, F.; Tan, P. H.; Cheng, H. M.; Lu, K. B.; Zhou, L. Carbon 1999, 37, 1865.
    (9) Sun, L. F.; Xie, S. S.; Liu, W.; Zhou, W. Y.; Liu, Z. Q.; Tang, D. S.; Wang, G.; Qian, L. X. Nature 2000, 403, 384.
    (10) Kong, J; Soh, H. T.; Cassell, A. M.; Dai, H. J. Nature 1998, 395, 878.
    (11) Peng, L. M.; Zhang, Z. L.; Xue, Z. Q.; Wu, Q. D.; Gu, Z. N.; Pettifor, D. G. Phys. Rev. Lett. 2000, 85, 3249.
    (12) Zhao, X.; Liu, Y.; Inoue, S.; Suzuki, T.; Jones, R. O.; Ando, Y. Phys. Rev. Lett. 2004, 92, 125502.
    (13)成会明,纳米碳管:制备、结构、物性及应用,化学工业出版社,2002年.
    (14)朱宏伟,吴德海,徐才录,碳纳米管,机械工业出版社,2003年
    (15) Stone, A. J.; Wales, D. L. Chem. Phys. Lett. 1986, 128, 501.
    (16) Yacabson, B. I. Appl. Phys. Lett. 1998, 72, 918.
    (17) Henning T. H.; Salama, F. Science. 1998, 282, 2204.
    (18) Hiura, H.; Ebbesen, T. W.; Fujita, J. Nature 1994, 367, 148.
    (19)美国Rice大学R. E. Smalley研究小组网上图片,网址http://cnst.rice.edu./pics.html.
    (20) Crespi, V. H. Phys. Rev. B. 1998, 59, 12671.
    (21) Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes & Carbon Nanotubes, San Diego: Academic Press, 1996.
    (22) Sgobba, V.; Guldi, D. M. Chem. Rev. Soc. 2009, 38, 165.
    (23) Zhou, O.; Shimoda, H.; Gao, B.; Oh, S.; Fleming, L.; Yue, G. Acc. Chem. Res. 2002, 35, 1045.
    (24) Ouyang, M.; Huang, J.-L.; Lieber, C. M. Acc. Chem. Res. 2002, 35, 1018.
    (25) Terrones, M. Inter. Mater. Rev. 2004, 39, 325.
    (26) Niyogi, S.; Hamon, M. A.; Hu, H.; Zhao, B.; Bhowmik, P.; Sen, R.; Itkis, M. E.; Haddon, R. C. Acc. Chem. Res. 2002, 35, 1105.
    (27) Tashi, T.; Takumi, T.; Masashi, S.; Yousuke, M.; Masafumiata, H.; Yohjiachiba, K.; Youshihiro, I. Nat. Mater. 2003, 2, 683.
    (28) Li, L. J.; Khlobystov, A.N.; Wiltshire, J.G.; Briggs, G.A.D.; Nicholas, R.J. Nat. Mater. 2005, 4, 481.
    (29) Lu, J.; Shigeru, N.; Yu, D. P.; Ye, H. Q.; Han, R. S.; Gao, Z. X.; Zhang, S.; Peng, L. M. Phys. Rev. Lett. 2004, 93, 116804.
    (30) Vicent, M.; Bobby, G. S. J. Chem. Phys. 2005, 123, 024705.
    (31) Liang, W. Z.; Yang, J. L; Sun, J. Appl. Phys. Lett. 2005, 86, 223113.
    (32) Andrei, N. K.; David, A. B.; Briggs, G. A. D. Acc. Chem. Res. 2005, 38, 901.
    (33) Orellana, W.; Sergio, O. V. Phys. Rev. B. 2006, 74, 125419.
    (34) Victor, M. G-S.; Jaime, F.; Colin, J. L. Phys. Rev. Lett. 2006, 96, 106804.
    (35) Yumura, T.; Kertesz, M.; Iijima, S. J. Phys. Chem. B 2007, 111, 1099.
    (36) Vincent, M.; Sergei, V. K.; Bobby G. S. Phys. Rev. Lett. 2007, 98, 056401.
    (37) (a) Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Nat. Mater. 2007, 6, 507. (b) Chen, W.; Fan, Z. L.; Pan, X. L.; Bao, X. H. J. Am. Chem. Soc. 2008, 130, 9414. (c) Pan, X. L.; Bao, X. H. Chem. Comm. 2008, 47, 6271.
    (38) Koga, K. Gao, G. T.; Tanaka, H.; Zeng, X. C. Nature, 2001, 412, 802.
    (39) Guan, L. H.; Suenaga, K.; Shi, Z. J.; Gu, Z. N.; Iijima, S. Nano. Lett. 2007, 7, 1532.
    (40) Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes, Imperial College Press, 1998.
    (41) Kong, J.; Franklin, N. R.; Zhou. C.; Chapline, M. G.; Peng, S.; Cho. K.; Dai, H. Science, 2000, 287, 622.
    (42) Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science, 2000, 287, 1801.
    (43) Kauffman, D. R.; Star, A. Angew. Chem. Int. Ed. 2008, 47, 6550.
    (44) Zhang, T.; Mubeen, S.; Myung, N. V.; Deshusses, M. A. Nanotechnology, 2008, 19, 332001.
    (45) Riu, J.; Maroto, A.; Rius, F. X. Talanta, 2006, 69, 288.
    (46) Service, R. F. Science. 1998, 281, 940.
    (47) Ball, P. Nature. 2001, 414, 142.
    (48) Ajayan. P. M. Nature, 1993, 361, 333.
    (49) Ajayan. P. M. Nature, 1995, 375, 1550.
    (50) Noriak, H. Phy Rev Lett, 1992, 68, 1579.
    (51) Rinzler, A. G. Science, 1995, 269, 1550.
    (52) Pilip Ball著.徐俊培译.世界科学, 1997, 3, 17.
    (53) Bink, T. W. Phys Rev Lett, 1992, 69, 2527.
    (54) Banerjee, S.; Kahn, M.G. C.; Wong, S. S. Chem. Eur. J. 2003, 9, 1898.
    (55) Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105.
    (56) Ugarte, D.; De Heer, W. A. Science, 1996, 274, 1897.
    (57) Lu, X.; Chen, Z. F. Chem. Rev. 2005, 105, 3643 and references therein.
    (58) (a) Zhao, J. J.; Buldum, A.; Han, J.; Lu, J. P. Nanotechnology 2002, 13, 195. (b) Yang, C. K.; Zhao, J. J.; Lu, J. P. Phys. Rev. B. 2002, 66, 041403. (c) Zhao, J. J.; Lu, J. P.; Han, J.; Yang, C. K. Appl. Phys. Lett. 2003, 82, 3746. (d) Yang, C. K.; Zhao, J. J.; Lu, J. P. Nano Lett. 2004, 4, 561. (e) Zhao, J. J.; Park, H. K.; Han, J.; Lu, J. P. J. Phys. Chem. B. 2004, 108, 4227. (f) Zhao, J. J.; Chen, Z. F.; Zhou, Z.; Park, H. K.; P. von R. Schleyer; Lu, J. P. ChemPhysChem. 2005, 6, 598. (g) Park, H.; Zhao, J.; Lu, J. P. Nano Lett. 2006, 6, 916.
    (59) (a) Lu, J.; Nagase, S.; Yu, D. P.; Ye, H. Q.; Han, R. S.; Gao, Z. X. Chem. Phys.Lett. 2005, 405, 90. (b) Lu, J.; Wang, D.; Nagase, S. Ni, M.; Zhang, X.W.; Maeda, Y.; Wakahara, T.; Nakahodo, T.; Tsuchiya, T.; Akasaka, T.; Gao, Z. X.; Yu, D. P.; Ye, H. Q.; Zhou, Y. S.; Mei, W. N. J. Phys. Chem. B, 2006, 110, 5655. (c) Lu, J.; Nagase, S.; Yu, D. P.; Ye, H. Q.; Han, R. S.; Gao, Z. X.; Zhang, S.; Peng, L. M. Phys. Rev. Lett. 2004, 93, 116804. (d) Lu, J.; Nagase, S.; Zhang, X. W.; Wang, D.; Ni, M.; Maeda, Y.; Wakahara, T.; Nakahodo, T.; Tsuchiya, T.; Akasaka, T.; Gao, Z. X.; Yu, D. P.; Ye, H. Q.; Zhou, Y. S.; Mei, W. N. J. Am. Chem. Soc. 2006, 128, 5114 . (e) Lu, J.; Lai, L.; Luo, G. F.; Zhou, J.; Qin, R.; Wang, L.; Jing, M. W.; Mei, W. N.; Li, G. P.; Nagase, S.; Maeda, Y.; Akasaka, T.; Gao, Z. X.; Yu, D.P. Small 2007, 3, 1566. (f) Zhou, J.; Maeda, Y.; Lu, J.; Tashiro, A.; Hasegawa, T.; Luo, G. F.; Wang, L.; Lai, L.; Akasaka, T.; Nagase, S.; Gao, Z. X.; Qin, R.; Mei, W. N.; Li, G. P.; Yu, D.P. Small 2009, 5, 244.
    (60) (a) Wang, R.X.; Zhang, D.J.; Zhang, Y.M.; Liu, C.B. J. Phys. Chem. B 2006, 110, 18267. (b) Wang, R.X.; Zhang, D.J.; Sun, W. Q.; Han, Z.; Liu, C. B. Theo. Chem. 2007, 806, 93. (c) Wang, R.X.; Zhu, R. X.; Zhang, D.J. Chem. Phys. Lett. 2008, 467, 131.
    (61) Angel, R.; Jennifer, L.C. Physical Review B, 1994, 49, 5081.
    (62) Blasé, X.; Rubio, A.; Louie, S. G. Cohen. Euro. Phys. Lett. 1994, 28, 335.
    (63) Chopra, N. G.; Luyken, R. J. Cherry, K. Science, 1995, 269, 966.
    (64) Loiseau, A. Phys. Rev. Lett. 1996, 76, 4737.
    (65) Bengu, E.; Marks, L. D. Phys. Rev. Lett. 2001, 86, 2385.
    (66) Menon, M.; Srivastava, D. Chem. Phys. Lett. 1999, 307, 407.
    (67) Lee, R. S. Phys. Rev. B. 2001, 64, 121405.
    (68) Xiang, H. J.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. Phys. Rev. B. 2003, 68, 035427.
    (69) Cumings, J.; Zettl, A. Solid State Comm. 2004, 129, 661.
    (70) Radosavljevic, M. Appl. Phys. Lett. 2003, 82, 4131.
    (71) Ishigami, M. Phys. Rev. Lett. 2005, 94, 056804.
    (72) Tang, C. C. J. Am. Chem. Soc. 2002, 124, 14550.
    (73) Hernandez, E.; Goze, C. P.; Bernier, A.; Rubio, Phys. Rev. Lett. 1998, 80, 4502.
    (74) Suryavanshi, A. P.; Yu, M.; Wen, J.; Tang, C. C.; Bando, Y. Appl. Phys. Lett. 2004, 84, 2527.
    (75) Han, W. Q.; Bando, Y.; Kurashima, K.; Sato, T. Appl. Phys. Lett. 1998, 73, 3085.
    (76) (a) Golberg, D.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Adv. Mater. 2007, 19, 2413. (b) Terrones, M.; Romo-Herrera, J. M.; Cruz-Silva, E.; Lopez-Urias, F.; Munoz-Sandoval, E.; Velazquez-Salazar, J. J.; Terrones, H.; Bando, Y.; Golberg, D. Materials Today 2007, 10. 30.
    (77) Zhi, C. Y.; Bando,Y.; Tang, C. C.; Huang, Q.; Golberg, D. J. Mater. Chem. 2008, 18, 3900.
    (78) Zhi, C. Y.; Bando,Y.; Tang, C. C.; Honda, S.; Sato, K.; Kuwahara, H.; Golberg, D. Angew. Chem. Int. Ed. 2005, 44, 7932.
    (79) (a) Schmidt, T. M.; Baierle, R. J.; Piquini, P.; Fazzio, A. Phys. Rev. B. 2003, 67, 113407. (b) Piquini, P.; Bailerle, R. J.; Schmidt, T. M.; Fazzio, A. Nanotechnology, 2005, 16, 827. (c) Kang, H. S. J. Phys. Chem. B, 2006, 110, 4621. (d) An, W.; Wu, X. J.; Yang, J. L.; Zeng, X. C. J. Phys. Chem. C, 2007, 111, 14105. (e) Li, Y. F.; Zhou, Z.; Zhao, J. J. Nanotechnology, 2008, 19, 015202. (f) Hu, S. L.; Kan, Er-J.; Yang, J. L. J. Chem. Phys., 2007, 127, 164718. (g) Wu, X. J.; An, W.; Zeng, X. C. J. Am. Chem. Soc. 2006, 128, 12001.
    (80) (a) Hao, S. G.; Zhou, G.; Duan, W. H.; Wu, J.; Gu, B-L. J. Am. Chem. Soc. 2006, 128, 8453-8458. (b) Li, J.; Zhou, G.; Liu, H. T.; Duan, W. H. Chem. Phys. Lett. 2006, 426, 148-154. (c) Yan, B. H.; Park, C.; Ihm, J.; Zhou, G.; Duan, W. H.; Park, N. J. Am. Chem. Soc. 2008, 130, 17012-17015. (d) Hao, S. G.; Zhou, G.; Duan, W. H.; Wu, J.; Gu, B-L. J. Am. Chem. Soc. 2008, 130, 527-5261. (e)Li, J.; Zhou, G.; Chen, Y.; Gu, B. L.; Duan, W. H. J. Am. Chem. Soc. 2009, 131, 1796-1801. [81] (a) Zhou, Z.; Zhao, J. J.; G.ao, X. P.; Chen, Z. F.; Yan, T. Y.; Wen, B.; Schleyer, P. von. R.; M. Morinaga, Chem. Mater, 2005, 17, 992-1000. (b) Zhou, Z.; Zhao, J. J.; Chen, Z. F.; Schleyer, P. von. R. J. Phys. Chem. B, 2006, 110, 25678-25685. (c) Zhou, Z.; Zhao, J. J.; Chen, Z. F.; G.ao, X. P.; Yan, T. Y.; Wen, B.; Schleyer, P. von. R. J. Phys. Chem. B, 2006, 110, 13363-13369. (d) Zhou, Z.; Zhao, J.; Chen, Z.; Gao, X.; Lu, J. P.; Schleyer, P. v. R.; Yang, C.-K. J. Phys. Chem. B, 2006, 110, 2529-2532. (e) Li, Y. F.; Zhou, Z.; Zhao, J. J. J. Chem. Phys. 2007, 127, 184705 (1-6). (f) Zhou, Z.; Nagase. S. J. Phys. Chem. C, 2007, 111, 18533-18537. (g) Li, Y. F.; Zhou, Z.; Zhao, J. J.Nanotech. 2008, 19, 015202 (1-6). (h) Li, Y. F.; Zhou, Z.; Golberg, D.; Bando, Y.; Schleyer, P. v. R.; Chen, Z. F. J. Phys. Chem. C, 2008, 112, 1365-1370. (i) Zhou, Z.; Li, Y. F. J. Comput. Theor. Nanosci. 2009, 6, 327-334. [82] (a) Xiang, H. J.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. Phys. Rev. B. 2003, 68, 035427 (1-5). (b) Xiang, H. J.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. Phys. Rev. B. 2004, 69, 153411 (1-4). (c) Xiang, H. J.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. Appl. Phys. Lett. 2005, 87, 243113 (1-3). (d) Hu, S. Kan, E. J. Yang, J. L. J. Chem. Phys. 2007, 127, 164718 (1-5). (e) Gou, G. Y.; Pan, B. C.; Shi, L. Phys. Rev. B, 2007, 76, 155414 (1-6).
    (83) (a) Wu, X. J.; Yang, J. L; Hou, J. G.; Zhu, Q. S. J. Chem. Phys. 2004, 121, 8481-8585. (b) Wu, X. J.; Zeng, X. C. J. Chem. Phys. 2006, 125, 044711 (1-7). (c) Wu, X. J.; Yang, J. L.; Zeng, X. C. J. Chem. Phys. 2006, 125, 044704 (1-6). (d) Wu, X. J.; An, W.; Zeng, X. C. J. Am. Chem. Soc. 2006, 128, 12001-12006. (e) An, W.; Wu, X. J.; Yang, J. L.; Zeng, X. C. J. Phys. Chem. C, 2007, 111, 14105-14112. (f) He, W.; Li, Z. Y.; Yang, J. L.; Hou, J. G. J. Chem. Phys. 2008, 129, 024710 (1-10). (g) He, W.; Li, Z. Y.; Yang, J. L.; Hou, J. G. J. Chem. Phys. 2008, 129, 164701 (1-5).
    (84) Lai, L.; Song, W.; Lu, J.; Gao, Z. X.; Nagase, S.; Ni, M.; Mei, W. N.; Liu, J. J.; Yu, D. P.; Ye, H. Q. J. Phys. Chem. B, 2006, 110, 14092-14097.
    (85)向红军“纳米材料的理论研究及线形标度尺度电子结构方法发展”(中国科技大学博士学术论文), 2006。
    (86) Sun, X.H.; Li. C.P.; Wong, W.K.; Wong, N.B.; Lee, C.S.; Lee, S.T., Teo, B.K. J. Am. Chem. Soc 2002, 124, 14464.
    (87) Mpourmpakis G.; Froudakis, G. E.; Lithoxoos, G. P.; Samios, J. Nano. Lett. 2006, 6, 1581.
    (88) Mavrandonakis, A.; Froudakis, G. E.; Andriotis, A.; Menon, M. Appl. Phys. Lett. 2006, 89, 123126.
    (89) Wang, L.; Lu, J.; Luo, G. F.; Song, W.; Lai, L.; Jing, M. W.; Qin, R.; Zhou, J.; Gao, Z. X.; Mei, W. N. J Phys. Chem. C. 2007, 111, 18864.
    (90) Teo, B. K.; Sun, X. H. Chem. Rev. 2007, 107, 1454.
    (91) Mélinon, P.; Masenelli, B.; Tournus, F.; Perez, A. Nature Materials 2007, 6, 479.
    (92) Miyamoto, Y.; Yu, B. D. Appl. Phys. Lett. 2002, 80, 586.
    (93) Mavrandonakis, A.; Froudakis, G. E. Nano Lett. 2003, 3, 1481.
    (94) Menon, M.; Richter, E.; Andriotis, A. N. Phys. Rev. B. 2004, 69, 115332.
    (95) Zhao, M. W.; Xia, Y. Y.; Li, F.; Zhang, R. Q.; Lee, S.-T. Phys. Rev. B. 2005, 71, 085312.
    (96) Alam, K. M.; Ray, A. K. Nanotechnology 2007, 18, 495706.
    (97) Wu, I. J.; Guo, G. Y. Phys. Rev. B. 2007, 76, 03534.
    (98) Baumeier, B.; Kruger, P.; Pollmann, J. Phys. Rev. B. 2007, 76, 085407.
    (99) Alam, K. M.; Ray, A. K. Phys. Rev. B. 2008, 77, 035436.
    (100) (a) Li, F.; Xia, Y. Y.; Zhao, M. W.; Liu, X. D.; Huang, B. D.; Yang, Z. H.; Li, Y. S.; Song, C. J Appl. Phys. 2005, 97, 104311. (b) Zhao, M. W.; Xia, Y. Y.; Zhang, R. Q.; Lee, S.-T. J Chem. Phys. 2005, 122, 214707. (c) He, T.; Zhao, M. W.; Xia, Y. Y.; Li, W. F.; Song, C.; Lin, X. H.; Liu, X. D.; Mei, L. M. J Chem. Phys. 2005, 125, 194710.
    (101) (a) Baierle, R. J.; Piquini, P.; Neves, L. P.; Miwa, R. H. Phys. Rev. B 2006, 74, 155425. (b) Baierle, R. J.; Miwa, R. H. Phys. Rev. B 2007, 76, 205410.
    (102) (a) Gali, A. Phys. Rev. B 2006, 73, 245415 (1-9). (b) Gali, A. Phys. Rev. B 2007, 75, 085416.
    (103) Wu, R. Q.; Yang, M.; Lu, Y. H.; Feng, Y. P.; Huang, Z. G.; Wu, Q. Y. J. Phys. Chem. C 2008, 112, 15985.
    (104) (a) Gao, G.; Kang, H. S. J. Chem. Theory Comput. 2008, 4, 1690. (b) Gao, G.; Park, S. H.; Kang, H. S. Chem. Phys. 2009, 355, 50.
    (105) Meng, T.; Wang, C. Y.; Wang, S. Y. Chem. Phys. Lett. 2007, 437, 224.
    (1) Thomas L.H, Camb Proc. Phil. Soc. 1927, 23.
    (2) Fermi E, Rend. Accad. Lincei, 1927, 6.
    (3) Dirac P.A.M., Camb Proc. Phil. Soc., 1930, 26.
    (4) Weizsacker C. F. von. Phys., 1935, 96.
    (5) Hohenberg P and Kohn W, Phys. Rev. B 1964,136, 864
    (6) Levy M., Phys. Rev. A 1982, 26, 1200.
    (7) Lieb E. H., Int. J. Quantum Chem. 1983, 24, 243.
    (8) Englisch H. and Englisch R., Physica1 A 1983, 121, 253.
    (9) Levy M., Natl Proc. Acad. Sci. USA 1979, 76, 6062.
    (10) Kohn W. and Sham L. J., Phys. Rev. A 1965, 140, 1133.
    (11) Slater J. C., Phys. Rev. 1951, 81, 385.
    (12) Perdew J. P. and Wang Y., Phys. Rev. B 1986, 33, 8800.
    (13) Becke A. D., Phys. Rev. A 1988, 38, 3098.
    (14) Perdew J. P.,. Chevary J. A, Vosko S. H., Jackson K. A., Phys. Rev. B, 1992, 46, 6671.
    (15) Perdew J. P., Burke K. and Ernzerhof M., Phys. Rev. Lett. 1996, 77, 1396.
    (16) Hamprecht F. A., Cohen A. J., Tozer D. J., Handy N. C., J. Chem. Phys. 1998, 109, 64.
    (17) Becke A. D., Roussel M. R., Phys. Rev. A. 1989, 39, 3761.
    (18) Voorhis T. V., Scuseria G. E., J. Chem. Phys. 1998, 109, 400.
    (19) Ernzerhof M., Scuseria G. E., J. Chem. Phys. 1999, 111, 911.
    (20) Perdew J.P., Kurth S., Zupan A. Phys. Rev. Lett. 1999, 82, 2544.
    (21) Becke A. D., J. Chem. Phys. 2000,112, 4020.
    (22) Proynov E., Chermette H., J. Chem. Phys. 2000,113, 10013.
    (23) Becke A. D., J. Chem. Phys. 1993, 98, 1372.
    (24) Becke A. D., J. Chem. Phys. 1993, 98, 5648.
    (25) Stevens P. J., Devlin J. F., Chabalowski C. F., Frisch M. J., J. Phys. Chem. 1994, 98, 11623.
    (26) Becke A. D., J. Chem. Phys. 1995,104, 1040.
    (27) Wigner E., Phys. Rev. 1934, 46, 1002.
    (28) Barth U. von, Hedin L., J. Phys. C. 1972, 5, 1629.
    (29) Gunnarsson O., Lundqvist B. I., Phys. Rev. B 1976,13, 4274.
    (30) Vosko S. J., Wilk L., Nusair M., J. Phys. 1980, 58, 1200.
    (31) Ceperley D.M., Alder B. J., Phys. Rev. Lett. 1980, 45, 566.
    (32) Perdew J. P., Wang Y., Phys. Rev. B 1992, 45, 13244.
    (33) Perdew J. P., Phys. Rev. B 1986, 33, 8822.
    (34) Lee C., Yang W., Parr R. G., Phys. Rev. B 1988, 37, 785.
    (35) Becke A. D., J. Chem. Phys. 1988, 88, 1053.
    (36) Perdew J. P. and Schmidt K., in Density Functional Theory and Its Applications to Materials, edited by V. E. van Doren, K. van Alseoy, P. Geerlings (American Institute of Physics, 2001).
    (37) Oliver F., Perdew J. P., Phys. Rev. A 1979, 20, 397.
    (38) Stoll H., Pavlidou C. M. E., Preuss H., Theor. Chim. Acta 1978, 49, 143.
    (39) Becke A. D., J. Chem. Phys. 1997, 107, 8554.
    (40) Becke A. D., J. Chem. Phys. 1998, 109, 2092.
    (41) Adamo C., Barone V., J. Chem. Phys. 1999, 110, 615.
    (42) Cohen A. J., Handy N. C., Chem. Phys. Lett., 2000, 316, 160.
    (43)戴大地,黎乐民,高等学校化学学报, 1997,18, 1166.
    (44) (a) Delley, B. J. Chem. Phys. 1990, 92, 508, (b) Delley, B. J. Chem. Phys. 2000, 113, 7756.
    (45) Delley, B. J. Chem. Phys. 1996, 100, 6107.
    (46) Matsuzawa, N.; Seto, J., Dixon, D. A. J. Phys. Chem. A. 1997, 101, 9391.
    (47) Baker, J.; Kesi, A.; Delley, B. J. Chem. Phys. 1996, 105, 192.
    (48) Andzelm, J.; King-Smith, R. D.; Fitzgerald, G. Chem. Phys. Lett. 2001, 335, 321.
    (49) Halgren, T. A.; Lipscomb, W. N. Chem. Phys. Lett. 1977, 49, 225.
    (50) Bell, S.; Crighton, J. S. J. Chem. Phys. 1984, 80, 2464.
    (51) Fischer, S.; Karplus, M. Chem. Phys. Lett. 1992, 194, 252.
    (52) Klamt, A. J. Chem. Soc. 1993, 2, 799.
    (53) Klamt, A. J. Phys. Chem. 1995, 997, 2225.
    (54) Andzelm, J.; Kolmel, C.; Klamt, A. J. Phys. Chem. 1995, 103, 9312.
    (55) http://www.accelrys.com/references/dmol3.html.
    (56)黄昆,韩汝琦,固体物理学,高等教育出版社,2000年.
    (57)谢希德,陆栋,固体的能带理论,复旦大学出版社,1998年.
    (58)李正中,固体理论,高等教育出版社,2002年.
    (59) Kittel固体物理导论.
    (60)沈以赴固体物理基础教程.
    (61)中国科学技术大学研究生课程PPT(网络下载),高等固体物理.
    (62) R.霍夫曼,固体与表面
    (63) http://publishblog.blogchina.com/blog/tb.b?diaryID=5732271.
    (1) Iijima, S. Nature 1991, 354, 56.
    (2) Mintmire, J. W.; Dunlap, B. I.; White, C. T. Phys. Rev. Lett. 1992, 68, 631.
    (3) Hamada, N.; Sawada, S.-I.; Oshiyama, A. Phys. Rev. Lett. 1992, 68, 1579.
    (4) Charlier, J.-C.; Limbin, Ph. Phys. Rev. B 1998, 57, 15037.
    (5) Corio, P.; Shapro, M. Phys. Rev. Lett. 2001, 86, 131.
    (6) Demczyk, B. G.; Wang, Y. M.; Cumings, J.; Hetman, M.; Han, M.; Zettl, A.; Ritchie, R. O. Mater. Scien. Eng. A 2002, 334, 173.
    (7) Yakobson, B. I.; Avouris, Ph. In Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Dresselhaus, M. S., Dresselhaus, G., Avouris, Ph., Eds.; pringer-Verlag: Berlin 2000, p391.
    (8) Law, M.; Kind, H.; Messer, B.; Kim, F.; Yang, P. D. Angew. Chem. Int. Edit. 2002, 41, 2405.
    (9) Kong, J.; Franklin, N. R.; Zhou. C.; Chapline, M. G.; Peng, S.; Cho. K.; Dai, H. Science, 2000, 287, 622.
    (10) Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science, 2000, 287, 1801.
    (11) (a) E.S. Snow, F.K. Perkins, J.A. Robinson, Chem. Soc. Rev. 2006, 35, 790; (b) E.S. Snow, F.K. Perkins, Nano Lett. 2005, 5, 2414. (c) E.S. Snow, F.K. Perkins, E.H. Houser, Science 2005, 307, 1942.
    (12) For recent reviews on the application of CNTs to gas sensors, see: (a) Allen, B. L.; Kichambare, P. D.; Star, A. Adv. Mater. 2007, 19, 1439. (b) Snow, E. S.; Perkins, F. K.; Robinson J. A. Chem. Soc. Rev. 2006, 35, 790. (c) Vichchulada, P.; Zhang, Q.;Lay. M. D. Analyst, 2007, 132, 719. (d) Mahar, B.; Laslau,C. Yip, R.; Sun, Y. IEEE Sensors. 2007, 7, 266. (e) Huang, X. J.; Choi, Y. K. Sensors and Actuators B 2007, 122, 659. (f) Sivaramakrishnan, S.; Rajamani, R.; Smith, C.S.; McGee, K.A.; Mann, K.R.; Yamashita N. Sensors and Actuators B 2008, 132, 296. (e) Kauffman, D. R.; Star, A. Angew. Chem. Int. Ed. 2008, 47, 6550.
    (13)王若曦,“若干半导体纳米簇材料几何结构和相关性质的理论研究”(山东大学博士学位论文)2006年.
    (14) (a) S. Peng, K. Cho, Nano Lett. 2003, 3, 513;(b) L.B. Silva, S.B. Fagan, R. Mota, Nano Lett. 2004, 4, 65. [15] J. Zhao, A. Buldum, J. Han, J.P. Lu, Nanotechnology 2002, 13, 195. [16] J.A. Robinson, E.S. Snow, T.L. Reinecke, F.K. Perkins, Nano Lett. 2006, 6, 1747.
    (17) (a) H. Pan, S.B. Feng, J.Y. Lin, Phys. Rev. B 2004, 70, 245425; (b) Y. Zhang, D. Zhang, C. Liu, J. Phys. Chem. B 2006, 110, 4671; (c) J. Kong, M.G. Chapline, H. Dai, Adv. Mater. 2001, 13, 1384; (d) L. Miao, V.R. Bhethanabotal, M.M. Ossowski, B. Joseph, J. Phys. Chem. B 2006, 110, 22415; (e) A. Star, V. Joshi, S. Skarupo, D. Thomas, J.-C.P. Gabriel, J. Phys. Chem. B 2006, 110, 21014; (f) S. Dag, Y. Ozturk, S. Ciraci, T. Yidirim, Phys. Rev. B 2005, 72, 155404; (g) Y. Lu, J. Li, J. Han, H.-T. Ng, C. Binder, C. Partrdge, M. Meyyappan, Chem. Phys. Lett. 2004, 391, 344; (h) Q. Zhao, M. Buongiorno Nardelli,W. Lu, J. Bernholc, Nano Lett. 2005, 5, 847.
    (18) Delley, B. J. Chem. Phys. 1990, 92, 508; Delley, B. J. Chem. Phys 2000, 113, 7756.
    (19) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
    (20) (a) S. Dag, Y. Ozturk, S. Ciraci, and T. Yildirim, Phys. Rev. B 2005, 72, 155404.; (b) (a) E. Durgun, S. Dag, V. M. K. Bagci, O. Gulseren, T. Yildirim, and S. Ciraci, Phys. Rev. B 2003, 67, 201401. (b) E.Durgun, S. Dag, S. Ciraci, and O. Gulseren J. Phys. Chem. B 2004, 108, 575.; (c) L. Miao, Venkat R. Bhethanabotia, M. M. Ossowski, and Babu Joseph, J. Phys. Chem. B 2006, 110, 22415. (d) X. J. Wu and X. C. Zeng, J. Chem. Phys 2006, 125, 044711. (b) X. J. Wu, J. L. Yang, X. C. Zeng, J. Chem. Phys 2006, 125, 044704.
    (21) E. Durgun, S. Dag, V.M.K. Bagci, O. Gulseren, T. Yildirim, S. Ciraci, Phys. Rev. B 2003, 67, 201401.
    (22) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
    (23) G. Henkelman, A. Arnaldsson, H. Jonsson, Comput. Mater. Sci. 2006, 36, 254.
    (1) Iijima, S. Nature 1991, 354, 56.
    (2) Mintmire, J. W.; Dunlap, B. I.; White, C. T. Phys. Rev. Lett. 1992, 68, 631.
    (3) Hamada, N.; Sawada, S.-I.; Oshiyama, A. Phys. Rev. Lett. 1992, 68, 1579.
    (4) Charlier, J.-C.; Limbin, Ph. Phys. Rev. B 1998, 57, 15037.
    (5) Corio, P.; Shapro, M. Phys. Rev. Lett. 2001, 86, 131.
    (6) Demczyk, B. G.; Wang, Y. M.; Cumings, J.; Hetman, M.; Han, M.; Zettl, A.; Ritchie, R. O. Mater. Scien. Eng. A 2002, 334, 173.
    (7) Yakobson, B. I.; Avouris, Ph. In Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Dresselhaus, M. S., Dresselhaus, G., Avouris, Ph., Eds.; pringer-Verlag: Berlin 2000, p391.
    (8) Banhart, F.; Li, J. X.; Terrones, M. Small, 2005, 1, 953.
    (9) Seo, K.; Kim, C.; Kim, B.; Lee, Y. H.; Song, K. J. Phys. Chem. B, 2004, 108, 4308.
    (10) (a) Ding, F.; Larsson, P.; Larsson, J. A.; Ahuja, R.; Duan, H.; Rosén, A.; Bolton, K. Nano. Lett. 2008, 8, 463. (b) Ohta, Y.; Okamoto, Y.; Irle, S.; Morokuma, K. ACS. Nano. 2008, 2, 1473.
    (11) Basiuk, V. A.; Basiuk, E. V.; Saniger-Blesa, J.-M. Nano. Lett. 2001, 1, 657.
    (12) Gustavsson, S.; Rosén, A.; Grennberg, H.; Bolton, K. Chem. Eur. J. 2004, 10, 2223.
    (13) Kim, Y. H.; Choi, J.; Chang, K. J.; Tománek, D. Phys. Rev. B 2003, 68, 125420.
    (14) (a) Zhou, G.; Duan, W. H.; Gu, B. L. Phys. Rev. Lett. 2001, 87, 095504. (b) Kim,C.; Choi, Y. S.; Lee, S. M.; Park, J. T.; Kim, B.; Lee, Y. H.; J. Am. Chem. Soc. 2002, 124, 9906. (c) Akdim, B.; Duan, X.; Pachter, R. Nano. Lett. 2003, 3, 1209.
    (15) Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081.
    (16) Blase, X.; Rubio, A.; Louie, S. G.; Cohen, M. L. Euro. Phys. Lett. 1994, 28, 335.
    (17) Hernandez, E.; Goze, C. P.; Bernier, A.; Rubio, Phys. Rev. Lett. 1998, 80, 4502.
    (18) Suryavanshi, A. P.; Yu, M.; Wen, J.; Tang, C. C.; Bando, Y. Appl. Phys. Lett. 2004, 84, 2527.
    (19) Han, W. Q.; Bando, Y.; Kurashima, K.; Sato, T. Appl. Phys. Lett. 1998, 73, 3085.
    (20) (a) Golberg, D.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Adv. Mater. 2007, 19, 2413. (b) Terrones, M.; Romo-Herrera, J. M.; Cruz-Silva, E.; Lopez-Urias, F.; Munoz-Sandoval, E.; Velazquez-Salazar, J. J.; Terrones, H.; Bando, Y.; Golberg, D. Materials Today 2007, 10. 30.
    (21) (a) Wu, X. J.; Zeng, X. C. J. Chem. Phys. 2006, 125, 044711. (b) Wu, X. J.; Yang, J. L.; Zeng, X. C. J. Chem. Phys. 2006, 125, 044704. (c) Wu, X. J.; An, W.; Zeng, X. C. J. Am. Chem. Soc. 2006, 128, 12001. (d) An, W.; Wu, X. J.; Yang, J. L.; Zeng, X. C. J. Phys. Chem. C, 2007, 111, 14105. (e) Wu, X. J.; Yang, J. L; Hou, J. G.; Zhu, Q. S. J. Chem. Phys. 2004, 121, 8481.
    (22) Zhi, C. Y.; Bando, Y.; Tang, C. C.; Golberg, D. Phys. Rev. B 2006, 74, 153413.
    (23) Lai, L.; Song, W.; Lu, J.; Gao, Z. X.; Nagase, S.; Ni, M.; Mei, W. N.; Liu, J. J.; Yu, D. P.; Ye, H. Q. J. Phys. Chem. B, 2006, 110, 14092.
    (24) Li, J.; Zhou, G.; Liu, H. T.; Duan, W. H. Chem. Phys. Lett. 2006, 426, 148.
    (25) Zhang, J.; Loh, K. P.; Yang, W. S.; Wu, P. Appl. Phys. Lett. 2005, 87, 243105.
    (26) (a) Zhou, Z.; Zhao, J. J.; Chen, Z. F.; Schleyer, P. von. R. J. Phys. Chem. B, 2006, 110, 25678. (b) Li, Y. F.; Zhou, Z.; Zhao, J. J. J. Chem. Phys. 2007, 127, 184705. (c) Zhou, Z.; Zhao, J. J.; Chen, Z. F.; G.ao, X. P.; Yan, T. Y.; Wen, B.; Schleyer, P. von. R. J. Phys. Chem. B, 2006, 110, 13363. (d) Zhou, Z.; Zhao, J. J.; G.ao, X. P.; Chen, Z. F.; Yan, T. Y.; Wen, B.; Schleyer, P. von. R.; M. Morinaga, Chem. Mater, 2005, 17, 992. (e) Li, Y. F.; Zhou, Z.; Zhao, J. J. Nanotech. 2008, 19, 015202. (f) Li, Y. F.; Zhou, Z.; Golberg, D.; Bando, Y.; Schleyer, P. v. R.; Chen, Z. F. J. Phys. Chem. C, 2008, 112, 1365. (g) Zhou, Z.; Nagase. S. J. Phys. Chem. C, 2008, 111, 18533. (i) Zhou, Z.; Zhao, J.; Chen, Z.; Gao, X.; Lu, J. P.; Schleyer, P. v. R.; Yang, C.-K. J. Phys. Chem. B, 2006, 110, 2529.
    (27) Celik-Aktas, A.; Stubbins, J. F.; Zuo, J.-M. J. Appl. Phys. 2007, 102, 024310.
    (28) (a) Hao, S. G.; Zhou, G.; Duan, W. H.; Wu, J.; Gu, B.-L. J. Am. Chem. Soc. 2006, 128, 8453. (b) Blasé, X.; De Vita, A.; Charlier, J.-C.; Car, R. Phys. Rev. Lett. 1998, 80, 1666.
    (29) (a) Delley, B. J. Chem. Phys. 1990, 92, 508, (b) Delley, B. J. Chem. Phys. 2000, 113, 7756.
    (30) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
    (31) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
    (32) Lange’s Chemistry Handbook, 15th, John, A. Dean.
    (33) Fazen, P. J.; Burke, L. A. Inorg. Chem. 2006, 45, 2494.
    (1) Rubio A, Corkill J L and Cohen M L Phys. Rev. B 1994, 49, 5081.
    (2) Blase X, Rubio A, Louie S G and Cohen M L Euro. Phys. Lett. 1994, 28, 335.
    (3) Hu S, Li Z, Zeng X C and Yang J L J. Phys. Chem. C 2008, 112, 8424.
    (4) Celik-Aktas A, Stubbins J F and Zuo J-M J. Appl. Phys. 2007, 102, 024310.
    (5) Hao S G, Zhou G, Duan W H, Wu J and Gu B-L J. Am. Chem. Soc. 2006, 128, 8453.
    (6) Yan B H, Park C, Ihm J, Zhou G, Duan W H and Park N J. Am. Chem. Soc. 2008, 130, 17012.
    (7) Choi W B, Chung D S, Kang J H, Kim H Y, Jin Y W, Han I T, Lee Y H, Jung J E, Lee N S, Park G S and Kim J M Appl. Phys. Lett. 1999, 75, 3129.
    (8) (a) Lim S C, Choi Y C, Jeong H J, Shin Y M, An K H, Bae D J, Lee Y H, Lee N S and Kim J M Adv. Mater. 2001, 13, 1563. (b) Wadhawan A, Stallcup R E, Stephens, K F, Perez J M and Akwani I A Appl. Phys. Lett. 2001, 79, 1867.
    (9) (a) Dean K A, Von Allmen P and Chalamala B R J. Vac. Sci. Technol. B 1999, 17, 1959. (b) Dean K A and Chalamala B R Appl. Phys. Lett. 1999, 75, 3017.
    (10) Maiti A, Andzelm J, Tanpipat N and Allmen P Phys. Rev. Lett. 2001, 87, 155502.
    (11) (a) Zhi C Y, Bai X D and Wang E G Appl. Phys. Lett. 2002, 81, 1690. (b) Dong C and Gupa M Appl. Phys. Lett. 2003, 83, 19. (c) Dean K A and Chalamala B R Appl. Phys. Lett. 2000, 76, 375.
    (12) Kim C, Seo K, Kim B, Park N, Choi Y S, Park K A and Lee Y H Phys. Rev. B 2003, 68, 115403.
    (13) Zhou G, Duan W H and Gu B L Phys. Rev. Lett. 2001, 87, 095504.
    (14) (a) Kim C, Choi Y S, Lee S M, Park J T, Kim B and Lee Y H J. Am. Chem. Soc. 2002, 124, 9906 (b) Akdim B, Duan X and Pachter B Nano. Lett. 2003, 3, 1209 (c) Li Z and Wang C-Y Chem. Phys. 2006, 330, 417 (d) Qiao L, Zheng W T and Jiang Q Nanotech. 2007, 18, 155707 (d) Chen G, Li Z, Peng J, He C, Wang W, Deng S, Xu N, Wang C, Wang S, Zheng X, Chen G H and Yu T J. Phys. Chem. C 2007, 111, 4939.
    (14) W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. H. Baker, L. Forro, and D. Ugarte, Science 1995, 268, 845.
    (15) S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. G. Dai, Science 1999, 283, 512.
    (16)樊志琴,张兵临,信息工程大学学报2007,3, 72.
    (17)乔靓,碳纳米管场发射性质的第一原理研究,(博士学位论文),吉林大学材料科学与工程学院,2007。
    (18) Qu C Q, Qiao L, Wang C, Yu S S, Zheng W T, Fu Y Z and Jiang Q Solid State Comm. 2008, 146, 399.
    (19) Delley B J. Chem. Phys. 1990, 92, 508; Delley B J. Chem. Phys. 2000, 113, 7756.
    (20) Perdew J P and Wang Y Phys. Rev. B 1992, 45, 13244.
    (21) Golberg D and Bando Y Appl. Phys. Lett. 2001, 79, 415.
    (22) (a) Ma R Z, Bando Y, Sato T and Kurashima K Chem. Mater. 2001, 13, 2965 (b) Lee R S, Gavillet J, de la Chapelle M L, Loiseau A, Cochon J L, Pigache D, Thibault J and Willaime F Phys. Rev. B 2001, 64,121405.
    (23) Zhao J X and Ding Y H J. Phys. Chem. C 2008, 112, 20206.
    (24) Lange’s Chemistry Handbook, 15th, John, A. Dean.
    
    
    (1) S. Satio, Science 1997, 278, 77.
    (2) R.H. Bauguman, A. A. Zakhidov, and W. A. de Heer, Science 2002, 297, 787.
    (3) D. Tasis, N. Tagmatarchis, Alberto Bianco, and M. Prato, Chem. Rev. 2006, 106, 1105.
    (4) Gregory G. Wildgoose, Craig E. Banks, and Richard G. Compton, Small 2006, 2, 182.
    (5) Ricardo A, Guirado-Lopez, M. Sanchez, and M. E. Rincon, J Phys. Chem. C 2007, 111, 57.
    (6) S. Dag, Y. Ozturk, S. Ciraci, and T. Yildirim, Phys. Rev. B 2005, 72, 155404.
    (7) Kong, J.; Chapline, M.G,; Dai, H.J. Adv. Mater 2001, 13, 1384; Lu, Y. J.; Li, J.; Han, J.; Ng, H. T.; binder, C.; Partridge, C.; Meyyappan, M, Chem. Phys. Lett 2004, 391, 344; A. Star, V. Joshi, S. Skarupo, D. Thomas, and Jean-Christophe P. Gabriel, J. Phys. Chem. B 2006, 110, 21014.
    (8) S. S.; and G. McKinley, Journal of Fluids Engineering 2007, 129, 429.
    (9) Yufeng Zhao, Yong-Hyun Kim, A. C. Dillon, M. J. Heben, and S.B. Zhang Phys. Rev. Lett 2005, 94, 155504.; T. Yildirim, and S. Ciraci Phys. Rev. Lett 2005, 94, 175501.
    (10) (a) E. Durgun, S. Dag, V. M. K. Bagci, O. Gulseren, T. Yildirim, and S. Ciraci, Phys. Rev. B 2003, 67, 201401. (b) E.Durgun, S. Dag, S. Ciraci, and O. Gulseren J. Phys. Chem. B 2004, 108, 575.
    (11) L. Miao, Venkat R. Bhethanabotia, M. M. Ossowski, and Babu Joseph, J. Phys. Chem. B 2006, 110, 22415.
    (12) X.H. Sun, C.P. Li. W.K. Wong, N.B. Wong, C.S. Lee, S.T. Lee, and B.K. Teo, J. Am. Chem. Soc 2002, 124, 14464.
    (13) Pham-Huu, C.; Keller, N.; Ehret, G.; Ledouxi, M.J. J. Catal. 2001, 200, 400.
    (14) (a) Mpourmpakis G.; Froudakis, G. E.; Lithoxoos, G. P.; Samios, J. Nano. Lett. 2006, 6, 1581; (b) Mavrandonakis, A.; Froudakis, G. E.; Andriotis, A.; Menon, M. Appl. Phys. Lett. 2006, 89, 123126. (c) Wang, L.; Lu, J.; Luo, G. F.; Song, W.; Lai, L.;Jing, M. W.; Qin, R.; Zhou, J.; Gao, Z. X.; Mei, W. N. J Phys. Chem. C. 2007, 111, 18864. (d) Teo, B. K.; Sun, X. H. Chem. Rev. 2007, 107, 1454. (e) Mélinon, P.; Masenelli, B.; Tournus, F.; Perez, A. Nature Materials 2007, 6, 479.
    (15) Y. Miyamoto and B. D. Yu. Appl. Phys. Lett 2002, 80, 586.
    (16) M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, and A. N. Andriotis, Phys. Rev. B 2004, 69, 115332.
    (17) M. Zhao, Y. Xia, F. Li, R. Q. Zhang. and S.-T. Lee, Phys. Rev. B 2005, 71, 085312.
    (18) A. Mavrandonakis, G. Froudakis, and A. N. Andriotis, Nano Lett 2003, 3, 1481.
    (19) A.Gali, Phys. Rev. B 2006, 73, 245415.
    (20) (a) Gao, G.; Kang, H. S. J. Chem. Theory Comput. 2008, 4, 1690. (b) Gao, G.; Park, S. H.; Kang, H. S. Chem. Phys. 2009, 355, 50.
    (21) Wu, R. Q.; Yang, M.; Lu, Y. H.; Feng, Y. P.; Huang, Z. G.; Wu, Q. Y. J. Phys. Chem. C 2008, 112, 15985.
    (22) M. Zhao, Y. Xia, R.Q. Zhang, and S.-T. Lee, J. Chem. Phys 2005, 122, 21470.
    (23) F. Li, Y.-Y. Xia, M.-W, Zhao, X.-D. Liu, B.-D. Huang, Z.-H. Yang, Y.-J. Ji, and C. Song, J. Appl. Phys 2005, 97, 104311.
    (24) G. Mpourmpakis, G. E. Froudakis, G. P. Lithoxoos, and J. Samios, Nano lett 2006, 6, 1581.
    (25) B. Delley, J. Chem. Phys. 92, 508 (1990).; B. Delley, J. Chem. Phys 2000, 113, 7756.
    (26) (a) X. J. Wu and X. C. Zeng, J. Chem. Phys 2006, 125, 044711. (b) X. J. Wu, J. L. Yang, X. C. Zeng, J. Chem. Phys 2006, 125, 044704.
    (27) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
    (28) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
    (29) T. Meng, C-Y. Wang , S-Y. Wang, Chem. Phys. Lett 2007, 437,224.
    (30) O. Gulseren, T. Yildirim, and S. Ciraci, Phys. Rev.Lett 2001, 87, 116802.
    (1) Thorpe, M. J.; Balslev-Clausen, D.; Kirchner, M. S.; Ye, J. Opt. Express 2008, 16, 2387.
    (2) Thorpe, M. J.; Moll, K. D.; Jones, R. J.; Safdi, B.; Ye, J. Science 2006, 311,1595.
    (3) Johnson, J. Chem. Eng, News, 2008, 86, 10.
    (4) Muller, B.; Hauser, P. C. Analyst 1996, 121, 339-343.
    (5) Brousseau, L. C.; Aurentz, D. J.; Benesi, A. J.; Mallouk, T. E. Anal. Chem. 1997, 69, 688.
    (6) Rowiński, P.; Bilewicz, R.; Stébé, M. J.; Rogalska, E. Anal. Chem. 2002, 74, 1554.
    (7) Pandey, S. K.; Kim, K. H. Sensors 2007, 7, 1683.
    (8) Anderson, M. R.; Emerg. J. Nursing 2006, 32, 149.
    (9) Chu, C. S., Lo, Y. L. Sens. Actuators B 2008, 129, 120.
    (10) Kong, J.; Franklin, N. R.; Zhou. C.; Chapline, M. G.; Peng, S.; Cho. K.; Dai, H. Science, 2000, 287, 622.
    (11) Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science, 2000, 287, 1801.
    (12) For recent reviews on the application of CNTs to gas sensors, see: (a) Allen, B. L.; Kichambare, P. D.; Star, A. Adv. Mater. 2007, 19, 1439. (b) Snow, E. S.; Perkins, F. K.; Robinson J. A. Chem. Soc. Rev. 2006, 35, 790. (c) Vichchulada, P.; Zhang, Q.; Lay. M. D. Analyst, 2007, 132, 719. (d) Mahar, B.; Laslau,C. Yip, R.; Sun, Y. IEEE Sensors. 2007, 7, 266. (e) Huang, X. J.; Choi, Y. K. Sensors and Actuators B 2007, 122, 659. (f) Sivaramakrishnan, S.; Rajamani, R.; Smith, C.S.; McGee, K.A.; Mann, K.R.; Yamashita N. Sensors and Actuators B 2008, 132, 296. (e) Kauffman, D. R.; Star, A. Angew. Chem. Int. Ed. 2008, 47, 6550.
    (13) Zhao, J. J.; Buldum, A.; Han, J.; Lu, J. P. Nanotechnology 2002, 13, 195.
    (14) (a) Sun, X.H.; Li. C.P.; Wong, W.K.; Wong, N.B.; Lee, C.S.; Lee, S.T.; Teo, B.K. J. Am. Chem. Soc 2002, 124, 14464. (b) Pham-Huu, C.; Keller, N.; Ehret, G.; Ledouxi, M.J. J. Catal. 2001, 200, 400. (c) Mpourmpakis G.; Froudakis, G. E.; Lithoxoos, G. P.; Samios, J. Nano. Lett. 2006, 6, 1581; (d) Mavrandonakis, A.; Froudakis, G. E.;Andriotis, A.; Menon, M. Appl. Phys. Lett. 2006, 89, 123126. (e) Wang, L.; Lu, J.; Luo, G. F.; Song, W.; Lai, L.; Jing, M. W.; Qin, R.; Zhou, J.; Gao, Z. X.; Mei, W. N. J Phys. Chem. C. 2007, 111, 18864. (f) Teo, B. K.; Sun, X. H. Chem. Rev. 2007, 107, 1454. (g) Mélinon, P.; Masenelli, B.; Tournus, F.; Perez, A. Nature Materials 2007, 6, 479.
    (15) Zhao, J. X.; Ding, Y. H. J. Phys. Chem. C 2008, 112, 2558.
    (16) (a) Gao, G.; Kang, H. S. J. Chem. Theory Comput. 2008, 4, 1690. (b) (b) Gao, G.; Park, S. H.; Kang, H. S. Chem. Phys. 2009, 355, 50.
    (17) Wu, R. Q.; Yang, M.; Lu, Y. H.; Feng, Y. P.; Huang, Z. G.; Wu, Q. Y. J. Phys. Chem. C 2008, 112, 15985.
    (18) Delley, B. J. Chem. Phys. 1990, 92, 508; Delley, B. J. Chem. Phys 2000, 113, 7756.
    (19) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
    (20) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
    (21) Y. Miyamoto; B. D. Yu. Appl. Phys. Lett. 2002, 80, 586.
    (22) M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, A. N. Andriotis, Phys. Rev. B 2004, 69, 115332.
    (23) M. Zhao, Y. Xia, F. Li, R. Q. Zhang., S.-T. Lee, Phys. Rev. B 2005, 71, 085312.
    (24) A. Mavrandonakis, G. Froudakis, A. N. Andriotis, Nano Lett 2003, 3, 1481.
    (25) A.Gali, Phys. Rev. B 2006, 73, 245415.
    (26) X. J. Wu; W. An; X. C. Zeng, J. Am. Chem. Soc 2006, 128, 12001.
    (27) G. Mpourmpakis; G.. E. Froudakis; G. P. Lithoxoos; J. Samios, Nano. Lett. 2006, 6, 1581.
    (28) (a) J. J. Zhao; H. Park; J. Han; J. P. Lu, J. Phys. Chem. B 2004, 108, 4227; (b) J. J. Zhao; Z. F. Chen; Z. Zhou; H. Park; P. V. Schleyer; J. P. Lu, ChemPhysChem 2005, 6, 598. (c) Z. Zhou, J. J. Zhao, Z. F. Chen, P. von. R. Schleyer, J. Phys. Chem. B, 2006, 110, 25678.
    (29) (a) Y. F. Li; Z. Zhou; J. J. Zhao, J. Chem. Phys. 2007, 127, 184705. (b) C. Y. Zhi,Y. Bando, C. C. Tang, D. Golberg, Phys. Rev. B 2006, 74, 153413. (c) H. J. Xiang, J. L. Yang, J. G. Hou, Q. S. Zhu, Appl. Phys. Lett. 2005, 87, 243113.
    (30) (a) Y. F. Zhang; C. Suc; Z. F. Liu; J. Q. Li, J. Phys. Chem. B 2006, 110, 22462. (b) W. L. Yim; X. G. Gong; Z. F. Liu, J. Phys. Chem. B 2003, 107, 9363.
    (31) S.H. Jhi; S. G.Louie; M. L.Cohen, Phys. Rev. Lett. 2000, 85, 1710.
    (1) Nakajima, Y.; Kameo, H.; uzuki, H. S. Angew. Chem. Int. Ed. 2006, 45, 950.
    (2) Dagani, R, Chem. Eng, News, 2007, 85, 67.
    (3) Blum, O.; Milstein, D. J. Am. Chem. Soc. 2002, 124, 11456.
    (4) (a) Zhao, J; Goldman, J.S; Hartwig, J. F., Science, 2005, 307, 1080. (b) Lavallo, V; Frey, G. D; Schoeller, W.; Bertand G. Angew. Chem. Int. Ed. 2008, 47, 5224.
    (5) Ochi, N.; Nakao, Y.; Sato, H.; Sakaki, S. J. Am. Chem. Soc. 2007, 129, 8615.
    (6) Frey, G. D; Lavallo, V; Donnadieu, B; Schoeller, W.; Bertand G Science, 2007, 316, 439.
    (7) Ozerov, O. V. Chem. Soc. Rev. 2009, 38, 83 and references therein.
    (8) Bryndza, H. E.; Tam, W. Chem. Rev. 1988, 88, 1163.
    (9) Milstein, D. Acc. Chem. Res. 1988, 21, 428.
    (10) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40.
    (11) Recent reviews: (a) D. Tasis; N. Tagmatarchis; A. Bianco and M. Prato, Chem. Rev. 2006, 106, 1105. (b) Sgobba, V.; Guldi, D. M. Chem. Rev. Soc. 2009, 38, 165.
    (12) Sun, X.H.; Li. C.P.; Wong, W.K.; Wong, N.B.; Lee, C.S.; Lee, S.T.; Teo, B.K. J. Am. Chem. Soc 2002, 124, 14464.
    (13) (a) Wu, R. Q.; Yang, M.; Lu, Y. H.; Feng, Y. P.; Huang, Z. G.; Wu, Q. Y. J. Phys. Chem. C 2008, 112, 15985. (b) Zhao, J. X.; Ding, Y. H. J. Phys. Chem. C 2008, 112, 2558. (c) Gao, G.; Kang, H. S. J. Chem. Theory Comput. 2008, 4, 1690.
    (14) (a) Teo, B. K.; Sun, X. H. Chem. Rev. 2007, 107, 1454. (b) Mélinon, P.; Masenelli, B.; Tournus, F.; Perez, A. Nature Materials 2007, 6, 479.
    (15) Delley, B. J. Chem. Phys. 1990, 92, 508; Delley, B. J. Chem. Phys 2000, 113, 7756.
    (16) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
    (17) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
    (18) (a) Henkelman, G.; Jonsson, H. J. Chem. Phys. 2000, 113, 9978. (b) Olsen, R. A.; Kroes, G. J.; Henkelman, G.; Arnaldsson, A.; Jonsson, H. J. Chem. Phys. 2004, 121, 9776.
    (19) Dean, J. A. Lange’s Chemistry Handbook, 15th ed.; McGraw-Hill: New York, 1992.
    (20) Ottosson, H.; Ekl?f, A. M. Coord. Chem. Rev. 2008, 252, 1287 and references therein.
    (21) (a) Oláh, J.; Veszprémi, T. Organometallics, 2008, 27, 2723. (b) Takahasi, M.; Veszprémi, T. Organometallics, 2004, 23, 5768. (c) Bendikov, M.; Quadt, S. R.; Rabin, O.; Apeloig, Y. Organometallics, 2002, 21, 3930. (d) Takahashi, M.; Veszpre′mi, T.; Sakamoto, K.; Kira, M. Mol. Phys. 2002, 100, 1703. (e) Veszprémi, T.; Takahasi, M.; Hajgató, B.; Kira, M. J. Am. Chem. Soc. 2001, 123, 6629.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700